text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 

Email this pagePrint this page


Press Release 12-069
Climate Change Boosts Then Quickly Stunts Plants, Decade-long Study Shows

Global warming may initially make the grass greener, but not for long

Photos of the studied ecosystems with increasing elevation from left to right.

Composite of the ecosystems studied, arranged left to right in order of increasing elevation.
Credit and Larger Version

April 10, 2012

Global warming may initially make the grass greener, but not for long, according to new research results.

The findings, published this week in the journal Nature Climate Change, show that plants may thrive in the early stages of a warming environment but then begin to deteriorate quickly.

"We were really surprised by the pattern, where the initial boost in growth just went away," said scientist Zhuoting Wu of Northern Arizona University (NAU), a lead author of the study. "As ecosystems adjusted, the responses changed."

Ecologists subjected four grassland ecosystems to simulated climate change during a decade-long study.

Plants grew more the first year in the global warming treatment, but this effect progressively diminished over the next nine years and finally disappeared.

The research shows the long-term effects of global warming on plant growth, on the plant species that make up a community, and on changes in how plants use or retain essential resources like nitrogen.

"The plants and animals around us repeatedly serve up surprises," said Saran Twombly, program director in the National Science Foundation (NSF)'s Division of Environmental Biology, which funded the research.

"These results show that we miss these surprises because we don't study natural communities over the right time scales. For plant communities in Arizona, it took researchers 10 years to find that responses of native plant communities to warmer temperatures were the opposite of those predicted."

The team transplanted four grassland ecosystems from a higher to lower elevation to simulate a future warmer environment, and coupled the warming with the range of predicted changes in precipitation--more, the same, or less.

The grasslands studied were typical of those found in northern Arizona along elevation gradients from the San Francisco Peaks down to the Great Basin Desert.

The researchers found that long-term warming resulted in loss of native species and encroachment of species typical of warmer environments, ultimately pushing the plant community toward less productive species.

The warmed grasslands also cycled nitrogen more rapidly. This should make more nitrogen available to plants, scientists believed, helping plants grow more. But instead much of the nitrogen was lost, converted to nitrogen gases in the atmosphere or leached out by rainfall washing through the soil.

Bruce Hungate, senior author of the paper and an ecologist at NAU, said the study challenges the expectation that warming will increase nitrogen availability and cause a sustained increase in plant productivity.

"Faster nitrogen turnover stimulated nitrogen losses, likely reducing the effect of warming on plant growth," Hungate said. "More generally, changes in species, changes in element cycles--these really make a difference. It's classic systems ecology: the initial responses elicit knock-on effects, which here came back to bite the plants. These ecosystem feedbacks are critical--you can't figure this out with plants grown in a greenhouse."

The findings caution against extrapolating from short-term results, or from experiments with plants grown under artificial conditions, where researchers can't measure the feedbacks from changes in the plant community and from nutrient cycles.

"The long-term perspective is key," said Hungate. "We were surprised, and I'm guessing there are more such surprises in store."

Co-authors of the paper include George Koch and Paul Dijkstra, both at NAU.

-NSF-

Media Contacts
Cheryl Dybas, NSF, (703) 292-7734, cdybas@nsf.gov
Cynthia Brown, NAU, (928) 255-9415, cynthia.brown@nau.edu

Related Websites
NSF Science, Engineering and Education for Sustainability (SEES): http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504707

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

Photo of a person walking in the Great Basin Desert study site.
The Great Basin Desert study site, lowest elevation in a gradient of sites researched.
Credit and Larger Version

Photo of a desert grassland with mountains in the background.
High desert grassland, one of several sites the scientists studied.
Credit and Larger Version

Photo of a pinyon-juniper area with mountains in the background.
A pinyon-juniper area, next in increasing elevation of the study sites.
Credit and Larger Version

Photo of the ponderosa pine meadow study site with two researchers taking samples.
Moving upward, the ponderosa pine meadow study site.
Credit and Larger Version

Photo of a mixed conifer meadow with a researcher taking a soil sample.
The highest-elevation site, a mixed conifer meadow.
Credit and Larger Version



Email this pagePrint this page
Back to Top of page