Office of Cyberinfrastructure Update

NSF Advisory Cyberinfrastructure Committee
December 12, 2012
3 “new” topics

- Research Data Alliance (RDA)
- International Research Network Backbone concept
- National Data Infrastructure
Biggest Threats to Establishing a Global Data Research Infrastructure

- Not understanding the critical importance and the need to share data for next century science and education
- Relying on additional workshops, conferences, committees and so forth to study and provide more recommendations
- Waiting for standards to be approved that will enable data sharing, interoperability, and support the entire data life cycle

Just do it
RDA Purpose

Accelerate international data-driven innovation and discovery by facilitating research data sharing and exchange, use and re-use, standards harmonization, and discoverability. This will be achieved through the development and adoption of infrastructure, policy, practice, standards, and other deliverables.
Research Data Alliance (RDA)

- IETF model focused on data sharing and exchange
- “Rough consensus and early deployment”
- Create and adopt focused “chunks” of code, policy, infrastructure, standards, or best practices that enable data to be shared and exchanged
- Efforts that have substantive applicability to some segments of the research community (but may not apply to everyone at the outset)
- Involvement of working scientists and data researchers who can start sharing and exchanging data today, while other long-term or far-reaching solutions are being appropriately discussed and explored in other venues
Initial PIs funded to support RDA

US:
 Fran Berman – RPI
 Bill Michener – DataOne
 Beth Plale – Indiana University
 Sayeed Choudhury – Johns Hopkins University

Australia:
 Ross Wilkinson – Australia National Data Service
 Andrew Treolar - Australia National Data Service

Europe:
 Leif Laaksonen (iCORDI/CSC)
 Peter Wittenburg (iCORDI/Max Planck Institute)
 Juan Bicarregui (iCORDI/STFC)
RDA Working Principles

• Openness – Membership is open to all interested individuals and organizations, all meetings are public, RDA processes are transparent, and all RDA work products are freely available to the public;

• Consensus – The RDA moves forward by achieving consensus and resolving disagreements through appropriate mechanisms;

• Balance – The RDA is organized on the principle of balanced representation for individual organizations and stakeholder communities;

• Harmonization – The RDA works to achieve harmonization across standards, policies, technologies, tools, and other data infrastructure elements;

• Voluntary – The RDA is a public body responsive to its members. It is not a government organization or regulatory body and, instead,;

• Non-profit - RDA is not a commercial organization and will not design, promote, endorse, or sell commercial products, technologies, or services.
Research Data Alliance

Council

Plenary

Secretariat

Working Group 1
Working Group 2
Working Group 3
Working Group 4
Working Group 5

Working Group y
RDA Timeline

• White paper- Apr 2012
• RDA projects start - Sep 2012
• Multiple collaboration teams start to meet weekly- Oct 2012
• RDA Steering group established- Oct 2012
• Convening workshops
 – Oct 1-3 (Washington DC)
 – Oct 23-24 (Barcelona, Spain)
• 1st Plenary – Mar 18-20, 2013 (Gothenberg, Sweden)
• 2nd Plenary – Oct 2013 (Washington DC)
Aggregation nodes: Primary connection to International Backbone; every country and economy has the opportunity to be an aggregation node or connect to one

Shared High Bandwidth network (multi 10/100 Gig) interconnecting Aggregation nodes with redundant links
Global Network Guiding Principles

- Global coordination, planning, rationalization, governance and coordinated investments (e.g. simultaneous calls, joint calls)
- Open exchange points: “policy-free” operation of open exchange points allowing for bi-lateral peering at all layers, open transit
- Matching Investments: investments will be matched among parties such that relationship between operators will not be hampered by asymmetry.
- End-to-end interoperability to ensure end-to-end visibility and interoperability across appropriated links and paths
- Development of a coordinated strategy by key scientific funding agencies to meet the international networking needs of science, engineering and education for the next 10 years.
Coordinating Cyberinfrastructure in multi-user facilities

• Goal: coordination of cyberinfrastructure development between two or more NSF-supported scientific facilities as a supplement to their existing award
• 7 supplement awards in August 2012 (BIO, ENG, GEO, MPS, OPP)
• Examples
 – Software tools for researchers working in synthetic biology
 – Common data pipeline between multiple high energy physics facilities to analyze data gathered about neutrinos
 – Joint informatics education software and curriculum for BIO-supported centers.
Building a National Data Infrastructure

• The data infrastructure will be complex and involve a range of modalities
 – Multiple data centers, clouds, distributed systems, replication
 – Partnerships between campuses, government, business

• Leveraging and building on the myriad of data efforts and projects underway and being planned

• New focus on curation, interoperability, sharing of data, common approaches and data policies

• New sustainability models for data stewardship will emerge, driven by the needs of individual research communities
Questions?