text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 

Email this pagePrint this page

Press Release 09-164 - Video
Benoit Bruneau talks about the evolution of the four chambers of the heart from frogs to mammals.

Benoit Bruneau of the Gladstone Institute of Cardiovascular Disease explains the discovery of the first genetic link in the evolution of the heart from three- to four-chambered. He walks through the anatomy of the cold-blooded frog heart that has three chambers; talks about its differences with the warm-blooded four-chambered heart, and explains some evolutionary advantages of being warm-blooded. He explains the molecular pattern of the protein Tbx5 and how it is different in embryo frog hearts compared with embryo mammal hearts. When the protein is present throughout the entire heart, three chambers form. However, when Tbx5 is restricted only to the left side of the heart, then the wall separating the two ventricles forms and four chambers result. When irregularities in the amounts of the protein occur in human babies, congenital heart defects of the septum result.

Credit: National Science Foundation/Gladstone Institute

Back to article

Related media icon
This video requires the free Brightcove Video Cloud plug-in

 



Email this pagePrint this page
Back to Top of page