text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 

Email this pagePrint this page

Press Release 11-034 - Video
Susannah Scott discusses sustainable energy in the U.S. and China during a PIRE Symposium at NSF.

Susannah Scott of the University of California (UC), Santa Barbara, presents "Chemical Approaches to Sustainable Energy Production: A U.S.-China Collaboration in Catalysis." Her presentation was during the PIRE Symposium on Feb. 14, 2011 at NSF, for which principle investigators from nearly three dozen PIRE programs gathered to learn from each other and NSF.

Scientists at UC Santa Barbara and the Dalian Institute for Chemical Physics in China are working to understand how small particles on the surfaces of catalysts are able to speed up important chemical reactions. Stubborn chemical processes, like converting plant materials to ethanol, may become economically feasible when the chemistry of catalysis is better understood. The near goal is to design nano-scale surfaces with predictable chemical catalytic properties. The ultimate goal is to develop a predictive design theory and apply it to key industrial and environmental problems, such as pollution abatement, conversion of methane to liquid fuels, solar energy and industrial chemical production.

Credit: NSF

Back to article

Related media icon
This video requires the free Brightcove Video Cloud plug-in

 



Email this pagePrint this page
Back to Top of page