The University of Arizona and Biosphere 2: Partnering for the Advancement of Science
Biosphere 2 Property History

- 1800s
 Samaniego’s CDO Ranch
- 1920s
 Dr. Lackner’s homestead
- 1950s
 Countess of Suffolk’s Casa del Oro
- 1960s
 Motorola Conference Center
- 1970s
 UA Conference Center
- 1984
 Space Biosphere Ventures
- 1986
 Biosphere 2 construction begins
- 1991-94
 Human missions 1 and 2
- 1994
 Decisions Investment takeover of Biosphere 2 project
- 1996
 Columbia University management of Biosphere 2
- 2004
 Columbia University departure, strategic realignment
- 2005
 Property taken to market
- 2007
 New owner: CDO Ranching, development partners
Biosphere 2 History—Missions

Sept. 1991 (2 years)
4 men, 4 women
B2 Earthscience
Preliminary Site-Use Plan

Controlled Research Facility

Rhizotron Facility

External Research Plot
- **Biosphere 2 facility is 3.14 acres**
- 91’ high at its highest point
- 6,500 windows and 7,200,000 cubic ft. of sealed glass
- Sealed from the earth below by a 500-ton welded stainless steel liner

- **40-acre total campus area**
- 300,000 square ft. of administrative offices, classrooms, labs, conference center, residential housing

- **2,300,000 visitors 1991-2007**
- **325,000 K-12 student visitors 1991-2007**
Budget

7 M Operating Budget

2.5 M Gifts

2 M Visitors

2.5 Research
Biosphere 2
Facility assets
Biosphere 2—Columbia University
Biosphere 2—Ocean

- Effect of elevated atmospheric CO$_2$
 - high CO2 in atmosphere reduces pH in seawater
 - lower seawater pH reduces the rate of calcification and growth of corals and coral reefs
Rainforest

Details:
- 44 m x 4 m
- 28 m high
- 98 species
- Soil Depth range
 - 0.25 m to 4.5 m
Rainforest

• **Experiment:** increase CO$_2$ concentrations from 380 to 820 ppmv in rainforest

• **Results:** carbon uptake increases linearly to 600 ppmv then stabilize

• **Implications:** Rainforest ability to store atmospheric carbon may diminish as atmospheric CO$_2$ concentrations exceed 600 ppmv
Rainforest

- **Experiment**: increase canopy temperature from less than 35 °C to greater than 42 °C

- **Results**: only some species can adjust their critical temperature; the variance may reflect physiognomy and physiology differences

- **Implications**: results help predict species response to future warming
Biosphere 2—University of Arizona
The University of Arizona Biosphere Research Complex Major Experiment

A 3-tiered integrated matrix for addressing the fundamental research question: “How do we scale change, from organisms to ecosystems?”
How does biology influence the way that landscapes work?

How does biology affect the way that climate affects patterns of water movement?
Biosphere 2 no longer sealed

- Decoupled into three regions
- Wilderness (Rainforest, ocean, savanna, desert)
- Habitat (Offices, laboratories, public outreach)
- LEO (former agricultural area)
Rainforest—What is the future of Amazon forests under climate change?

Adding instrumentation
- Above
- Below
- Spatially

Stress the System
- Drought—approximately 70 days
- Hold all other conditions constant
- Integration of modeling and experimentation
- Iteration between natural and experimental settings
- Test-bed for instrument development
- Developing ideas, methods, tools, and personnel to do ‘big science’
Where does all the water go?
How does biology muck up the dynamics
Model Landscape – Experimental Hillslope
B2 Earthscience
A new scaling tool
Biosphere 2

With over 100,000 visitors annually, Biosphere 2 continues to be one of Arizona’s top attractions. This 40-acre facility campus just north of Tucson serves as a center for research, outreach, teaching and learning about Earth and its living systems.
B2 Earthscience blends research, education, and outreach to build

Concepts observations and theory

Tools facilities, methods, models, experiments

Teams future scientists and educators

Translational Framework stakeholder relationships and dissemination

to guide society toward sustainability and resilience in the face of global environmental change.
Global Warming

- How much inertia does the climate system hold with respect to past anthropogenic forcings?
- Can biological feedbacks to warming, through conservation efforts, offset some climate warming?
- Are there thresholds of forcings that result in abrupt climate change, and can anthropogenic inputs of greenhouse gases approach those thresholds?
- What is the optimal distribution of adaptation versus mitigation efforts for society in the face of different climate scenarios?
- In the event of run-away warming, can bioengineering save life on the planet?
Global Environmental Change

- What are the large-scale human impacts on the global environment?
- Can we identify, estimate, communicate and cope with uncertainty in the science of the global environment?
- Which elements of our understanding are most crucial in generating uncertainty (how good does a measurement have to be)?
- How can we evaluate and quantify uncertainties in the Earth System?
- How can we inform scientific and scholarly colleagues of these uncertainties, across disciplines?
- How can we communicate them in a clear, timely and useful way to all levels of decision-makers?
The work needed to address these challenges requires the collaboration of:

- Climatologists, atmospheric chemists, and physicists
- Biologists, chemists, and microbiologists
- Ecologists
- Systematic biologists and epidemiologists
- Medical doctors
- Physical and biological oceanographers
- Glaciologists and hydrologists
- Geologists, geophysicists, and geochemists
- Materials scientists
- Statisticians, economists, and demographers
- As well as scholars of non-linear dynamics, the news media, and government
Biosphere 2
Residential and Visitor Housing
Biosphere 2
Classrooms