Discovery of the TRAPPIST-1 Planets

Gillon et al., 2017, Nature, 542, 456
Graphics courtesy: NASA/JPL-Caltech/ R. Hurt (IPAC)
500 Hours:
Exploring the 7 Exoplanets of TRAPPIST-1 with NASA's Spitzer Space Telescope

Gillon et al., 2017, Nature, 542, 456
Graphics courtesy: NASA/JPL-Caltech
Gillon et al., 2017, Nature, 542, 456
Graphics courtesy: NASA/JPL-Caltech/ R. Hurt, T. Pyle (IPAC)
- Mass estimates for the six inner planets suggests rocky compositions.

- Precision of mass estimates not yet sufficient to constrain fraction of volatiles.

- Need follow up with Hubble, Webb to better understand atmospheric conditions.

Gillon et al., 2017, Nature, 542, 456
Transit Timing Variations

• Inner planets form a near-resonant chain

 • P_c/P_b, P_d/P_c, P_e/P_d, P_f/P_e, P_g/P_f: 8/5, 5/3, 3/2, 3/2, 4/3

 • Substantial TTVs – from few 10s to 30 minutes

 • Favored theoretical model \rightarrow disk-driven inward migration (Cresswell et al. 2006; Terquen et al. 2007)

 • Implication is planets should have a volatile rich composition (reflecting where they formed) with lower densities than Earth.

Gillon et al., 2017, Nature, 542, 456
Scene from TRAPPIST-1e

Graphics courtesy: NASA/JPL-Caltech/T. Pyle (IPAC)
PLANET HOP from TRAPPIST-1e
VOTED BEST "HAB ZONE" VACATION WITHIN 15 PARSEC OF EARTH