text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Computer & Information Science & Engineering (CISE)
Computer & Information Science & Engineering (CISE)
design element
CISE Home
About CISE
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Advisory Committee
Career Opportunities
Advisory Committee for Cyberinfrastructure
See Additional CISE Resources
View CISE Staff
CISE Organizations
Advanced Cyberinfrastructure (ACI)
Computing and Communication Foundations (CCF)
Computer and Network Systems (CNS)
Information & Intelligent Systems (IIS)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Additional CISE Resources
Assistant Director's Presentations and Congressional Testimony
CS Bits & Bytes
CISE Distinguished Lecture Series
Webcasts/Webinars
WATCH Series
Workshops
CISE Strategic Plan for Broadening Participation
Cybersecurity Ideas Lab Report
Keith Marzullo on Serving in CISE
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page

Press Release 12-157 - Video
A video of engineered polymer sheets folding on their own when heat is applied.

A simple approach to self-folding of pre-stressed polymer sheets is demonstrated using local heat absorption on pre-defined hinges patterned by black ink from a desktop printer. Such work will be investigated further in an EFRI project led by Jan Genzer of NC State. His team will explore origami with polymer sheets that fold in response to light, creating new multi-functional 3-D structures that form rapidly into precisely controlled shapes. The polymer sheets will fold at hinges defined by inkjet printing--an approach that can be broadened to a range of 2-D patterning techniques, including screen-printing and lithography. The researchers will study and model the scaling laws of folding, the rate of folding, and the mechanics of folding to develop compliant folding mechanisms. With new understanding of materials and the use of external stimuli, the team will enhance control of folding to increase the functionality of the 3-D structure. This simple, versatile approach aims to lead to a novel paradigm for developing materials with unprecedented functions and properties.

Credit: Ying Liu, Julie Boyles, Michael Dickey, Jan Genzer, North Carolina State University

Back to article

Related media icon
This video requires the free Brightcove Video Cloud plug-in

 



Email this pagePrint this page
Back to Top of page