text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Biological Sciences (BIO)
Integrative Organismal Systems (IOS)
design element
IOS Home
About IOS
Funding Opportunities
Career Opportunities
Examples of Broader Impacts
Supplements & Other Opportunities
See Additional IOS Resources
View IOS Staff
BIO Organizations
Biological Infrastructure (DBI)
Environmental Biology (DEB)
Emerging Frontiers (EF)
Integrative Organismal Systems (IOS)
Molecular and Cellular Biosciences (MCB)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Merit Review
NSF Outreach
Policy Office
Additional IOS Resources
Career Opportunities
BIO Dear Colleague Letters
BIO Reports
BIO Document Library
Interdisciplinary Research
Merit Review
Supplements & Other Opportunities
Merit Review Broader Impacts Criterion: Representative Activities
Image Credits
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page

Press Release 09-164 - Video
Benoit Bruneau talks about the evolution of the four chambers of the heart from frogs to mammals.

Benoit Bruneau of the Gladstone Institute of Cardiovascular Disease explains the discovery of the first genetic link in the evolution of the heart from three- to four-chambered. He walks through the anatomy of the cold-blooded frog heart that has three chambers; talks about its differences with the warm-blooded four-chambered heart, and explains some evolutionary advantages of being warm-blooded. He explains the molecular pattern of the protein Tbx5 and how it is different in embryo frog hearts compared with embryo mammal hearts. When the protein is present throughout the entire heart, three chambers form. However, when Tbx5 is restricted only to the left side of the heart, then the wall separating the two ventricles forms and four chambers result. When irregularities in the amounts of the protein occur in human babies, congenital heart defects of the septum result.

Credit: National Science Foundation/Gladstone Institute

Back to article


Email this pagePrint this page
Back to Top of page