NSF/OPP Astrophysics Program and Budget Update

Dr. Vladimir Papitashvili
Program Director, Antarctic Astrophysics & Geospace Sciences
Office of Polar Programs
Directorate for Geosciences
Where are we?

U.S. Amundsen-Scott South Pole Station
2.9 km elevation above sea level

Snow runway

MAPO with BICEP Array

U.S. Amundsen-Scott South Pole Station
2.9 km elevation above sea level

IceCube Lab

DSL w/BICEP3 & SPT

ARA & ARIANNA testbeds

IceCube area

ARA & ARIANNA

testbeds

IceCube area

MAPO with BICEP Array

DSL w/BICEP3 & SPT
• **IceCube Neutrino Observatory:** 8+ years of observations
 $272M$ MREFC Project, 2002-2010; current M&O support (2016-2021; $7M/year) and science awards (~$3M/year) - jointly funded by GEO/OPP and MPS/Physics.
 Lead PI: Francis Halzen, Univ. of Wisconsin-Madison and IceCube Collaboration (46 institutions in 12 countries)

• **Askaryan Radio Array (ARA) concept for GZK neutrino studies**
 (5 testbed stations) 2013-2019
 Jointly funded by OPP & PHY (~$350K/year)
 Lead PI: Albrecht Karle, Univ. of Wisconsin (Collaboration of 5 institutions in 2 countries)

• **Antarctic Ross Ice-Shelf ANtenna Neutrino Array (ARIANNA) concept for GZK neutrino studies**
 (7 testbed stations) 2010-2019
 Jointly funded by OPP & PHY (~$175K/year)
 Lead PI: Steven Barwick, Univ. of California-Irvine

$\Sigma \sim$ $10.5M/year$
• South Pole 10m CMB Telescope (SPT) 12+ years of observation 2007-2019 Jointly funded by OPP & MPS/PHY/AST (~$2.7M/yr) Lead PI: John Carlstrom, University of Chicago & SPT collaboration (2 National Labs and 10 institutions in 3 countries)

• Background Imager for Cosmic Extragalactic Polarization - BICEP Array of up to 50cm aperture telescopes 13+ years of observation 2006-2019 Jointly funded by OPP/PHY/AST (~$1.5M/year) Lead PI: John Kovac, Harvard University & BICEP Collaboration (9 institutions in 4 countries)

• HEAT – TeraHertz Robotic Telescope at Ridge A (4.1 km elevation) 6 years of observations (2011-2016, removed from Antarctica in January 2019) Jointly funded by OPP & AST ($250K/year) Lead PIs: Craig Kulesa (University of Arizona) and Michael Ashley (University of New South Wales, Australia) Σ ~ $4.5M/year

• NASA Long-Duration Balloon Program at McMurdo 1990–2019 56 science payloads launched, 7 OPP co-funded, 90% astrophysics
A New Window on the Non-Thermal Universe!

- **IceCube was completed in 2010 as a discovery machine** - to search for very high energy neutrinos created in the most extreme cosmic environments.
- **2013**: ICNO discovered first high energy (100–10 PeV TeV) cosmic neutrinos - over 100 events currently collected... robust statistics!
- **Sep 22, 2017**: IceCube issued an alert 170922A upon pinpointing an extragalactic neutrino (~0.3 PeV) source within 0.1° of the flaring blazar TXS 0506+056.

Total energy measurements, all flavors, all sky

Angular resolution is less than 0.4°

~8 PeV
IceCube 170922
290 TeV

4 in Top 10 stories of 2018 by
http://www.sciencenews.org

IceCube 170922
Gamma rays energy spectrum 80-400 GeV

MAGIC - Major Atmospheric Gamma Imaging Cherenkov Telescopes (La Palma)

July 12, 2018
NSF Press Release 18-050
Neutrino observation points to one source of high-energy cosmic rays

Fermi-LAT gamma-ray space telescope

Flaring blazar within 0.1°
Title: IceCube Gen2 Phase 1: an IceCube extension for precision neutrino physics and astrophysics (funded by PHY & OPP in 2018 for 60 months)

PI: Kael Hanson, Univ. of Wisconsin & 7 institutions of 4 countries

NSF: $24M Other U.S. & Non-U.S. institutions: $14M in-kind

Additional 7 strings (each 100+ DOMs) in the center of DeepCore Array

Main Science Objective: Multimessenger Astrophysics - A new Window on the PeV Universe

Main Science Topics:

✓ Tau neutrino appearance and the unitarity of the PMNS matrix
✓ Neutrino oscillations, sterile neutrino, and indirect dark matter
✓ Improving IceCube’s capabilities for neutrino astronomy:
 • Tau neutrino appearance on cosmic baselines
 • Neutrino astronomy with high-energy cascades
Radio detection of neutrinos complements optical techniques at very high energies

Detection method: Radio signal from secondary particles generated by an ultra-high energy (GZK, $>10^{18}$) neutrino interaction within the Ice

Signal attenuation length at South Pole:
- Optical: 150 m - 250 m
- Radio: 1500 m

Concept: Full ARA array (37 stations, 200 km²) will reach required sensitivity at the energies above 100 PeV

ARA ice drill
• **Concept:** An array of ~1000 autonomous stations on the snow surface in Antarctica to measure a flux of ultra-high energy (GZK) neutrinos from astrophysical sources

• **Same as ARA’s radio detection method** that additionally includes measurements of a signal reflect from the water surface under the Ross Ice Shelf.

• Currently testing two ARIANNA stations at the South Pole Station – to compare with ARA data.

Testbed: 7 stations in a hexagonal array, 1-km spacing; deployed over Ross Ice Shelf, ~100-km south of McMurdo

First detection of the cosmic rays signal by the self-triggered, multi-station array.

5 years projections for ARIANNA & ARA
Three Cameras, ~200 Papers on a Vast Array of Subjects, ~10,000 Citations.

First Generation: The SPT-SZ Camera
- 2007-2011
- 960 detectors, 3 bands
- 2500 deg² survey to 18 μK-arcmin

Second Generation: The SPTpol Camera
- 2012-2016
- 1536 detectors, 2 bands, polarization sensitivity
- 500 deg² survey to 5 μK-arcmin

Third Generation: The SPT-3G Camera
- See next slide

SPT publications and citations span many sub-fields of astronomy and physics.

SPT citations by subject

SPT discoveries include some of the most extreme objects in the Universe and have had lasting impacts on the fields of cosmology, galaxy clusters, and high-redshift galaxies.
Third Generation: The SPT-3G Camera

- 16,000 polarization-sensitive detectors in 3 bands.
- Order-of-magnitude improvement over SPTpol and other 2015-era CMB cameras
- Maps a 3x larger region than SPTpol to full 4-year-survey SPTPol depths in 1 year.
- Currently surveying the final target sky field, a 1500 deg² region fully overlapping the BICEP Array survey field (for de-lensing the B-mode signal).
- Final target map depth (2.2 μK-arcmin at 150 GHz) and observing strategy will enable breakthrough science in many areas, including new windows on the transient Universe and multi-messenger astrophysics.
Using the Atacama Large Millimeter/submillimeter Array (ALMA), an international team of scientists has uncovered a startlingly dense concentration of 14 galaxies that are poised to merge, forming the core of what will eventually become a colossal galaxy cluster. Known as a protocluster designated as SPT2349-56, it is located approximately 12.4 billion light-years away and it was first discovered as a faint smudge of the mm-wavelength light in 2010 with the NSF’s South Pole Telescope.

Current theory and computer models suggest that protoclusters as massive as the one observed by ALMA, however, should have taken much longer to evolve.
Keck Array - Hardware upgrades in 2018/19 included receivers optics with new hybridized focal plane.

Full-scale CMB Stage 3 program replaces the Keck Array (95-270 GHz) with BICEP Array (next season 30 & 40, then 95, 150, 220 & 270 GHz) for the deep foreground separation.

With the SPT-3G delensing, plans are to reach $\sigma(r)<0.004$ by the end of 2021, and $\sigma(r) \sim 0.002$ by 2023.

Total number of bolometers:
- BICEP3 + Keck Array: 6,000
- BICEP3 + BICEP Array: \sim35,000

will be replaced by BICEP Array of 4 receivers in 2020
BICEP/Keck data: B-modes & progress on $\sigma(r)$

- 2014 BICEP/Keck analysis adds 95 GHz
- 2015 BICEP/Keck analysis
- 2017 BICEP/Keck plus SPTpol delensing
- 2018/21 BICEP/Array+SPT-3g delensing

$$\sigma(r) = 0.034$$ [Phys.Rev.Lett. 114, 101301, 2015]

$$\sigma(r) = 0.025$$ [Phys.Rev.Lett. 116, 031302, 2016]

$$\sigma(r) = 0.019$$ [Phys.Rev.Lett. 121, 221301, 2018]

$$\sigma(r) = 0.010$$ coming in 2019

$$\sigma(r) \sim 0.004$$ forecast

Raw sensitivity of this experiment to primordial B-modes (i.e., with no foregrounds or lensing) is close to $\sigma(r) \sim 0.006$

It is now all about components separation!
OPP & AST – TeraHertz Robotic Telescope

- The 0.6m aperture High Elevation Antarctic Terahertz (HEAT) telescope operated robotically at Ridge A summit, delivering spectroscopic data from 150 to 500 microns for 6 years (2011-2016).
- This was a joint project of the U.S. and Australian scientists: Univ. of Arizona (HEAT telescope) and Univ. of New South Wales (PLATO-R power module).
- The HEAT and PLATO-R were removed from Ridge A in January 2019.

http://soral.as.arizona.edu/heat/

HEAT’s deep spectroscopic surveys (left) are finding pervasive, diffuse molecular clouds not seen in existing surveys of CO and HI (right)

http://mcba11.phys.unsw.edu.au/~plato-r/
1988 – First MoA was signed between NASA and NSF, planning to launch one (1) LDB payload every other year beginning January 1990.

29 years later - total 56 LDB and SPB payloads have been flown from McMurdo - in average 2 payloads per year!

In 2018-2019 austral summer season, only two payloads (SuperTIGER and X-Calibur, out of 3 planned) were flown, but both were terminated soon after being launched due to equipment failures. BLAST-TNG was stored on-site and will be launched in 2019-2020.

http://www.csbf.nasa.gov/antarctica/ice.htm
• Current annual spending for Antarctic Astrophysics is ~$9.0M, where ~$5M+ go to support neutrino astrophysics, and ~$4M+ to support astronomy & CMB-related projects.

• As previous slides show, almost all Antarctic astrophysical research projects were (and are!) co-funded with the MPS/PHY & AST science programs – thank you, friends!

• The IceCube M&O and related science projects (IceCube science, ARA, ARIANNA, etc.) were co-funded by OPP & PHY 50:50 since the IceCube MREFC project arrived to South Pole.

• Thus, the combined annual spending for Antarctic research in neutrino astrophysics reaches $10.5M. OPP and PHY spent jointly ~$120M in 2004-2018.

• Antarctic astronomy & CMB research were mostly funded by OPP. Since 2004, AST (PHY since 2012) helped co-funding some CMB projects. In 2018, the AST/MSIP & OPP/AAGS programs jointly co-funded 50:50 the latest BICEP Array award.

• Thus, the combined annual spending for Antarctic astronomy and CMB research is about $4.5M. OPP spent jointly with AST & PHY ~$100M in 2004-2018.
Thank you for your attention!

Questions?