NASA Astrophysics Update
Astronomy and Astrophysics Advisory Committee
Telecon Meeting
June 3, 2019

Paul Hertz
Director, Astrophysics Division
Science Mission Directorate
@PHertzNASA
Astrophysics Strategic Planning

To be updated in 2019 (per GPRAMA)

Astro2020 Decadal Survey underway

2018 update includes:
- Independent reviews of Webb & WFIRST
- Planning for 2020 Decadal Survey

https://science.nasa.gov/astrophysics/documents
NASA Astrophysics
Budget Update
FY20 Budget Request

The FY20 President’s Budget Request requests a decreased level of funding for NASA Astrophysics. Total funding requested for FY20 (Astrophysics including Webb) is ~1.197B, a decrease of $187M (14%) from the FY18 appropriation and a decrease of $299M (20%) from the FY19 appropriation.
FY20 President’s Budget Request for Astrophysics including Webb Telescope

What’s Changed
• Webb budget increased consistent with 2018 replan, Webb proceeding toward launch in 2021
• Probe program deferred to fund Webb replan
• SPHEREx begun within Explorers program as next Astrophysics MIDEX
• SOFIA mission funded beyond end of 5-year prime mission in 2019, details pending 2019 independent reviews
• Provides no funding for WFIRST space telescope

What’s the Same
• Cadence of four Explorer and Mission of Opportunity AOs per decade
• Spitzer ends operations January 2020 per 2016 Senior Review
• Phase A studies of Small Explorers (SMEX) and Missions of Opportunity from 2019 AO
• IXPE, GUSTO, XRISM, and Euclid development remains on track and within budget
• Hubble, Chandra, and 6 smaller operating missions continue pending 2019 Senior Review
• CubeSat initiative and four balloon campaigns within healthy research program
• Mission concept studies and technology investments to support Astro2020
Congressional Markup of FY20 Budget

<table>
<thead>
<tr>
<th></th>
<th>Request</th>
<th>House</th>
<th>Senate</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Webb</td>
<td>352.6</td>
<td>352.6</td>
<td></td>
<td>Supports replan</td>
</tr>
<tr>
<td>WFIRST</td>
<td>0</td>
<td></td>
<td>510.7</td>
<td>Includes $65M for CGI</td>
</tr>
<tr>
<td>SOFIA</td>
<td>73.0</td>
<td>85.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rest of Astrophysics</td>
<td>772.8</td>
<td>771.8</td>
<td></td>
<td>$1M (0.1%) reduction</td>
</tr>
<tr>
<td>Total</td>
<td>1,197.4</td>
<td>1,720.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A Budget Increase for the Artemis Program

• The FY2020 budget amendment provides an *increase* of $1.6 billion above the president’s initial $21 billion budget request with no money taken from existing NASA programs. This is the *boost* NASA needs.

• $1 billion to accelerate development of human lunar transportation systems to take astronauts to the surface and back to Gateway*
• $651 million towards the completion of SLS and Orion to support a 2024 landing.
• $132 million for new technologies to help astronauts live and work on the lunar surface and in deep space.
• $90 million for Science to increase robotic exploration at the lunar South Pole in advance of astronauts.

* Focusing Gateway on just the capabilities needed for Phase 1 allowed for a $321M scope reduction and shifts potential development and expanded capabilities for Gateway into Phase 2.*
Artemis Phase 1: To the Lunar Surface by 2024

ARTEMIS 1: FIRST HUMAN SPACECRAFT TO THE MOON IN THE 21st CENTURY

ARTEMIS 2: FIRST HUMANS TO THE MOON IN THE 21st CENTURY

FIRST HIGH POWER SOLAR ELECTRIC PROPULSION (SEP) SYSTEM

FIRST PRESSURIZED CREW MODULE DELIVERED TO GATEWAY

ARTEMIS 3: CREWED MISSION TO GATEWAY AND LUNAR SURFACE

Commercial Lunar Payload Services
- CLPS delivered science and technology payloads

Early South Pole Crater Rim Mission(s)
- First robotic landing on eventual human lunar return and ISRU site
- First ground truth of polar crater volatiles

Descent Element Test
- First large-scale lander on the Moon

Humans on the Moon - 21st Century
First crew leverages infrastructure left behind by previous missions

LUNAR SOUTH POLE CRATER TARGET SITE

2019

2024
Lunar Science by 2024

Polar Landers and Rovers
- First direct measurement of polar volatiles, improving understanding of lateral and vertical distribution, physical state, and chemical composition
- Provide geology of the South-Pole Aitken basin, largest impact in the solar system

Non-Polar Landers and Rovers
- Explore scientifically valuable terrains not investigated by Apollo, including landing at a lunar swirl and making first surface magnetic measurement
- Using PI-led instruments to generate Discovery-class science, like establishing a geophysical network and visiting a lunar volcanic region to understand volcanic evolution

Orbital Data
- Deploy over a dozen CubeSats with Artemis 1
- Potential to acquire new scientifically valuable datasets through CubeSats delivered by CLPS providers or comm/relay spacecraft
- Global mineral mapping, including resource identification, global elemental maps, and improved volatile mapping

In-Situ Resource Initial Research
- Answering questions on composition and ability to use lunar ice for sustainment and fuel
Science After 2024
Human and Robotic Missions Provide Unique Science Opportunities

On Gateway

• Deep space testing of Mars-forward systems
• Hosts groundbreaking science for space weather forecasting, full-disc Earth observation, astrophysics, heliophysics, lunar and planetary science
• Mars transit testbed for reducing risk to humans

Surface Exploration

• Understanding how to use in-situ resources for fuel and life
• Revolutionizing the understanding of the origin and evolution of the Moon and inner solar system by conducting geophysical measurements and returning carefully selected samples to Earth
• Studying lunar impact craters to understand physics of the most prevalent geologic process in the solar system, impact cratering
• Setting up complex surface instrumentation for astrophysics, heliophysics and Earth observation
• Informing and supporting sustained human presence through partial gravity research in physical and life sciences, from combustion to plant growth

Surface Telerobotics to Provide Constant Science

• Sending rovers into areas too difficult for humans to explore; rovers can be teleoperated from Earth to maximize the scientific return
NASA Astrophysics Missions Update
The Webb payload (telescope + instruments, left) and spacecraft element (spacecraft + sunshield, right) in the clean room in Redondo Beach, CA before spacecraft element environmental testing and observatory integration.
Wide-Field Infrared Survey Telescope

Work continues with FY19 funding

2016 – Completed Mission Concept review and began Phase A

2018 – Completed Mission Design review / System requirements Review and began Phase B

2019 – Completing Preliminary Design Reviews

2020 – Complete Confirmation Review and begin Phase C

Mid-2020s -- Launch

Science Program includes

• Dark energy and the fate of the universe through surveys measuring the expansion history of the universe and the growth of structure

• The full distribution of planets around stars through a microlensing survey

• Wide-field infrared surveys of the universe through General Observer and Archival Research programs

• Technology development for the characterization of exoplanets through a Coronagraph Technology Demonstration Instrument

WFIRST is 100 to 1500 times faster than Hubble for large surveys at equivalent area and depth
Wide-Field Infrared Survey Telescope

• NASA continuing work on WFIRST as planned
 • Work continues under recently approved FY19 appropriation; appropriation enacted in February 2019 includes $312M for WFIRST
 • WFIRST remains on the plan approved at the beginning of Phase B: Cost is $3.2-3.8B, launch is in late 2025
 • Formal cost and schedule commitments, including Headquarters held reserves to increase confidence level to 70%, will be made at Confirmation in early 2020

• Major milestones in 2018
 • WFIRST passed System Requirements Review / Mission Design Review
 • Approved in May 2018 to enter Phase B (preliminary design phase)
 • Completed System Requirements Reviews for all primary mission elements (Wide Field Instrument, Coronagraph, Optical Telescope)
 • All major contracts awarded: Telescope (Harris), Wide Field Instrument (Ball), Detectors (Teledyne)

• Work Plan for 2019
 • Significant flight hardware in production
 • Significant engineering work in progress
 • Four element Preliminary Design Reviews by September 2019
 • Proceeding during FY19 toward Mission Preliminary Design Review and Confirmation
Spectro-Photometer for the History of the Universe Epoch of Reionization and Ices Explorer (SPHEREx)

Science Highlights include:

• Survey the entire sky every 6 months
• Optical and infrared survey mission (96 bands/pixel)
• Observe hundreds of millions of galaxies
 o Measure redshifts to probe the statistical distribution of inflationary ripples
 o Measure spatial fluctuations in the Extragalactic Background Light to support studies of the origin and history of galaxy formation
• Survey Galactic Molecular Clouds for water and organic molecules ($\text{H}_2\text{O}, \text{CO}, \text{CO}_2, \text{CH}_3\text{OH}$)

• Awarded: February 2019
• Launch: 2023
• Prime Mission: 2 Years
• PI: James Bock (Caltech)
Astrophysics Explorers Program

Small and Mid-Size Missions

Missions of Opportunity

Explorers Mission of Opportunity AO includes:

• Contributions to Partner Mission
• Small Complete Mission on ISS
• SmallSat Secondary Payloads
• Opportunities enabled by Project Artemis
Astrophysics Missions in Development

TESS
NASA Mission
Transiting Exoplanet Survey Satellite
Launched!

Webb
NASA Mission
James Webb Space Telescope
Replanned SIR now in Sep 2019

IXPE
NASA Mission
Imaging X-ray Polarimetry Explorer
Passed KDP-C; CDR in June 2019

GUSTO
NASA Mission
Galactic/Extragalactic ULDB Spectroscopic Terahertz Observatory
Passed KDP-C; CDR in July 2019

XRISM
JAXA-led Mission
Mission passed PDR
Resolve in I&T

Euclid
ESA-led Mission
Delivered 18 SCEs
Will deliver early

SPHEREx
NASA Mission
Downselected in February 2019
Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer

WFIRST
NASA Mission
Mission PDR in October 2019
Wide-Field Infrared Survey Telescope

NASA is supplying the SXS Detectors, ADRs, and SXTs

Passed KDP-C; CDR in June 2019

Passed KDP-C; CDR in July 2019

Passed KDP-C; CDR in August 2019

Delivered 18 SCEs

Will deliver early

Resolved in I&T

Delivered 18 SCEs

Will deliver early

Passed KDP-C; CDR in February 2019

Passed KDP-C; CDR in March 2019

Mission PDR in October 2019

Mid 2020s

2021

2022

2023
Operating Missions (including GO programs)

<table>
<thead>
<tr>
<th>Mission</th>
<th>Start Date</th>
<th>Mission Type</th>
<th>Telescope/Explorer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hubble</td>
<td>4/90</td>
<td>NASA Strategic Mission</td>
<td>Hubble Space Telescope</td>
</tr>
<tr>
<td>Senior Review</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chandra</td>
<td>7/99</td>
<td>NASA Strategic Mission</td>
<td>Chandra X-ray Observatory</td>
</tr>
<tr>
<td>Senior Review</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMM-Newton</td>
<td>12/99</td>
<td>ESA-led Mission</td>
<td>X-ray Multi Mirror - Newton</td>
</tr>
<tr>
<td>Senior Review</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spitzer</td>
<td>8/03</td>
<td>NASA Strategic Mission</td>
<td>Spitzer Space Telescope</td>
</tr>
<tr>
<td>Began Final Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior Review</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fermi</td>
<td>6/08</td>
<td>NASA Strategic Mission</td>
<td>Fermi Gamma-ray Space Telescope</td>
</tr>
<tr>
<td>Senior Review</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kepler</td>
<td>3/09</td>
<td>NASA Discovery Mission</td>
<td>Kepler Space Telescope</td>
</tr>
<tr>
<td>Mission Complete!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NuSTAR</td>
<td>6/12</td>
<td>NASA SMEX Mission</td>
<td>Nuclear Spectroscopic Telescope Array</td>
</tr>
<tr>
<td>Senior Review</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOFIA</td>
<td>5/14</td>
<td>NASA Strategic Mission</td>
<td>Stratospheric Observatory for Infrared Astronomy</td>
</tr>
<tr>
<td>Two External Reviews</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISS-NICER</td>
<td>6/17</td>
<td>NASA Explorers Miss. of Oppty</td>
<td>Neutron Star Interior Composition Explorer</td>
</tr>
<tr>
<td>Senior Review</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TESS</td>
<td>4/18</td>
<td>NASA MIDEX Mission</td>
<td>Transiting Exoplanet Survey Satellite</td>
</tr>
<tr>
<td>Senior Review</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TESS
Transiting Exoplanet Survey Satellite

Recent Announcements
- TESS spots a system of Super-Earths around the Naked-Eye Star HR 858

- 639 new TESS planet candidates available for follow-up
- 15 confirmed planets
- 130 publications; 77 through peer-review. 56% works relate to exoplanets, 44% pertain to other areas of astrophysics

Observation Sector 11 in progress, 11 of 26 observing sectors complete, 9 sectors publically available ahead of schedule

Updated 2019 May 20
NASA Astrophysics
Response to AAAC 2019 Report
• 5. Recommendation: All current and planned surveys supported by NSF, NASA and DOE/Cosmic Frontier should publicly release their data with suitable access tools and documentation. This is consistent with the AAAC Principles of Access recommended by the AAAC in their 2013-2014 annual report. In addition, the surveys should endeavor to use open source code to create the data products in order that the community can learn how those data products were created. We are aware that support for continued use of the source code is a much larger endeavor, and the additional benefit of such support is not clear at this time. Agencies should include in survey budgets funding to enable adequate public access to the data, software, and data products of these surveys.

• NASA response: NASA concurs. SMD data policy is consistent with this recommendation for data and tools. The NASEM report *Open Source Software Policy Options for NASA Earth and Space Sciences* (2018) recommends that “NASA Science Mission Directorate should consider a variety of policy options depending on discipline and software type and transition to greater openness over time.” NASA is currently assessing the recommendations of this study and formulating both a response and policies for open source code.
• 6. Recommendation: The three agencies should coordinate on the guidelines and expectations for the public releases of data sets, data products, data access tools, and related software used to produce future surveys, astrophysical simulations, and missions. The goal of this coordination should be to help researchers efficiently provide access to the data they produce through tools useful for the broad scientific community with minimal duplication of effort between agencies and stakeholder groups. Release and documentation of the software used to generate and analyze the data will enhance the quality of current and future science by enabling more cost effective reproducibility and extension of the scientific results from the initial studies.

• NASA response: NASA will work with NSF and DOE to respond to this recommendation. There already exist data standards (VO protocols) and tools that are built on top of these protocols.
11. Recommendation: We continue to recommend that the three agencies either broaden the current discussions or create parallel discussions to consider broadly the costs and benefits of coordination on the science areas of interest to both the Euclid and LSST communities. We recognize that if a decision is made to plan for coordination between LSST and Euclid during construction of LSST and to execute such a plan during LSST operations, the budgets for both the construction and operation of LSST would likely need an augmentation.

NASA response: NASA concurs. We are awaiting the final report from the joint Agency detailed study over two years to assess the benefits, approach, and cost of implementing joint processing.
• 14. Recommendation: Given their common interests in access to the spectrum, NASA and NSF should enhance their collaboration with each other and with other groups, including international agencies and commercial interests, to protect the accessibility of essential astronomical wavelengths to researchers.

• NASA response: NSF has the lead on spectrum management for radio astronomy. NASA will work with NSF.

• 15. Recommendation: Efforts, ideally coordinated with all three agencies, should be made to increase awareness of spectrum management issues among astronomers, the general public, and government agencies. Possible agents for meeting this recommendation might include the NSF-funded national facilities for operations at radio and optical wavelengths. Efforts to engage and coordinate with other international agencies should continue.

• NASA response: NSF has the lead on spectrum management for radio astronomy. NASA will work with NSF.
• 17. Recommendation: The AAAC continues to recommend ongoing cost assessment and mission review of the Wide Field Infrared Survey Telescope (WFIRST) prior to and after Preliminary Design Review.

• NASA response: NASA concurs. NASA policies and procedures require this. An independent standing review board evaluates the WFIRST mission throughout its lifecycle at significant gate reviews. For the upcoming PDR, this includes a major cost and schedule assessment, which informs NASA of the estimated cost-to-complete at that point. In addition, an internal review team consisting of technical authorities and programmatic representatives evaluates the project on a monthly basis. Finally, the Astrophysics Strategic Missions Program (ASMP) office, which answers directly to the Director of Astrophysics, is responsible for day-to-day oversight and insight. The ASMP participates in all the monthly and lifecycle processes as well as assessing progress and analyzing technical and programmatic trends on an ongoing basis.
• 22. Recommendation: In order to maintain a balanced investment in astrophysical research while continuing to support WFIRST, the highest ranked priority for NASA by the most recent decadal survey, NWNH, we recommend that the NASA budget be increased above the President’s request to allow a funding level for the astrophysics division that would enable the funding of WFIRST to continue in the context of a balanced portfolio of investment.

• NASA response: Congress appropriates the NASA budget and provides spending direction.

• 28. Recommendation: NASA should continue to allocate resources to successfully launch JWST at the earliest possible date.

• NASA response: NASA concurs. The NASA FY19 appropriation provides adequate funding to support JWST development during FY19. The budget required for a March 2021 launch has been allocated to JWST in the NASA FY20 budget request and its runout.
• 29. Recommendation: The AAAC recommends to Congress that SOFIA’s prime mission be considered complete at the end of FY2019, and that SOFIA undergo senior review in the next regular review cycle, in line with normal NASA review procedures.

• NASA response: NASA has conducted two independent reviews of SOFIA during 2019 to inform a more productive extended mission for SOFIA. NASA plans to review SOFIA again in 2022, after three years of extended operations.
NASA Response to 2019 AAAC Report

• 55. Recommendation: The AAAC urges Congress to increase the proposed FY 2020 appropriation for NASA above the Administration’s request to continue to provide a balanced program within astrophysics in line with the recommendations of NWNH.

• NASA response: Congress appropriates the NASA budget and provides spending direction.

• 59. Recommendation: the AAAC recommends that the annual report deadline be changed from a fixed date to a deadline 45-60 days following the submission of the President’s budget, so as to enable sufficient opportunity for the committee to interact with the funding agencies, understand the impact of the President’s budget, and formulate recommendations. The AAAC would endeavor to still meet the current deadline of March 15th when possible.

• NASA response: NASA endorses this recommendation.
NASA Astrophysics
Preparation for 2020 Decadal Survey
Astrophysics
Decadal Survey Missions

1972 | Decadal Survey | Hubble
1982 | Decadal Survey | Chandra
1991 | Decadal Survey | Spitzer, SOFIA
2001 | Decadal Survey | JWST
2010 | Decadal Survey | WFIRST
NASA Assessment: Probe Concept Studies

• NASA has requested GSFC and JPL’s costing offices to perform independent cost assessments of the Probe mission concepts that used the resources of their respective Centers

• In order to provide an independent, non-advocate assessment of the costing offices’ results, NASA is assembling an independent Probes Concept Assessment Team (PCAT)
 • The PCAT will validate the cost estimates provided by the costing offices, the design labs, and the PI-led studies
 • The PCAT is composed of scientists and subject matter experts who will work with the costing offices and the study teams

• The purpose of conducting a cost and technical validation of the Probe mission concept studies is to provide NASA Headquarters confidence in the science, technical, cost, and risk conclusions of the Probe Mission Concept Reports that will be presented to the Decadal Survey

• The Terms of Reference for the PCAT are posted at https://science.nasa.gov/astrophysics/2020-decadal-survey-planning
Large Mission Concepts

“NASA should ensure that robust mission studies that allow for trade-offs (including science, risk, cost, performance, and schedule) on potential large strategic missions are conducted prior to the start of a decadal survey. These trade-offs should inform, but not limit, what the decadal surveys can address.” – Powering Science: NASA's Large Strategic Science Missions (NASEM, 2017)

HabEx LUVOIR Lynx Origins
NASA Assessment: Large Mission Concept Studies

• NASA has assembled a Large Mission Concept Independent Assessment Team (LCIT) to conduct a technical, risk, and cost assessment of the four large-scale mission concept studies
 • The LCIT includes experienced technical and cost reviewers with expertise in large space missions and in science, instrumentation, and technology
• The purpose of the LCIT is twofold:
 • Provide feedback to the STDTs that can be used to improve the Final STDT Reports that will be presented to the Decadal Survey
 • Provide NASA Headquarters confidence in the science, technical, cost, and risk conclusions of the Final STDT Reports that will be presented to the Decadal Survey
• The Terms of Reference for the LCIT are posted at https://science.nasa.gov/astrophysics/2020-decadal-survey-planning
NASA Astrophysics Budget

<table>
<thead>
<tr>
<th></th>
<th>FY24</th>
<th>FY26</th>
<th>FY28</th>
<th>FY30</th>
<th>FY32</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.9B Current program including Webb operations and 4 Explorers/decade</td>
<td>$1.1B</td>
<td>$1.2B</td>
<td>$1.3B</td>
<td>$1.4B</td>
<td>$1.5B</td>
</tr>
<tr>
<td>Average of recent appropriations</td>
<td>$1.2B</td>
<td>$1.3B</td>
<td>$1.4B</td>
<td>$1.5B</td>
<td>$1.6B</td>
</tr>
<tr>
<td>Average of recent appropriations plus inflation</td>
<td>$1.3B</td>
<td>$1.4B</td>
<td>$1.5B</td>
<td>$1.6B</td>
<td>$1.7B</td>
</tr>
<tr>
<td>Runout of FY20 Budget Proposal</td>
<td>$1.1B</td>
<td>$1.2B</td>
<td>$1.3B</td>
<td>$1.4B</td>
<td>$1.5B</td>
</tr>
<tr>
<td>Current program including Webb operations and 4 Explorers/decade</td>
<td>$0.9B</td>
<td>$1B</td>
<td>$1.1B</td>
<td>$1.2B</td>
<td>$1.3B</td>
</tr>
</tbody>
</table>
Decadal Survey Planning

• NASA’s highest aspiration for the 2020 Decadal Survey is that it be ambitious
 • The important science questions require new and ambitious capabilities
 • Ambitious missions prioritized by previous Decadal Surveys have always led to paradigm shifting discoveries about the universe
• If you plan to a diminishing budget, you get a diminishing program
 • Great visions inspire great budgets

Carpe Posterum
SOFIA
Stratospheric Observatory for Infrared Astronomy

• SOFIA's 5-year prime mission will be completed at the end of FY19
• At the end of a prime mission, NASA usually assesses the science performance and management of a program and proposed future science to decide on an extension of the program through a Senior Review Process, as required by the NASA Authorization Act of 2005
• The Explanatory Statement accompanying the FY2018 Consolidated Appropriations Act, however, forbade NASA from placing SOFIA in the 2019 Senior Review
• Given that the program has finished 5 years of operations, the time is appropriate to review two aspects of the SOFIA Project:
 • SOFIA's maintenance and operations paradigm
 • SOFIA's science progress and science prospects
• The reviews will not consider closeout or cancellation of SOFIA
Astrophysics in FY20 PBR

• Accommodates Webb replan to March 2021 LRD
• Supports formulation of a probe mission as early as 2022, conditional on Decadal Survey recommendations
• Maintains decadal cadence of four AOs per decade for Astrophysics Explorers and Missions of Opportunity
• Funds SOFIA for three years beyond end of prime mission in FY19 at reduced budget; two alternate reviews conducted in 2019 in lieu of inclusion in 2019 Senior Review
• Extends operating missions (other than Hubble and Chandra) at reduced budget beyond FY20 following 2019 Senior Review
• Supports mission concept studies and technology investments required to implement Astrophysics Decadal Survey priorities starting in 2022
• Given its significant cost and competing priorities within NASA, provides no funding for WFIRST space telescope

https://nasa.gov/budget
Astrophysics Program Content (FY20 Request)

<table>
<thead>
<tr>
<th></th>
<th>Actual FY 18</th>
<th>Enacted FY 19</th>
<th>Request FY 20</th>
<th>FY 21</th>
<th>FY 22</th>
<th>FY 23</th>
<th>FY 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrophysics</td>
<td>850.4</td>
<td>1,191.6</td>
<td>844.8</td>
<td>902.4</td>
<td>965.2</td>
<td>913.5</td>
<td>907.7</td>
</tr>
<tr>
<td>Astrophysics Research</td>
<td>203.1</td>
<td>250.7</td>
<td>309.3</td>
<td>302.5</td>
<td>299.1</td>
<td>298.8</td>
<td></td>
</tr>
<tr>
<td>Astrophysics Research and Analysis</td>
<td>74.1</td>
<td>83.4</td>
<td>86.6</td>
<td>90.2</td>
<td>92.2</td>
<td>94.2</td>
<td>94.2</td>
</tr>
<tr>
<td>Balloon Project</td>
<td>36.6</td>
<td>44.8</td>
<td>44.8</td>
<td>44.8</td>
<td>44.8</td>
<td>44.8</td>
<td>44.8</td>
</tr>
<tr>
<td>Science Activation</td>
<td>44.0</td>
<td>45.0</td>
<td>45.6</td>
<td>45.6</td>
<td>45.6</td>
<td>45.6</td>
<td>45.6</td>
</tr>
<tr>
<td>Balloon Project</td>
<td>36.6</td>
<td>44.8</td>
<td>44.8</td>
<td>44.8</td>
<td>44.8</td>
<td>44.8</td>
<td>44.8</td>
</tr>
<tr>
<td>Science Activation</td>
<td>44.0</td>
<td>45.0</td>
<td>45.6</td>
<td>45.6</td>
<td>45.6</td>
<td>45.6</td>
<td>45.6</td>
</tr>
<tr>
<td>Other Missions and Data Analysis</td>
<td>48.5</td>
<td>73.7</td>
<td>128.7</td>
<td>119.9</td>
<td>114.5</td>
<td>114.2</td>
<td></td>
</tr>
<tr>
<td>Astrophysics Data Curation and Archival</td>
<td>18.2</td>
<td>21.2</td>
<td>21.2</td>
<td>21.5</td>
<td>22.0</td>
<td>22.0</td>
<td></td>
</tr>
<tr>
<td>Astrophysics Senior Review</td>
<td>12.7</td>
<td>12.7</td>
<td>12.7</td>
<td>12.7</td>
<td>12.7</td>
<td>12.7</td>
<td></td>
</tr>
<tr>
<td>Astrophysics Data Program</td>
<td>17.6</td>
<td>20.4</td>
<td>21.6</td>
<td>22.6</td>
<td>23.6</td>
<td>23.6</td>
<td></td>
</tr>
<tr>
<td>Contract Administration, Audit & QA Svs</td>
<td>44.0</td>
<td>45.6</td>
<td>45.6</td>
<td>45.6</td>
<td>45.6</td>
<td>45.6</td>
<td></td>
</tr>
<tr>
<td>Astrophysics Directed R&T</td>
<td>19.4</td>
<td>39.7</td>
<td>42.7</td>
<td>28.9</td>
<td>24.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cosmic Origins</td>
<td>211.2</td>
<td>185.3</td>
<td>173.9</td>
<td>181.7</td>
<td>121.7</td>
<td>121.7</td>
<td></td>
</tr>
<tr>
<td>Hubble Space Telescope (HST)</td>
<td>98.3</td>
<td>98.3</td>
<td>83.3</td>
<td>93.3</td>
<td>98.3</td>
<td>98.3</td>
<td></td>
</tr>
<tr>
<td>Stratospheric Observatory for Infrared Astronomers</td>
<td>85.2</td>
<td>85.2</td>
<td>73.0</td>
<td>60.0</td>
<td>60.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Missions and Data Analysis</td>
<td>27.7</td>
<td>29.0</td>
<td>20.6</td>
<td>23.4</td>
<td>23.4</td>
<td>23.4</td>
<td></td>
</tr>
<tr>
<td>Cosmic Origins SR&T</td>
<td>15.5</td>
<td>17.1</td>
<td>18.4</td>
<td>18.4</td>
<td>18.4</td>
<td>18.4</td>
<td></td>
</tr>
<tr>
<td>SIRTF/Spitzer</td>
<td>11.2</td>
<td>8.5</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cosmic Origins Future Missions</td>
<td>1.0</td>
<td>2.2</td>
<td>0.0</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>Astrophysics Strategic Mission Prog Mgmt</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>
Astrophysics Program Content (FY20 Request)

<table>
<thead>
<tr>
<th></th>
<th>Actual FY18</th>
<th>Enacted FY19</th>
<th>Request FY20</th>
<th>FY21</th>
<th>FY22</th>
<th>FY23</th>
<th>FY24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics of the Cosmos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euclid</td>
<td>118.0</td>
<td>148.4</td>
<td>128.5</td>
<td>123.3</td>
<td>117.8</td>
<td>117.4</td>
<td></td>
</tr>
<tr>
<td>Physics of the Cosmos Future Missions</td>
<td>19.8</td>
<td>13.7</td>
<td>11.0</td>
<td>8.9</td>
<td>9.9</td>
<td>10.3</td>
<td></td>
</tr>
<tr>
<td>Chandra X-Ray Observatory</td>
<td>56.9</td>
<td>58.4</td>
<td>58.4</td>
<td>58.4</td>
<td>58.4</td>
<td>58.4</td>
<td>58.4</td>
</tr>
<tr>
<td>Fermi Gamma-ray Space Telescope</td>
<td>13.0</td>
<td>14.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XMM</td>
<td>2.5</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics of the Cosmos SR&T</td>
<td>20.9</td>
<td>50.9</td>
<td>52.1</td>
<td>46.3</td>
<td>40.1</td>
<td>39.0</td>
<td></td>
</tr>
<tr>
<td>PCOS/COR Technology Office Management</td>
<td>4.6</td>
<td>5.9</td>
<td>5.9</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Exoplanet Exploration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WFIRST</td>
<td>200.8</td>
<td>46.4</td>
<td>44.3</td>
<td>45.6</td>
<td>46.1</td>
<td>48.5</td>
<td></td>
</tr>
<tr>
<td>Kepler</td>
<td>150.0</td>
<td>312.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keck Operations</td>
<td>6.2</td>
<td>6.7</td>
<td>6.9</td>
<td>7.0</td>
<td>7.2</td>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>Large Binocular Telescope Interferometer</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exoplanet Exploration SR&T</td>
<td>26.4</td>
<td>29.1</td>
<td>30.0</td>
<td>28.9</td>
<td>28.9</td>
<td>28.6</td>
<td></td>
</tr>
<tr>
<td>Exoplanet Exploration Tech Office Mgmt</td>
<td>5.3</td>
<td>6.5</td>
<td>6.8</td>
<td>7.3</td>
<td>7.7</td>
<td>7.7</td>
<td></td>
</tr>
<tr>
<td>Exoplanet Exploration Future Missions</td>
<td>1.0</td>
<td>2.8</td>
<td>0.6</td>
<td>2.4</td>
<td>2.2</td>
<td>4.7</td>
<td></td>
</tr>
</tbody>
</table>
Astrophysics Program Content (FY20 Request)

<table>
<thead>
<tr>
<th>Project Description</th>
<th>Actual FY18</th>
<th>Enacted FY19</th>
<th>Request FY20</th>
<th>FY21</th>
<th>FY22</th>
<th>FY23</th>
<th>FY24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrophysics Explorer</td>
<td>117.4</td>
<td>214.1</td>
<td>246.4</td>
<td>312.0</td>
<td>328.8</td>
<td>321.4</td>
<td></td>
</tr>
<tr>
<td>Imaging X-Ray Polarimetry Explorer</td>
<td>23.5</td>
<td>70.2</td>
<td>45.3</td>
<td>7.4</td>
<td>4.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>X-Ray Imaging and Spectroscopy Mission</td>
<td>22.0</td>
<td>29.7</td>
<td>25.7</td>
<td>22.5</td>
<td>17.6</td>
<td>15.8</td>
<td></td>
</tr>
<tr>
<td>GUSTO</td>
<td>4.7</td>
<td>11.1</td>
<td>7.8</td>
<td>6.3</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear Spectroscopic Telescope Array</td>
<td>4.8</td>
<td>7.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neil Gehrels Swift Observatory</td>
<td>3.9</td>
<td>5.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transiting Exoplanet Survey Satellite</td>
<td>33.5</td>
<td>5.0</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutron Star Interior Composition Explor</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astrophysics Explorer Future Missions</td>
<td>11.8</td>
<td>84.8</td>
<td>154.2</td>
<td>267.0</td>
<td>295.1</td>
<td>299.2</td>
<td></td>
</tr>
<tr>
<td>Astrophysics Explorer Program Management</td>
<td>11.1</td>
<td>13.3</td>
<td>8.8</td>
<td>10.7</td>
<td>5.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>James Webb Space Telescope</td>
<td>533.7</td>
<td>304.6</td>
<td>352.6</td>
<td>415.1</td>
<td>175.4</td>
<td>172.0</td>
<td>172.0</td>
</tr>
</tbody>
</table>