Lessons Learned
from Past and Current ESA-NASA Partnerships

Astronomy & Astrophysics Advisory Committee
November 2013

George Helou
IPAC, Caltech
OUTLINE

Question: What lessons from previous missions where NASA astrophysics has contributed to an ESA mission (especially Herschel, Planck)?

- Study Cases:
 - Infrared Space Observatory (ISO)
 - Spitzer Space Telescope
 - Herschel Space Telescope
 - Planck Cosmic Surveyor

- Lessons Learned: Big Picture, Elements of Partnership

- Further Thoughts

Question: How do these lessons relate to the draft “principles for access to large astrophysics projects and facilities”?

- Relevance to large surveys of the next decade
IRAS: First mid-to-far-IR All-Sky Survey

- **IRAS was the first IR all-sky survey, at 12, 25, 60 and 100µm**: Si and Ge photo-conductors
- Collaboration between US, Netherlands, UK, 1983

Main data products:
- Point Source Catalog ~1 Jy sensitivity
- Faint Source Catalog, a few times deeper
- All-Sky Image Atlas at 4’ resolution
- On-demand co-added survey data
 - Compact sources
 - Resolution enhancement
ISO: First Pointed IR Observatory in Space

- Four versatile instruments, 2 imagers, 2 spectrometers, covering 3-240 µm: Si, Ge photoconductors (1995-98)
- ESA mission with minor NASA, ISAS participation
Spitzer: the NASA IR Great Observatory

- Three instruments, imaging at \{3.6, 4.5, 6.8, 8\}, \{24, 70 and 160\} µm, 1 spectrometer 5-38µm, SED mode 60-120µm: Si, Ge photoconductors
- NASA mission, August 2003 – May 2009 cold
- Warm mission since 2009: 3.6, 4.5 µm imaging
Herschel: Cornerstone FIR/Submm Observatory

- Three instruments: imaging at \{70, 100, 160\}, \{250, 350 and 500\} µm; spectroscopy: grating [55-210]µm, FTS [194-672]µm, Heterodyne [157-625]µm; bolometers, Ge photoconductors, SIS mixers; 3.5m primary at ambient T
- ESA mission with significant NASA contributions, May 2009 – April 2013 cold
Planck: State-of-the-Art CMB+Astrophysics Survey

Two instruments, nine bands: HFI \{857, 545, 353, 217, 143, 100\} GHz, LFI \{70, 44 and 30\} GHz; bolometers cooled to 100mK, HEMT

ESA mission with significant NASA contributions, May 2009 – Jan 2012 cold; to Oct 2013 LFI only
ISO: Deal and Outcome

◆ ISO was an ESA-only mission, with some US individual participation as co-investigators on instrument teams and on the ISO Science Team, and some “scientific associates”
 ❖ Individual access to Guaranteed Time

◆ Late-breaking agreement: DSN time for 30min/orbit (~30min/day) of Guaranteed Time, plus access to Open Time competitions (no quota)
 ❖ ISAS funded additional operations shift, also for 30min/orbit of GT
 ❖ NASA & ISAS named 1 representative each to the ISO Science Team
 ❖ Two or three US-based scientists were invited to join the TAC

◆ NASA competed its GT independently, selecting 4 Key Projects

◆ In Open Time, the US community was allocated ~30% of the time (PI), and participated on many more selected proposals

◆ Net result: US community was responsible for ~25% of ISO time
 ❖ NASA Astrophysics investment was all in Data Analysis funding and community support at IPAC
 ❖ Data quality issues, slightly ameliorated by IPAC help (late arrival)
Spitzer: Deal and Outcome

◆ Spitzer is a NASA Great Observatory.

◆ Spitzer TAC and review committees included non-U.S. scientists as a matter of course, and all calls were open worldwide

◆ European scientists were responsible for ~20% of Open Time (PI) on cryo-Spitzer, and participated on many more selected proposals
 ❖ *For Cycle 10 (Oct 2013) 15% of successful PI’s were foreign-based*

◆ NB: ISO-SIRTF, XMM-AXAF debates were similar to debate on Euclid-AFTA/WFIRST
 ❖ *Lesson 1: NASA participation in “similar” ESA missions does not kill prospective NASA-led missions*
 ❖ *Lesson 2: XMM, ISO prepared US community for Chandra, Spitzer, and provided experience for design of mission and operations*
Herschel: Deal and Outcome (1)

- Herschel is an ESA Cornerstone Mission (~B$ class) with significant NASA contributions (10-15% of mission cost up to launch)
- Community advocacy for Herschel-like mission was a Transatlantic movement, and ESA moved on it first
 - *Instrument proposals to ESA had US co-l’s and hardware components*
- NASA primary H/W participation was in enabling detector technologies for 2 instruments
 - *Bolometers and amplifiers assembly for SPIRE, plus expertise*
 - *SIS mixers and other components for HIFI, plus expertise*
- Instrument Team participation results in access to GT

- Two US-based mission scientists and one optical system scientist were selected in open competition, with additional access to GT
Herschel: Deal and Outcome (2)

- Aside from the above, ESA and NASA exchanged LoA:
 - NASA provides Science Operations expertise and software (Spitzer heritage), shares any s/w or documentation developed at NHSC/IPAC
 - NASA provides resident astronomer at Herschel Science Center in Spain
 - ESA provides “appropriate US scientist representation on HOTAC”
 - ESA provides NHSC with full access, as “integral part of the Herschel Science Ground System”
 - NB: ESA-NASA reciprocally open proposal calls; no quotas on Herschel

- Net result: Open Time calls on Herschel have resulted in U.S. PI’s carrying about half the Open Time, in addition to GT participation
 - Additional participation by US co-I on ~35% of Open Time
 - A third of all Key Projects had U.S. PI’s and all had U.S. participation

- Data quality issues were addressed quickly, and NHSC has much more insight, ability to help (compared to ISO)
 - U.S. activity on publications so far reflects proposal success rate
Planck: Deal and Outcome (1)

◆ Planck is an ESA Mid-Sized Mission with significant NASA contributions (10-15% of mission cost up to launch)
◆ Community advocacy for Planck-like mission was a Transatlantic movement, and ESA moved on it first
 ❖ Instrument proposals to ESA had US co-l’s and hardware components
◆ NASA primary H/W participation was in enabling new technologies
 ❖ Spider-web bolometers and amplifiers for HFI, including polarization-sensitive bolometers, plus expertise
 ❖ HEMT radio amplifiers for LFI, plus expertise
 ❖ Hydrogen sorption coolers to get down from passive (~50K) to ~20K
◆ One (2) US member on the Science Team, ~80 US Planck scientists
 ❖ Fully integrated team, access to data, software, discussions, analysis and results
 ❖ E.g. Planck Editorial Board co-chaired by U.S. scientist
Planck: Deal and Outcome (2)

- Agreements between NASA and CNES and ASI
 - NASA provides engineering support for delivered H/W
 - NASA provides support for mission design & planning, data analysis

- US Planck scientists account for 20-25% of data analysis activity
 - Lead many activities and papers, and participate in essentially all
 - Planck papers are mostly “Planck Collaboration, authors-alphabetical”
 - DoE-NASA agreement provides main simulations capability for Planck (supercomputing at NERSC)

- First Planck data release, “Early-Release Compact Source Catalogue (ERCSC)”, was produced in US
 - First look at all-sky catalog at $\lambda > 300 \mu m$, $\sim 10^4$ sources, very fast release

- The Planck Archive is available at both ESA (ESAC) and NASA (IPAC)
 - NASA Archive has unique tools for enhanced data usability, especially by non-CMB community (local detector time-lines for sources, local map construction)
Lessons Learned: Big Picture

- NASA and ESA can both fund, build and operate major missions
 - *Euclid is happening, as will other major missions on both sides*
- ISO, XMM did not kill SIRTF, AXAF, and WMAP did not kill Planck
 - *Euclid by itself will not kill AFTAWFIRST, nor will NASA buying into Euclid*
 - *Research communities function largely as global entities, will push missions towards complementarity, will optimize across boundaries*
 - *Principle 1 captures this. Need to recognize critical role of community*
- The U.S. has great strengths in leading-edge technologies, but more especially in human resources, and institutional traditions of research support by agencies and universities
 - *With access & support, U.S. community will get its share of the science*
- U.S. contributions, properly targeted, will yield rich science dividends for U.S. community and enrich the science globally
 - *Ultimately, a richer science return from the mission is good for everyone*
 - *Similarity of science goals worldwide is an opportunity: partnerships are very valuable stepping stones between US-led missions, for community and for project-level planning*
Lessons Learned: Elements of Partnership (1)

- Proven formula: combine grass-roots science collaboration, special or unique hardware contributions, and a NASA Science Center (community support based on participation in science data system)
 - Agencies’ role: create a high-level framework appropriate for the specific mission and supportive of grass-roots collaboration
- Good relations at working level are crucial, so high-level framework should encourage participation, and let working relations develop:
 - Among scientists: build a science community for the mission
 - Among instrument/payload builders: optimize interfaces locally
 - Among Science Centers: learn by doing, add value for all users
- Agency-level framework should recognize community needs, and stress reciprocity not detailed deal-making
 - Scientists then focus on science rather than worry interpretation of rules
 - Framework is needed very early: leave room for flexibility, evolution
- Critical Mass of participation is important:
 - Thin presence makes for difficult interactions; 10% share seems to be a reasonable threshold
Lessons Learned: Elements of Partnership (2)

◆ An integrated mission community sets stage for “level playing field” and is best guarantee of “fair science return”
 ❖ No quotas on science exploitation helps U.S. and global science return
 ❖ Principle 4 captures this

◆ However, capturing science return in a global competitive environment requires proper support for the home team

◆ U.S. agencies have diverse approaches for this support, but ultimately two aspects are needed to “level the playing field”
 ❖ Funding people to analyze data and publish results
 ❖ Shared structure and services to support common needs robustly, efficiently e.g. supercomputing, observing facility or mission science center
Agency Support: Role of NASA Science Centers

◆ NASA Science Centers were created to enable broadest access
 ❖ National Academy of Sciences advised that major telescopes “not be used by only a few astronomers, but [that] a large part of the community must be closely involved with the instrument over a long period of time.” (Institutional Arrangements for the Space Telescope, 1976)

◆ Efficacy recently validated by NAS in “Portals to the Universe” report
 ❖ The “NASA Science Centers have transformed the conduct of much of astronomical research and set in place a new paradigm for the use of all large astronomical facilities”, remedying “what had become an insular culture for accessing space astronomy data.” (2007)

◆ Science Centers (CXC, IPAC, STScI) have created a competitive edge for U.S. in science exploitation, one of few remaining
 ❖ Advantage of national scale
 ❖ Principles 2 & 3 will enhance importance of Science Centers: Value of Open Access to data (increasingly Big Data) and facilities (increasingly sophisticated) is limited by ability of individuals to exploit that access
Further Thoughts on the “Principles”

◆ Principle 4: “openly advertised criteria that are equally applied”
 ❖ *This point should apply more broadly, especially for #2 (Open Data) and #3 (Open Facilities)*
 ❖ *Should be articulated early*

◆ Principle 2 correctly addresses Open Data, “standard data products made public in a timely and usable manner”
 ❖ *The ability to extract more advanced information is left in the competitive sphere. This ability is critical in the era of Tera-scale and Peta-scale surveys*
 ❖ *Providing support to enhance this ability is critical, through targeted community funding and through targeted Science Center activities*
 ◆ e.g. NHSC virtual machines, supercomputing resources
Footnote: Where I Learned my Lessons

◆ Member or leader of many observing projects, science investigations

◆ Served as NASA representative on ISO Science Team, led one of the U.S. Key Projects on ISO (resulted in ~20 refereed papers)

◆ Co-I on original proposals that grew into Herschel and Planck
 ❖ Active Planck “Core Team Scientist”, member of Editorial Board
 ❖ Advised NASA on Herschel participation agreement
 ❖ Frequent attendee of Herschel Science Team meetings as observer

◆ As IPAC Director
 ❖ Responsible for NASA Herschel Science Center
 ❖ Responsible for U.S. Planck Data Center (Data availability to U.S. team, ERCSC generation, U.S. Planck Archive construction)
A Quarter Century of Infrared Astronomy
The Rho Ophiuchus Star-Forming Region