

The State of U.S. Science & Engineering

Science & Engineering Indicators 2022

Thursday, January 20, 2022

Speakers:

Ellen Ochoa
Chair, National Science Board (NSB)
Director (retired)
Lyndon B. Johnson Space Center

Sethuraman Panchanathan

Director

National Science Foundation

Julia Phillips

Chair, NSB Committee on National S&E Policy Executive Emerita Sandia National Laboratories

National Science Board

Administration Pillars

Research benefits	Advancing research	Pandemic response
STEM talent	Accessibility and inclusivity	Economic recovery
Geography of innovation	Global leadership	Racial equity
Global S&E community	Translation, Innovation, Partnerships (TIP)	Climate change

Vision

Policy making body for NSF

- Establishes policies
- Identifies issues critical to NSF's future
- Approves strategic budget direction and major programs and awards

Advisors to the President and Congress

- Publishes Science and Engineering Indicators
- Issues policy reports on S&E, STEM education, and workforce

Science and Engineering Indicators

https://ncses.nsf.gov/indicators

- Elementary and Secondary STEM Education
- Academic Research & Development
- The STEM Labor Force of Today: Scientists, Engineers, and Skilled Technical Workers
- Invention, Knowledge Transfer and Innovation
- Publications Output
- Higher Education
- R&D: U.S. Trends and International Comparisons
- Production and Trade of Knowledge- and Technology-Intensive Industries
- Science and Technology: Public Perceptions, Awareness, and Information Sources
- State Indicators

National Science Board

Resources from the National Science Board

https://www.nsf.gov/nsb/sei/

The State of U.S. Science & Engineering

The data show the United States is in a strong leadership position and plays a central role as educator and collaborator.

But that role has evolved as other countries outpace our growth in S&T investments and capabilities.

Global S&E Publications

Global S&E Patents

Shares of worldwide patents granted to inventors, by selected region, country, or economy: 2010 and 2020

Global S&E Doctoral Degrees Awarded

S&E doctoral degrees, selected countries: 2000–18

National Science Board

International Students in S&E

Global R&D Spending

National Science Board

The State of U.S. Science & Engineering

Building, broadening, and diversifying S&E capacity could strengthen the U.S. S&E enterprise and bolster its ability to meet future challenges.

K-12 Education: Public School STEM Teacher Experience

Public middle and high school mathematics and science teachers with 3 years or less of teaching experience, by selected school characteristics: 2017–18

U.S. STEM Workforce

- New definition of the STEM workforce: workers at *all* education levels working in occupations that use significant levels of S&E expertise and skills.
- There are 36 million STEM workers, comprising 23% of the total U.S. workforce.
 - 16 million with a bachelor's degree or higher
 - 20 million without a bachelor's degree the Skilled Technical Workforce (STW)
- They work in a variety of occupations ranging from scientists and engineers to workers in health care to those in production and construction.

U.S. STEM Workforce: Women and Underrepresented Racial/Ethnic Groups

The State of U.S. Science & Engineering

Stagnant performance by U.S. STEM K–12 students and demographic differences in achievement highlight areas for potential strengthening. And geographical analysis of the U.S. S&E enterprise reveals an uneven distribution of S&E activities and STEM career opportunities.

National Science Board

The U.S. is a Keystone of Global Science & Engineering

Missing Millions: Faster Progress in Increasing Diversity Needed to Reduce Significant Talent Gap

Women

Hispanic or Latino

Black or African American

American Indian or Alaska Native

Legend

x 100,000 people in 2021 S&E workforce

x 100,000 additional people needed in 2030 for the S&E workforce to be representative of the U.S. population

Lagging Right Out of the Gate: U.S. K-12 STEM Education

Average Scores for 8th Grade Students on the NAEP Mathematics Assessment, by Ethnicity and Eligibility for Free or Reduced Lunch

Gender Differences in STEM Higher Education

The Missing PhDs: Gaps by Race or Ethnicity

2018 data from *Women, Minorities, and Persons with Disabilities in Science and Engineering 2021* https://ncses.nsf.gov/wmpd

Geography of S&E: Leveraging Local Strengths

THE STEM WORKFORCE IS RESILIENT, EVEN DURING A GLOBAL PANDEMIC

The U.S. is a Keystone of Global Science & Engineering

Doctorates Awarded: Domestic and International Students

International STEM Talent in the U.S. Workforce

The U.S. is a Keystone of Global Science & Engineering

Demographics of S&E Workers in Selected KTI Industries

The U.S. is a Keystone of Global Science & Engineering

Federal Funding: Decreasing Share, Declining in Real Dollars

The U.S. is a Keystone of Global Science & Engineering

COVID-19 Publication Collaborations: 2020

What Does It Mean to Be a Keystone?

https://www.nsf.gov/nsb/sei/keystone2022.pdf