RESEARCH ON EDUCATION AND LEARNING (REAL)

Program Solicitation: NSF 13-604

Division of Research on Learning in Formal and Informal Settings
Important Dates

Letters of Intent (optional)
November 13, 2013*

Full Proposals
January 10, 2014

*As specified in the October 22, 2013 Revised Proposal Due Date Listing, the LOI deadline published in the solicitation was subsequently revised due to the Federal government shutdown.
Goals of the REAL Program

REAL supports research that informs efforts to:

a) understand,
b) build theory to explain, and
c) suggest interventions & innovations to address persistent challenges in STEM interest, education, learning, and participation.
Scope of the REAL Program

Collectively, REAL projects explore all aspects of education research...

…from foundational knowledge to improvements in STEM learning and learning contexts

…both formal and informal

…from childhood through adulthood

…for all groups

…from the earliest developmental stages of life through participation in the workforce, resulting in increased public understanding of science and engineering
REAL Program (continued)

REAL represents the substantive foci of three previous EHR programs:

- Research and Evaluation on Education in Science and Engineering (**REESE**)
- Research in Disabilities Education (**RDE**)
- Research on Gender in Science and Engineering (**GSE**)

REAL Projects

- Address basic, foundational research questions about STEM learning and/or education
- Use rigorous standards for theory, methods and analysis
- Are deeply rooted in STEM content and knowledge-building practices
REAL Projects (continued)

• Develop innovative methods, measures and models
• Investigate education phenomena to understand what works, for whom, why, and under what conditions
• Explore lessons that can be learned in context or through practice (e.g., via implementation research) to enhance basic knowledge and theoretical findings
REAL Research Areas

1. Research on Human Learning in STEM
2. Research on Learning in STEM Learning Environments
3. Broadening Participation Research
 a) Research in Disabilities Education
 b) Research on Gender in S&E
4. Special Emphases
 a) Assessment
 b) Undergraduate learning
 c) Technology
Elements of REAL Proposals

- Linkages to theory and extant research
- Research plan
- Contributions to implementation (where applicable)
- Contributions to knowledge
- Communication strategy
- Data management plan
- Objective external feedback
Eligible REAL Proposal Types

- Early Stage Research
- Middle Stage Research
- Later Stage Research
- Fostering Interdisciplinary Research in Education (FIRE)
- Synthesis
- Conference and Workshop
Award Sizes and Duration

Anticipated number of awards: 45 to 52

Anticipated funds: $51,000,000 for new awards

- Early-stage research (~10 awards)
 - $500,000, max 3 years

- Middle-stage research (~20 awards)
 - $1.5 million, max 3 years

- Later-stage research (~8)
 - $2.5 million, max 5 years
Award Sizes and Duration

- **FIRE (~6)**
 - $500K, max 3 years

- **Synthesis (~10)**
 - $300K, max 2 years

- **Conferences and workshops (~10)**
 - $75,000
Questions
Resources

• REAL program page on NSF website
• REAL Solicitation (NSF 13-604)
• NSF Grant Proposal Guide (GPG) (NSF 13-1)
• Common Guidelines for Education Research and Development (NSF 13-126)
• FAQs on the Common Guidelines (NSF 13-127)
What do we mean by “Common Guidelines”?

A cross-agency framework that describes:

• Broad types of research and development

• The expected *purposes, justifications,*, and *contributions* of various types of research to knowledge generation about interventions and strategies for improving learning
Types of Studies

• Foundational research and development studies
 o Generate fundamental knowledge that may contribute to teaching and/or learning
• Early stage/exploratory studies
 o Examine relationships among constructs to establish logical connections
• Design and development studies
 o Design and iteratively develop particular interventions (programs, policies, practices or technologies); pilot test
Types of Studies (continued)

IMPACT STUDIES

• Efficacy Studies
 ➢ Estimate the impacts of strategies under optimal conditions of implementation

• Effectiveness Studies
 ➢ Examine implementation and estimate impacts similar to routine practice but still on a limited scale

• Scale-up Studies
 ➢ Explore implementation and estimates impacts under conditions that prevail under wide-scale adoption
Foundational Research

Fundamental knowledge that may contribute to improved learning & other education outcomes

Studies of this type:

- Test, develop or refine theories of teaching or learning
- May develop innovations in methodologies and/or technologies that influence & inform research & development in different contexts
Early-Stage or Exploratory Research

Studies of this type:

- Examine relationships among important constructs in education and learning
- Seek to establish logical connections that may form the basis for future interventions or strategies intended to improve education outcomes
 - Connections are usually correlational rather than causal
Design and Development Research

Studies of this type:

- Draw on existing theory & evidence to design and iteratively develop interventions or strategies
 - Includes testing individual components to provide feedback in the development process
- Could lead to additional work to better understand the foundational theory behind the results
- Could indicate that the intervention or strategy is sufficiently promising to warrant more advanced testing
Important Features of Each Type of Research

<table>
<thead>
<tr>
<th>Purpose</th>
<th>How does this type of research contribute to the evidence base?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Justification</td>
<td>How should policy and practical significance be demonstrated?</td>
</tr>
<tr>
<td></td>
<td>What types of theoretical and/or empirical arguments should be made for conducting this study?</td>
</tr>
</tbody>
</table>
Outcomes

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Generally speaking, what types of outcomes (theory and empirical evidence) should the project produce?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>What are the key features of a research design for this type of study?</td>
</tr>
</tbody>
</table>
Questions
Proposal Preparation

(continued)
Project Summary

• First Sentence
 • Type of Proposal – early-, middle-, later-stage, FIRE, synthesis, workshop
 • Main research area – learning, learning environments, broadening participation, special emphasis

• First Paragraph
 • Justification
 • Work proposed

• Intellectual Merit and Broader Impacts
 • Must include separate statements on each of these two NSB criteria
Goals and Purposes

• Why is this project important?
• How will the findings lead to potential innovations in STEM learning and/or education?
• How will it advance knowledge?
• What are the anticipated outcomes and/or products of this project?
• How might these products or findings be useful?
What Have You and Others Done?

• Describe the theoretical and research basis on which the proposal is based.
• Discuss how the proposal is innovative and different from similar research and development projects.
• If you have been funded by NSF, provide evidence about the **effectiveness** and **impact** of that work.
How Are You Going To Do It?

• State clear research questions or hypotheses that the project will test.
• Describe the plan for data collection
• Describe the research methods, including data analysis plans, sampling plan, and assessments.
• Briefly describe the work plan and timeline.
Who Will do The Work?

• Briefly describe the expertise of the persons included in the proposal and why they are needed

• Upload two page bios for all senior personnel and
External Feedback Plan

A proposal must describe appropriate project-specific external feedback process

• May include an external review panel or advisory board or a third-party evaluator

• Must independent and rigorous
Research vs Evaluation

• Research is integral to the project
• Research is conducted by appropriate team members
• Research aims to contribute to theory and to what is known about practice
Communication Strategy

• Plan and specific strategies for **Dissemination** of products and/or findings to researchers, policy makers, and practitioners
• Requirement to share design, findings, and products with any future REAL Resource Network
Supplementary Documents

• Data Management Plan
• Post Doc Mentoring Plan
• Brief letters of commitment or cooperation*

• NO OTHER DOCUMENTS

*be careful not to include attachments to the letters
Budget

• Should be consistent with level of work – you do not have to request the maximum!
• Two months salary: No more than two months of salary for senior personnel with academic positions on all NSF grants unless justified
• Indirect cost rates: Set by the institution and auditors and is non-negotiable.
• No cost sharing
Reasons for Return Without Review

• Violation of formatting rules of the Grant Proposal Guide (e.g. font, page length etc)
• Failure to address specifically intellectual merit and broader impact in the project summary and description
• Unauthorized documents/data in the appendix or supplementary document section.
• No post doc plan if post docs are included on budget
• No data management plan
Proposal Review Process

- Proposals are reviewed in panels composed of a range of external experts (e.g. educational researchers, content experts, teachers, developers)
- Each proposal will have a minimum of 3 reviews (but probably more)
- Proposals may be sent out to other experts for ad hoc reviews
- Each reviewer rates each proposal as Excellent, Very Good, Good, Fair or Poor
Proposal Review Process

• Proposals are discussed in a panel
• The panel writes a summary of the reviews and places the proposal in one of three categories: high competitive, competitive or non-competitive
• All elements of the review are advisory to NSF
Review Criteria

• All proposals are reviewed under two criteria: Intellectual Merit and Broader Impact

1. What is the potential for the proposed activity to:
 a. advance knowledge and understanding within its own field or across different fields (Intellectual Merit); and
 b. benefit society or advance desired societal outcomes (Broader Impacts)?

2. To what extent do the proposed activities suggest and explore creative, original, or potentially transformative concepts?

3. Is the plan for carrying out the proposed activities well-reasoned, well-organized, and based on a sound rationale? Does the plan incorporate a mechanism to assess success?

4. How well qualified is the individual, team, or institution to conduct the proposed activities?

5. Are there adequate resources available to the PI (either at the home institution or through collaborations) to carry out the proposed activities?
For Further Information

• Call 703-292-8650
• Email: DRLREAL@nsf.gov
• Send a one-page description of your study with your e-mail