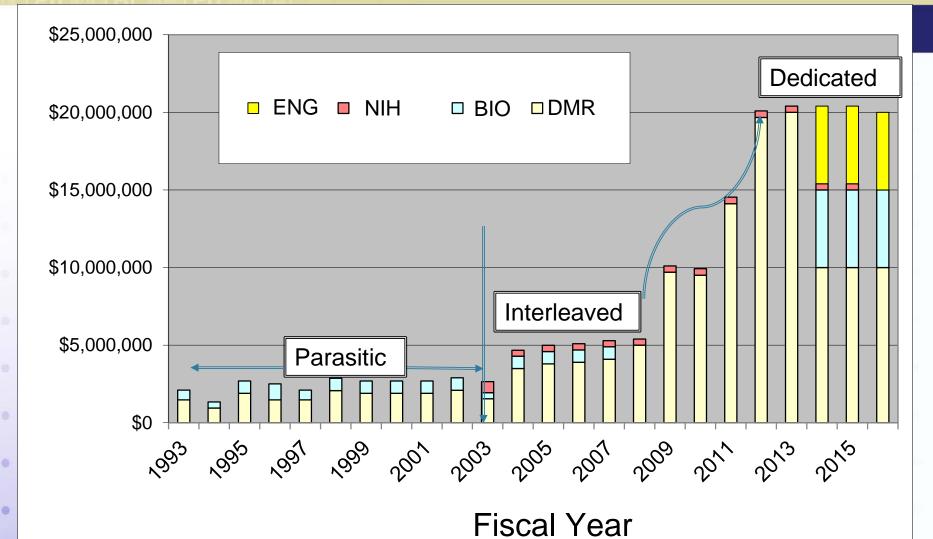

"Transition" of the Cornell High-Energy Synchrotron Source (CHESS)

Linda Sapochak, Division Director Tessema Guebre X, Program Director **Division of Materials Research National Science Foundation**



CHESS is a high-intensity, hard X-ray source powered by the Cornell Electron Storage Ring (CESR), buried under the Cornell campus.

- The US has six federally-funded light sources. Two of these are high-intensity, hard X-ray facilities:
 - CHESS
 - The Advanced Photon Source (APS) at Argonne National Lab
- CHESS User Program 11 experimental stations
- >700 users/yr (~10% of national capacity)
- <u>Stewardship</u>:
 - MPS(DMR)-ENG-BIO

CHESS Budget History 1993-2018

0

CHESS Current Joint Stewardship & Management

Joint Oversight Group (JOG):

NIH/NIGMS: A Partner

Cooperative Agreement Requirement (2014-2019):

NSF informs NSB annually on progress to:

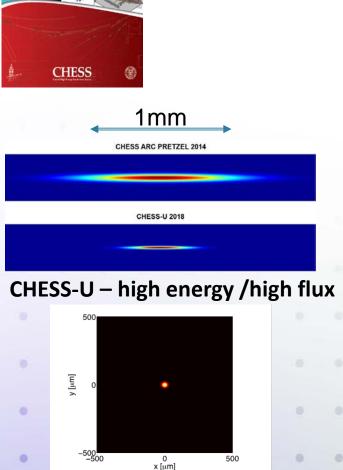
- A. Demonstrate <u>national need</u>
- B. Produce and enable <u>unique capabilities</u>
- C. Recommend award increment on a <u>year-by-year</u> basis, with a mid-award review to determine the future of CHESS

Path Forward Beyond Current Cooperative Agreement

From NSB Information Item: NSF (NSB/CPP 2016-21) FY 2016 Update on the Operations of the CHESS and Next Steps

Scenario 1: CHESS secures state-funded upgrades, provides a strong vision and need for high-energy and high-flux synchrotron science in materials research, engineering, and biological science communities that NSF supports. <u>Action</u>: NSF accepts a renewal proposal. JOG will jointly conduct a merit review of the renewal proposal.

Scenario 2: CHESS secures the state-funded upgrades, but is unable to provide a strong vision and need for high-energy, high-flux synchrotron science that spans all disciplines represented within the JOG.


<u>Action</u>: CHESS and the JOG will put together a "transition plan" that would retain the strongest aspects of CHESS.

Scenario 3: CHESS is unable to secure state funds for the necessary upgrades. Action: NSF would propose divestment of the CHESS facility.

CHESS-U (CHESS-Upgrade)

HESS-U

- NY State support \$15M, 2016-2019
 - Single-particle beam operation optimized for high-flux at high-energy x-rays (20-150 keV photons, 200 mA, energy 6 GeV):
 - <u>High Energy</u>: high penetration and smaller length scale resolution
 - <u>High flux</u>: Detection of weak signals, and short detection time
 - Flexible timing structure, large # of photons/pulse → timing studies
 - 11 beamlines powered by separate undulators

Advanced Photon Source (APS)-U – high energy/high coherence

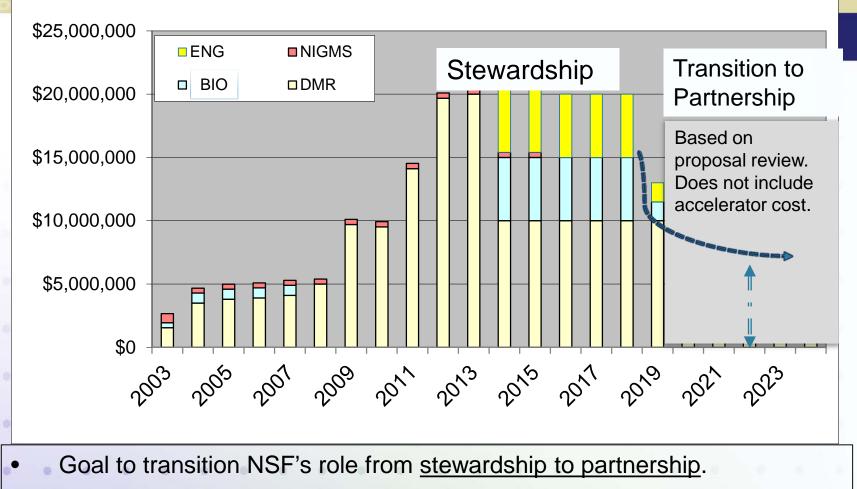
Mid-Award Review/Site Visit Panel 10/16-18/2016

Site-Visit Panel Charge

For each science theme assess:

- Degree of Novelty of Science Theme
- Appropriateness of the Challenges Identified in the Context of Current and Future Developments of the Field
- Uniqueness, and Criticality of the Photon Attributes of CHESS-U in addressing the Challenge(s) Identified. (Consider the national and international context of light sources)
- Relevance of Each Science Theme to Biological Sciences, Engineering, and/or Materials Research
- Current and Anticipated Future Demand of CHESS-U for each Science Theme

Mid-Year Review Conclusions


- Science case for CHESS-U
 - Science themes are important.
 - Critical need for CHESS-U is <u>mixed</u>.
 - Breadth of science themes is narrow particularly in BIO ("niche" areas).
 - Representation of NSF awardee "community" (DMR, BIO, ENG) is weak.
- Annual Performance: Satisfactory progress in operation as a national facility, upgrade of new tools, and science output.

JOG Decisions:

<u>Continue support for CHESS</u> at current level through end of current cooperative agreement (03/31/2019).

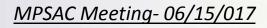
<u>Immediately begin to develop a transition plan</u> for the period beyond 04/01/2019 with the objective to support the *strongest science* with NSF as a partner vs. a steward.

Transition Planning

- Cornell will develop new business plan to support CESR operation.
- JOG develops guidelines for "transition" proposal submission.

DMR DIVISION OF MATERIALS RESEARCH DIRECTORATE FOR MATHEMATICAL AND PHYSICAL SCIENCES

NSF Partnership with NIST: The Center for High Resolution Neutron Scattering (CHRNS)



- NIST provides the source of the neutrons
- Operates with ≈ 99% reliability
- Serves ≈ 500 scientists

AND PHYSICAL SCIENCES

- Contributes to ≈ 25 PhD's
- Expands the US neutron community
 - Summer School
 - Summer Undergraduate Research Fellowship
 - Summer high school internship program.

"TRANSITION" PLAN

.....in progress, but WILL ACCELERATE IN FY2018

Private foundations

industry

MPSAC Meeting- 06/15/017

NIH

NSF

Thank you

.

0

.

0

0

٠

0

0

Back-up slides

.

.

The Future is Bright

- Historic events at June 2017 user meeting:
 - 5 NSF PD, first in the history of this meeting
 - BIO, ENG, workshops funded separately BIO, and ENG
 - Diversity all time high: INCREASE workshop
- NSF commitment to transition gives strong foundation for the pursuit of other partners within and outside NSF.
- Building communities in BIO and ENG bottom up could lead to more sustained support
- Upgraded CHESS creates new opportunities to compete for new Midscale opportunities.

Site Visit Review Results

Science Theme	Review	Relevance
Structural Materials	Meritorious in all aspects	ENG-DMR
High Precision Plant Phenotyping		BIO
Catalysis, Man-Made and Biological		ENG & BIO
Disordered Materials	Meritorious, but do not make the case that they could not be equally well-established at other facilities	DMR- ENG-BIO
Atomically Thin Films and Interfaces		DMR-ENG
In-situ Processing of Organic Semiconductors		ENG-DMR
Nanocrystals Superlattices	Lacks novelty, driven by local interest	ENG-DMR
Unique time structure of CHESS-U	Recognized but not fully exploited	DMR-ENG-BIO

NSF Partnership with the Advanced Photon Source (APS): ChemMatCARS

- CHE (\$970K) & DMR (\$330K) provide support for three experimental stations
- APS (DOE) supports the light source
- Science focus: structure and dynamics over the range of length scales from atomic and molecular to mesoscopic. Techniques span a spatial resolution of sub-angstrom to micrometer and a time resolution from 50 ns to minutes.
- High Precision Crystallography; Scattering From Liquid Surfaces and Liquid-Liquid Interfaces; Small and wide-angle x-ray scattering (SAXS/WAXS)
- Typical annual usage
 - 221 unique users from 60 institutions 117 individual experiments

NSB Information Item: Cornell High-Energy Synchrotron Source (CHESS) Feb. 2017