text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 

Email this pagePrint this page

Press Release 10-012 - Video
Semiconductors can be grown more smoothly by managing the random darting motions of atomic particles

Using a solution of tiny plastic spheres 50 times smaller than a human hair, scientists at Cornell University discovered the thin, smooth crystalline sheets needed to make semiconductors can be grown more smoothly by managing the random darting motions of the atomic particles that affect how the crystals grow. Researchers reproduced the conditions that lead to crystallization on the atomic scale by using particles much bigger than atoms, but still small enough that they behave like atoms to watch how particles crystallize. Additionally, with special laser beams known as "optical tweezers," researchers placed an individual particle (atom) on top of a growing crystal island and determined how easy it was for the particle to hop off that island. They found the random darting motions of a particle are a key factor that determines how long it spends on the island. When particles can hop off islands more easily, smooth crystals can be grown. Here a colloidal crystal freezes onto a square lattice template. The video is sped up by a factor of about 20.

Credit: John Savage, Rajesh Ganapathy, and Itai Cohen

Back to article

Related media icon
This video requires the free Brightcove Video Cloud plug-in

 



Email this pagePrint this page
Back to Top of page