Domain 20 Field Site for the National Ecological Observatory Network for the National Science Foundation
Puʻu Makaʻala Natural Area Reserve
South Hilo District, Hawaiʻi Island, Hawaiʻi

Prepared for
National Science Foundation

May 2017
## Contents

1 Introduction* .......................................................................................................................... 1  
  1.1 Background and History ................................................................................................. 1  
  1.1.1 Overview of the National Ecological Observatory Network .................................. 1  
  1.1.2 Background and History ......................................................................................... 2  
  1.2 Project Location ........................................................................................................... 3  
  1.3 Purpose and Need* .................................................................................................... 3  
  1.3.1 Need for Action ................................................................................................... 3  
  1.3.2 Project Purpose .................................................................................................... 4  
  1.4 Regulatory Setting ...................................................................................................... 4  
  1.4.1 Federal Regulations ............................................................................................... 4  
  1.4.2 State Regulations ................................................................................................ 7  
  1.5 Agency Coordination and Public Participation** ..................................................... 8  
  1.5.1 Agency Coordination and Consultation ............................................................. 8  
  1.5.2 Stakeholder Involvement and Public Disclosure .............................................. 8  

2 Description of Proposed Action and Alternatives** .................................................. 13  
  2.1 Alternatives Considered But Not Carried Forward ................................................ 13  
  2.1.1 Laupāhoehoe Forest ............................................................................................. 13  
  2.1.2 Upper Waiakea Forest Reserve .......................................................................... 14  
  2.1.3 Various Sites Within Pu‘u Maka‘ala Natural Area Reserve .................................. 14  
  2.2 Proposed Action ........................................................................................................ 15  
  2.2.1 Project Components .......................................................................................... 15  
  2.2.2 Standard Operating Procedures ....................................................................... 29  
  2.2.3 Project Duration and Site Closure ...................................................................... 31  
  2.3 No Action Alternative ............................................................................................... 32  

3 Affected Environment** ................................................................................................. 33  
  3.1 Climate ......................................................................................................................... 33  
  3.1.1 Existing Conditions ............................................................................................ 33  
  3.1.2 Climate Change .................................................................................................. 33  
  3.2 Land Use and Recreation .......................................................................................... 34  
  3.2.1 Existing Conditions ............................................................................................ 34  
  3.2.2 Zoning and Land Use Designations ................................................................ 35  
  3.3 Geology, Topography and Soils ............................................................................... 35  
  3.3.1 Existing Conditions ............................................................................................ 35  
  3.3.2 Seismicity ........................................................................................................... 36  
  3.4 Water Resources ........................................................................................................ 36  
  3.4.1 Waters of the U.S., Including Wetlands ............................................................. 36  
  3.4.2 Groundwater ....................................................................................................... 36  
  3.5 Biological Resources ................................................................................................. 36  
  3.5.1 General Setting .................................................................................................. 37  
  3.5.2 Vegetation ........................................................................................................... 37  
  3.5.3 Wetlands ............................................................................................................ 38  
  3.5.4 Wildlife ............................................................................................................... 38  
  3.5.5 Listed Species and Critical Habitat .................................................................... 39  
  3.5.6 Invasive Species .................................................................................................. 45  
  3.6 Archaeological, Architectural, and Cultural Resources ............................................ 46  
  3.6.1 Area of Potential Effects ...................................................................................... 46
Contents

4.8.2 No Action Alternative ................................................................. 83
4.9 Air Quality .................................................................................. 83
4.9.1 Proposed Action Alternative ................................................ 83
4.9.2 No Action Alternative ............................................................. 84
4.10 Noise .......................................................................................... 84
4.10.1 Proposed Action Alternative ................................................ 85
4.10.2 No Action Alternative ............................................................. 86
4.11 Transportation and Traffic ....................................................... 86
4.11.1 Proposed Action Alternative ................................................ 87
4.11.2 No Action Alternative ............................................................. 88
4.12 Human Health and Safety ......................................................... 88
4.12.1 Proposed Action Alternative ................................................ 88
4.12.2 No Action Alternative ............................................................. 89
4.13 Public Services and Utilities ..................................................... 89
4.13.1 Proposed Action Alternative ................................................ 90
4.13.2 No Action Alternative ............................................................. 90
4.14 Socioeconomics ....................................................................... 90
4.14.1 Proposed Action Alternative ................................................ 91
4.14.2 No Action Alternative ............................................................. 91
4.15 Cumulative Impacts .................................................................. 92

5 Agency Coordination, Public Involvement and Consultation** ............ 95
5.1 Agency Coordination................................................................. 95
5.2 Public Involvement and Consultation ....................................... 95
5.2.1 Scoping................................................................................ 95
5.2.2 Endangered Species Act Section 7 Consultation ...................... 96
5.2.3 National Historic Preservation Act Section 106 Consultation Process 97

6 Consistency with Applicable Plans and Policies ................................. 101
6.1 Conservation District (HRS 183C).............................................. 101
6.2 Natural Area Reserves (HRS Chapter 195)................................. 103
6.3 Coastal Zone Management (HRS Chapter 205A) ......................... 104
6.4 Hawai’i State Environmental Policy (HRS Chapter 344) .......... 106
6.5 Hawai’i County General Plan ..................................................... 106
6.6 Community Development Plan .................................................. 107
6.7 Hawai’i County Code ................................................................. 107
6.8 Anticipated Permit Requirements* ........................................... 107

7 Summary of Impacts and Anticipated Determination** ...................... 109
7.1 Summary of Impacts .................................................................. 109
7.2 Anticipated Determination ......................................................... 109

8 List of Preparers ........................................................................... 119

9 References .................................................................................... 121

10 Acronyms, Abbreviations, and Terminology Index ......................... 127

* Indicates information required to comply with the National Environmental Policy Act (NEPA).
+ Indicates information required to comply with Hawai‘i Revised Statutes (HRS) Chapter 343.
Tables
1  Agency/Stakeholder Coordination and Consultation...............................................................9
2  Summary of Core Site Infrastructure and Equipment ..........................................................20
3  Summary of Proposed Terrestrial Sampling Protocols ......................................................27
4  Summary of Proposed Maintenance Activities ...................................................................29
5  Carbon Dioxide Emissions from Fossil Fuel Consumption in Hawai‘i (2011-2013) ..........34
6  Federally and State-listed Species Potentially Occurring at Pu‘u Maka‘ala NAR ..........39
7  Cultural Resources Studies Conducted within the APE .....................................................50
8  Comparison of dBA Levels of Common Sounds .................................................................56
9  Maximum Permissible Sound Levels By Zoning District ..................................................57
10 Impact Thresholds for Climate ..........................................................................................61
11 Impact Thresholds for Land Use and Recreation ...............................................................63
12 Impact Thresholds for Geology and Soils ..........................................................................64
13 Impact Thresholds for Water Resources ..........................................................................65
14 Impact Thresholds for Biological Resources ....................................................................67
15 Impact Thresholds for Archaeological, Architectural and Cultural Resources ....................78
16 Impact Thresholds for Visual Resources ...........................................................................81
17 Impact Thresholds for Hazardous Materials .....................................................................82
18 Impact Thresholds for Air Quality .......................................................................................83
19 Impact Thresholds for Noise ...............................................................................................85
20 Impact Thresholds for Traffic and Transportation ...............................................................87
21 Impact Thresholds for Human Health and Safety ..............................................................88
22 Impact Thresholds for Public Services and Utilities ...........................................................90
23 Impact Thresholds for Socioeconomics ..........................................................................91
24 Agency Consultation .........................................................................................................95
25 Comments Received as Part of Scoping Process for Draft EA ............................................96
26 Endangered Species Act Section 7 Consultation Process ...............................................97
27 NHPA Section 106 Consultation Milestones ....................................................................98
28 Potential Consulting Parties .............................................................................................98
29 Anticipated Permits and Approvals ................................................................................107
30 Summary of Potential Impacts and Proposed Mitigation Measures ................................110
31 Evaluation of Significance Criteria (per HAR 11-200-12) .................................................117
32 List of Preparers and Reviewers ......................................................................................119

Figures
1  Project Location
2  Pu‘u Maka‘ala (Domain 20) Core Tower and Sampling Site
3  Schematic Diagram of Proposed Research Tower
4  Representative Photographs of Infrastructure and Equipment at Similar NEON Research Sites
5  Critical Habitat
6  Area of Potential Effects (APE)
7  Photographs of Proposed Locations for NEON Infrastructure and Equipment

Appendices
A  Scoping Report (Including Scoping Letter, Comments, and Responses)
B  Distribution List for Draft EA
C  National Historic Preservation Act Section 106 and Hawaii Revised Statutes Chapter 6E Consultation Documentation
D  Endangered Species Act Section 7 Consultation Documentation
1 Introduction

The National Ecological Observatory Network (NEON) is a continental-scale ecological observation facility sponsored by the National Science Foundation (NSF) and operated by Battelle Memorial Institute (Battelle).\(^1\) It is designed to gather and synthesize data needed to study the impacts of climate change, land use change and invasive species on natural resources and biodiversity. NSF is proposing to establish a NEON field study site within the Pu‘u Maka‘ala Natural Area Reserve (NAR) on the eastern side of Hawai‘i Island, part of the statewide Natural Area Reserves System (NARS). The proposed field study site would provide data for NEON’s Pacific Tropical domain (Domain 20), and would be the only site representing this domain for the continental-wide network.

As a federal agency, NSF is subject to the requirements of the National Environmental Policy Act (NEPA) and its implementing regulations (40 Code of Federal Regulations [CFR] Part 1500 through Part 1508), which require federal agencies to assess the environmental effects of their proposed actions before making decisions. NSF is also subject to its agency-specific regulations implementing NEPA at 45 CFR Part 640. Similarly, Hawaii Revised Statutes (HRS) Chapter 343 and its implementing rules (Hawaii Administrative Rules [HAR] 11-200) require environmental review for projects that include certain regulatory triggers; in the case of this proposed project, the triggers for compliance with HRS Chapter 343 include the use of State lands and use within land classified as Conservation District. The purpose of both NEPA and HRS Chapter 343 is to inform decision-makers and the public of the likely environmental effects of a proposed action and its alternatives, and to allow for public comment.

HRS Chapter 343-5(f) states that “[w]henever an action is subject to both the National Environmental Policy Act of 1969... and the requirements of [HRS Chapter 343], the [Office of Environmental Quality Control (OEQC)] and agencies shall cooperate with federal agencies to the fullest extent possible to reduce duplication between federal and state requirements. Such cooperation, to the fullest extent possible, shall include joint environmental impact statements with concurrent public review and processing at both levels of government. Where federal law has environmental impact statement requirements in addition to but not in conflict with [Chapter 343, HRS], the [OEQC] and agencies shall cooperate in fulfilling these requirements so that one document shall comply with all applicable laws.”

Based on these requirements, this environmental assessment (EA) evaluates the anticipated environmental impacts associated with construction and operation of the proposed NEON Domain 20 field study site at Pu‘u Maka‘ala NAR, in compliance with both NEPA and HRS Chapter 343. NSF is the lead agency for purposes of NEPA compliance; the State of Hawai‘i Department of Land and Natural Resources (DLNR) is the approving agency responsible for compliance with HRS Chapter 343.

1.1 Background and History

1.1.1 Overview of the National Ecological Observatory Network

For nearly two decades, the ecological sciences research community has called for the national research and observation capability needed to promote understanding of the biosphere (Long Term Ecological Research [LTER], 1990; American Institute of Biological Sciences [AIBS], 2003; NEON, 2006). Two reports published by the National Research Council (NRC), \textit{Grand Challenges in Environmental Science} (2001) and \textit{NEON: Addressing the Nation’s Environmental Challenges} (2003), identified “Grand Environmental Challenges” and the associated research questions that were deemed critically important to address now, cannot be

\(^1\) The prior awardee was NEON, Inc. The new awardee is Battelle Memorial Institute.
addressed with existing research infrastructure, and require environmental measurements on a regional to continental scale.

To provide the basis to respond to these critical research questions, NEON was developed as a continental-scale ecological observation facility, comprised of a network of long-term scientific infrastructure deployments to collect high-quality, standardized data. The design divides the continental United States, Alaska, Hawai‘i, and Puerto Rico into 20 domains, with each domain representing a specific range of eco-climatic conditions, thereby encompassing the full range of environmental variability. Within each domain, infrastructure is deployed to field study sites strategically selected to represent different regions of vegetation, landforms, climate, and ecosystem performance. Data collection methods are standardized across the field study sites and include in situ instrument measurements, field sampling, and airborne remote sensing. This network of deployments forms a fully integrated continental-scale research platform. Under this system, measurement of a variable over time in all 20 domains facilitates understanding of the quantity, changes in, and spatial heterogeneity of that variable at a continental scale. Given the time required to observe changes in some ecological parameters, NEON is designed to have a 30-year operational lifespan. Overall, this platform enables scientists to analyze, understand, and forecast the nature and pace of biological change at scales ranging from local to continental.

1.1.2 Background and History

A thorough process was conducted to identify, evaluate, and select sites for deployment of NEON infrastructure within each of the 20 domains. The NEON project team established site criteria and a detailed selection and review process (involving research community workshops, Blue Ribbon committees, and NRC and NSF merit reviews). Specific site criteria for field study sites include (1) a “wildland” area comprised of undeveloped, natural land representing the dominant vegetation and soil type for that domain, (2) contiguous habitat over an area large enough to implement the sampling protocols, (3) areas subject to minimal disturbance (i.e., not pristine, but still high quality habitat), (4) adequate soil depth to implement sampling protocols, (5) site accessibility, and (6) proximity to an existing power supply.

In October 2006, the NEON project team announced a request for information (RFI) inviting members of the ecological research community to submit ideas about (1) potential field study sites and (2) specific research projects they would conduct using NEON data. The NEON project team then evaluated the potential field study sites identified in the RFI responses. Each potential site was visited to evaluate its overall viability; those found to be viable were further reviewed to assess scientific suitability, practicality, and environmental conditions. Through this process, both proposed core and relocatable field study sites were selected in each domain. The potential environmental and socioeconomic impacts that would result from implementation of the NEON sites nationwide was assessed, as presented in the National Ecological Observatory Network (NEON) Environmental Assessment (NSF, 2009). NSF found that NEON would have no significant impact on the environment, with site-specific agency consultation needs identified and implementation of avoidance and minimization measures.

Based on the delineation of the eco-climatic domains for NEON, Domain 20 was defined as “Pacific Tropical,” with the Hawaiian Islands comprising the entire domain. Through the site selection process, as detailed in the 2009 NEON EA, the location of the core field study site identified for Domain 20 was within the Laupahoehoe Forest unit of the Hawai‘i Experimental Tropical Forest (which is comprised of Laupahoehoe NAR and Hilo Forest Reserve lands), located in the North Hilo District on Hawai‘i Island. This area is managed by the DLNR Division of Forestry and Wildlife (DOFAW) and the U.S. Forest Service (USFS) for protection of natural resources. Subsequent to issuance of the 2009 NEON EA, the proposed
Laupāhoehoe site was determined to be unsuitable because of challenges implementing the design. In addition, the two proposed relocatable field study sites were eliminated from the scope because of (1) a reduction in the overall scope of NEON and (2) changes to the plant community that altered the ability to answer intended scientific questions.

To identify a suitable replacement for the Domain 20 core field study site, the NEON project team worked closely with the ecological research community (i.e., those that responded to the original RFI) and DOFAW and NARS staff to review other similar areas that would meet the site criteria. The first replacement site identified by these entities was located within the Upper Waiakea Forest Reserve. Over the course of more than a year, this site was reviewed in direct coordination with DOFAW and NARS staff and other stakeholders; this process involved multiple site visits, detailed site evaluation, and ongoing stakeholder meetings. Eventually, however, because of concerns about conflicts with existing uses, DOFAW and NARS staff recommended that NSF reject the Upper Waiakea Forest Reserve site and, instead, identified Puʻu Makaʻala NAR as a possible location. Again, an iterative process involving multiple site visits and site evaluations was conducted in coordination with DOFAW and NARS staff. Eleven possible sites within the NAR were initially considered, one of which was unanimously identified as the most suitable replacement site. Additional information regarding the replacement sites that were considered is provided in Section 2.

1.2 Project Location

The proposed Domain 20 core field study site is within the Puʻu Makaʻala NAR, which is located on the northeastern slopes of Mauna Loa, in the South Hilo District, approximately 30 kilometers (19 miles) southwest of the town of Hilo (see Figure 1). Puʻu Makaʻala NAR is approximately 18,730 acres in size, and is managed by DOFAW for the protection of unique natural resources. It is bordered by the Upper Waiakea Forest Reserve on the north and east, the ʻŌlaʻa Forest Reserve on the east, the ʻŌlaʻa Tract of Hawaiʻi Volcanoes National Park to the south, and private property to the west (Kamehameha Schools), southwest, and southeast (various agricultural parcels). The Kūlani Correctional Facility, which occupies approximately 280 acres, is located within an interior portion of the NAR. Stainback Highway provides access from Māmalahoa Highway (State Route 11) to the eastern edge of Puʻu Makaʻala NAR and the Kūlani Correctional Facility. A series of existing unimproved roads provide limited access within the NAR.

The proposed Domain 20 field study site would be located in the western portion of the NAR, with the proposed scientific infrastructure located approximately 1.7 kilometers (1 mile) northwest of the Kūlani Correctional Facility (see Figure 2). The infrastructure would occupy approximately 0.2 acre and would be located entirely within tax map key (TMK) (3)2-4-008:009. Terrestrial sampling plots, with a total footprint of approximately 650 acres, would be distributed throughout approximately 11,660 acres of the surrounding NAR property; this area includes the following TMKs: (3)2-4-008:009, (3)2-4-008:025 (por.), (3)1-9-001:001 (por.), (3)1-8-012:003 (por.), and (3)2-4-008:019 (por.). Specific dimensions of the project components are further discussed in Section 2.2.

1.3 Purpose and Need

1.3.1 Need for Action

The nation’s Grand Challenges in environmental science, which were reviewed by the NRC, the International Geosphere-Biosphere Programme, the Millennium Ecosystem Assessment, Diversitas, and the U.S. Climate Change Science Program, identify tasks within the environmental science field requiring additional research to yield scientific and practical information for the future. Three challenges were identified as causes of change in continental-scale ecology that could be addressed by a continental-scale observatory system: climate change, land use change, and invasive species.

NEON was developed in response to the Grand Challenges, and is the first ecological observatory network designed to test and develop ecological theory by detecting and forecasting ecological change at a
continental-scale over multiple decades. It will establish and sustain the scientific infrastructure needed to address critical questions about land use and climate changes on ecological systems and to evaluate the impacts of those changes on the environment and human culture.

Based on comprehensive planning and design efforts completed to date, sites in many of the other 19 eco-climatic domains are currently either under construction or are complete. The target is for the entire network of field study sites to be fully operational by 2018. However, as discussed previously, the NEON project team determined that it is not feasible to construct the core field study site for the Pacific Tropical domain (Domain 20, represented by the Hawaiian Islands) at Laupāhoehoe NAR, the location that was originally selected for implementation. To complete the continental-scale network and dataset representing the full spectrum of environmental variability across the United States, Alaska, Hawai‘i, and Puerto Rico, construction and operation of a core field study site that meets the NEON site criteria is needed to represent Domain 20.

1.3.2 Project Purpose

The purpose of the proposed project is to construct and operate a core field study site for Domain 20 as part of NEON. A uniform and standardized design across the network of sites is essential to informing the science, testing the hypotheses, and conducting research at a continental scale. Similar to other NEON core sites, the proposed Domain 20 site in Hawai‘i would include a standard set of scientific infrastructure and equipment to collect biological, biophysical, biogeochemical, and land use data. The proposed scientific infrastructure and equipment would include one tower, a panelized modular enclosure (referred to as an instrument hut), an array of soil plots with soil sensors, a soil horizon pit, a precipitation gauge, electrical equipment, and a suite of distributed terrestrial sampling protocols. The site would be operated for 30 years, with data collection and streaming to the online NEON portal starting in 2018. Such data would be made available to the scientific community and general public for use in analyzing ecological conditions in the Hawaiian Islands and would be comparable to data collected across the continental United States, Puerto Rico, and Alaska.

1.4 Regulatory Setting

In addition to NEPA and HRS Chapter 343, there are other federal, state, and local regulations that must be considered in the planning process. The regulations most relevant to the analysis presented herein are summarized below. The agencies and authorities responsible for administering these regulations are noted, where applicable. NSF is carrying out its compliance with these regulations in parallel with the NEPA and HRS Chapter 343 process; additional information on the compliance process is provided in Section 5.

1.4.1 Federal Regulations

1.4.1.1 National Environmental Policy Act

The proposed project would be funded by NSF; this federal funding subjects the project to the environmental review requirements of NEPA, prescribed under 40 CFR Parts 1500 – 1508 (Council on Environmental Quality [CEQ]). NEPA requires federal agencies to incorporate environmental considerations in their planning and decision-making process through a systematic interdisciplinary approach. Specifically, federal agencies are to prepare detailed statements that assess the environmental impact of and alternatives to federal actions that could significantly affect the environment. As the lead federal agency, NSF is responsible for compliance with NEPA documentation and processing requirements, as provided in both the CEQ NEPA regulations and NSF’s NEPA implementing regulations at 45 CFR Part 640. This Draft EA has been prepared pursuant to these requirements.
Figure 1
Project Location
National Ecological Observatory Network (NEON) Project
Hawaii Island, Hawaii
This page is intentionally left blank.
1.4.1.2 National Historic Preservation Act

The National Historic Preservation Act of 1966, as amended (54 United States Code [U.S.C.] 300101, et seq.) (NHPA), recognizes the nation’s historic heritage and establishes a national policy for the preservation of historic properties as well as the National Register of Historic Places (NRHP). Section 106 of the NHPA (54 U.S.C. 306108) requires that federal agencies consider the effects of their projects on significant historic properties.

The implementing regulations for the NHPA are found in the Protection of Historic Properties (36 CFR Part 800), which defines historic properties as any prehistoric or historic district, site, building, structure, or object that is included in, or eligible for inclusion in, the NRHP (54 U.S.C. 302101). In the case of this proposed project, use of federal funds establishes the need for Section 106 compliance. The purpose of the Section 106 consultation process is to evaluate the potential for effects on existing historic properties, if any, resulting from the proposed project.

The Section 106 review process encompasses a good faith effort to ascertain the existence and location of historic properties near and within the proposed project site, establishing an Area of Potential Effects (APE) for the proposed project, identifying whether the proposed project may adversely affect historic properties that are listed or are eligible for listing in the NRHP, and, if so, developing ways to avoid, minimize, or mitigate those adverse effects. The resolution of any adverse effects is typically memorialized in a Memorandum of Agreement (MOA) created through consultation with the State Historic Preservation Officer (SHPO), Advisory Council on Historic Preservation (ACHP) (if it chooses to participate), and any consulting government agencies, community associations, and Native Hawaiian organizations (NHOs).

1.4.1.3 Endangered Species Act

The Endangered Species Act of 1973 (16 U.S.C. 1531–1544) (ESA) provides for the protection and conservation of threatened and endangered species (listed species) of animals and plants, and the ecosystems on which listed species depend. The ESA prohibits federal agencies from funding, authorizing, or carrying out actions likely to jeopardize the existence of listed species through direct taking or through the destruction or adverse modification of critical habitat designated for these species under the ESA. Section 7 of the ESA requires consultation with the United States Fish and Wildlife Service (USFWS) when any listed species under its jurisdiction may be affected by a proposed action.

1.4.2 State Regulations

1.4.2.1 HRS Chapter 343

HRS Chapter 343 is designed to “establish a system of environmental review which will ensure that environmental concerns are given appropriate consideration in decision making along with economic and technical considerations.” The regulations identify nine specific activities that trigger the need for compliance. In the case of this proposed project, there are two activities that are triggers for compliance with HRS Chapter 343: (1) use of state lands and (2) use of land within the Conservation District. In addition to the other resources addressed in the environmental review process, HRS Chapter 343 includes a requirement to consider the effects of a proposed action on cultural practices. This Draft EA has been prepared in compliance with HRS Chapter 343; it is considered an applicant action, with DLNR as the approving agency.

1.4.2.2 HRS Chapter 6E

HRS Chapter 6E establishes a comprehensive historic preservation program that is intended to preserve, restore and maintain historic and cultural properties. The regulations are implemented by the State Historic Preservation Division (SHPD) (which is administered by the SHPO), and require review of any project that is funded or permitted by the State. This process is the state counterpart to the NHPA Section 106 requirement to identify historic properties potentially affected by a proposed project, and can be an
additional avenue of information gathering for fulfilling the Section 106 consultation mandate. The implementing rules for the historic property review process are contained in HAR 13-275; these rules apply to “all state or county agencies funding or directly undertaking a project, or having a project undertaken on lands under its ownership or control which may affect historic properties.”

1.4.2.3 HRS Chapter 195D

Any species of aquatic life, wildlife, or land plant that has been determined to be threatened or endangered species pursuant to the ESA is also considered to be threatened or endangered under the state law, and subject to the conditions of HRS Chapter 195D-4. These regulations specify that take of any threatened or endangered species within the state is unlawful, except as provided in subsections (f), (g), and (j), which allows for consultation with the Endangered Species Recovery Committee and issuance of incidental take licenses.

1.5 Agency Coordination and Public Participation

Stakeholder engagement has been conducted to comprehensively address NSF policies, as well as to comply with specific regulatory requirements relating to public involvement and agency consultation. In particular, NEPA and HRS Chapter 343 require the opportunity for public participation as part of the environmental review process. All agencies, organizations, and members of the public having a potential interest in the proposed project are urged to participate. Consideration of the views of interested persons promotes open communication and enables better decision-making. In addition, consultation is required for other federal regulations, including NHPA Section 106 and ESA Section 7. In particular, NHPA Section 106 requires consultation with interested parties and NHOs as part of a federal agency’s consideration of the effects of their proposed undertaking on historic properties.

The following sections summarize the efforts conducted to date (since issuance of the 2009 NEON EA) relative to agency coordination and public participation. These efforts will continue through completion of the NEPA, HRS Chapter 343 and other regulatory compliance processes.

1.5.1 Agency Coordination and Consultation

Coordination and consultation has been conducted with federal, state, and local agencies as part of the NEPA, HRS Chapter 343, and other applicable regulatory compliance processes. Both formal and informal coordination has occurred with various agencies to ensure full disclosure and adequate opportunity for input. These efforts included but were not limited to the meetings and correspondence listed in Table 1. Details regarding the consultation process undertaken for specific regulatory compliance requirements are provided in Section 5.2.

1.5.2 Stakeholder Involvement and Public Disclosure

In addition to agency coordination and consultation, outreach to the public and other stakeholders has been conducted to help identify potential issues and concerns. Stakeholders engaged to date include adjacent landowners, community members, NHOs, cultural practitioners, elected officials, and other members of the public. Public and stakeholder engagement efforts to date (since issuance of the 2009 NEON EA) have included pre-assessment scoping and distribution of this Draft EA for public review. The following sections summarize these efforts; meetings conducted with key stakeholders are listed in Table 1.
### TABLE 1
Agency/Stakeholder Coordination and Consultation

<table>
<thead>
<tr>
<th>Date</th>
<th>Agency/Stakeholder</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 26, 2010</td>
<td>SHPD</td>
<td>NHPA Section 106 consultation letter sent to SHPD (Laupāhoehoe site)</td>
</tr>
<tr>
<td>June 1, 2010</td>
<td>USFWS</td>
<td>ESA Section 7 letter sent to USFWS seeking concurrence with effect determination (Laupāhoehoe site)</td>
</tr>
<tr>
<td>June 29, 2010</td>
<td>USFWS</td>
<td>ESA Section 7 letter from USFWS concurring with effect determination (Laupāhoehoe site)</td>
</tr>
<tr>
<td>December 9-11, 2014</td>
<td>DOFAW and scientific community</td>
<td>Series of presentations to multiple groups and stakeholders providing an overview of the proposed project, the scope to be performed, and scientific aspects of project; stakeholder comments and input were also sought (Upper Waikea site and Pu’u Wa’awa’a relocatable sites [later descoped])</td>
</tr>
<tr>
<td>December 10, 2014</td>
<td>General public, U.S. Geological Survey (USGS), Hawai‘i Volcanoes National Park, USFS and University of Hawai‘i Chancellor’s Office</td>
<td>Presentation of proposed project, as noted above (Upper Waikea site and Pu’u Wa’awa’a relocatable sites [later descoped])</td>
</tr>
<tr>
<td>December 11, 2014</td>
<td>State legislators</td>
<td>Presentation of proposed project overview (Upper Waikea site and Pu’u Wa’awa’a relocatable sites [later descoped])</td>
</tr>
<tr>
<td>December 12, 2014</td>
<td>Board of Land and Natural Resources (BLNR)</td>
<td>Supported DOFAW presentation to BLNR for the approval in concept for a potential long-term direct lease and permit. Correspondence from BLNR providing approval in concept for a potential long-term direct lease and permit for use of state land was received December 12, 2014 (Upper Waikea site)</td>
</tr>
<tr>
<td>February 27, 2015</td>
<td>Pacific Islands Climate Change Cooperative (PICCC)</td>
<td>Presentation of proposed project, as noted above (Upper Waikea site and Pu’u Wa’awa’a relocatable sites [later descoped])</td>
</tr>
<tr>
<td>July 8-9, 2015</td>
<td>Hawai‘i Ecosystem Meeting</td>
<td>Presentation of proposed project, as noted above (Upper Waikea site and Pu’u Wa’awa’a relocatable sites [later descoped])</td>
</tr>
<tr>
<td>July 12-16, 2015</td>
<td>Association for Tropical Biology and Conservation (ATBC)</td>
<td>Presentation of proposed project, as noted above (Upper Waikea site and Pu’u Wa’awa’a relocatable sites [later descoped])</td>
</tr>
<tr>
<td>August 10-14, 2015</td>
<td>Hawai‘i Conservation Conference</td>
<td>Presentation of proposed project, as noted above (Upper Waikea site and Pu’u Wa’awa’a relocatable sites [later descoped])</td>
</tr>
<tr>
<td>December 16, 2015</td>
<td>USFWS</td>
<td>ESA Section 7 correspondence from USFWS providing species list (Upper Waikea site)</td>
</tr>
<tr>
<td>March 23, 2016</td>
<td>DOFAW/NARS</td>
<td>Conference call to discuss NEON infrastructure and field study site requirements</td>
</tr>
<tr>
<td>May 12 – 13, 2016</td>
<td>DOFAW/NARS, ecological researchers (i.e., those that responded to the original RFI)</td>
<td>Site visit with DOFAW/NARS staff to evaluate potential sites within Pu’u Maka’ala NAR</td>
</tr>
<tr>
<td>July 19, 2016</td>
<td>DLNR Office of Conservation and Coastal Lands (OCCL)</td>
<td>Correspondence requesting input on the Conservation District permitting requirements (Pu’u Maka’ala NAR site)</td>
</tr>
<tr>
<td>July 23, 2016</td>
<td>Approximately 200 agencies and stakeholders (see complete list in Appendix A)</td>
<td>Scoping letter for NEPA and HRS Chapter 343 EA and identification of consulting parties for NHPA Section 106 (Pu’u Maka’ala NAR site)</td>
</tr>
<tr>
<td>September 22, 2016</td>
<td>OCCL, DOFAW/NARS</td>
<td>Meeting to discuss HRS Chapter 343 compliance and Conservation District and NARS permitting requirements (Pu’u Maka’ala NAR site)</td>
</tr>
<tr>
<td>October 25, 2016</td>
<td>USFWS</td>
<td>Meeting to discuss the ESA Section 7 consultation process (Pu’u Maka’ala NAR site)</td>
</tr>
</tbody>
</table>
### TABLE 1
Agency/Stakeholder Coordination and Consultation

<table>
<thead>
<tr>
<th>Date</th>
<th>Agency/Stakeholder</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 26, 2016</td>
<td>DOFAW/NARS, USFWS, OCCL, ʻAlalā Project, Rapid ʻOhiʻa Death Working Group (USFS), Three Mountain Alliance, Legacy Land Commission</td>
<td>Meeting to provide proposed project overview and discuss stakeholder issues to inform ESA compliance (Puʻu Makaʻala NAR site)</td>
</tr>
<tr>
<td>October 26, 2016</td>
<td>NHPA Section 106 potential consulting parties</td>
<td>Meeting to provide proposed project overview and obtain consulting party input on historic properties and cultural practices (Puʻu Makaʻala NAR site)</td>
</tr>
<tr>
<td>October 27, 2016</td>
<td>OEQC</td>
<td>Meeting to provide proposed project overview and obtain consulting party input on HRS Chapter 343 compliance (Puʻu Makaʻala NAR site)</td>
</tr>
<tr>
<td>December 7, 2016</td>
<td>SHPO/SHPD and potential Consulting Parties</td>
<td>Letter initiating Section 106 consultation with SHPO/SHPD (Puʻu Makaʻala NAR site)</td>
</tr>
<tr>
<td>January 23, 2017</td>
<td>DOFAW/NARS, USFWS, OCCL, ʻAlalā Project, Rapid ʻOhiʻa Death Working Group (USFS), Three Mountain Alliance, Legacy Land Commission</td>
<td>Email to participants of October 26, 2016 meeting containing meeting minutes, revisions to terrestrial sampling protocols and proposed mitigation measures developed in response to concerns raised at meeting (Puʻu Makaʻala NAR site)</td>
</tr>
<tr>
<td>January 24, 2017</td>
<td>ʻAlalā Working Group</td>
<td>Meeting to provide proposed project overview and discuss stakeholder issues to inform ESA compliance (Puʻu Makaʻala NAR site)</td>
</tr>
<tr>
<td>April 26, 2017</td>
<td>USFWS</td>
<td>Conference call to obtain input from USFWS on information regarding listed species and preliminary effects analysis</td>
</tr>
</tbody>
</table>

1.5.2.1 Scoping for Environmental Assessment

A wide variety of agencies, organizations, and potentially interested individuals were contacted before preparation of the Draft EA through the formal scoping process. They received a scoping letter containing preliminary project information and were asked to provide comments and related information for consideration in preparing the Draft EA. Scoping letters were distributed by mail to more than 200 agencies, organizations, and individuals; a total of 11 responses were received. Nearly all of the comments (10 of the 11) were provided by federal, state, or local agencies, with input relating to specific permit requirements and suggestions on information that should be contained in the Draft EA. One comment was provided by an adjacent landowner, asking to be removed from the project stakeholder list. The comments received have been considered, and are reflected in this Draft EA.

Additional information on the scoping comments is provided in Section 5.2.1. A detailed scoping report, including a copy of the scoping letter, comments received, and responses to those comments is contained in Appendix A.

1.5.2.2 Distribution of the Draft Environmental Assessment for Public Review

Pursuant to the requirements of NEPA and HRS Chapter 343, this Draft EA is being distributed for a minimum 30-day public review period. As required by HRS Chapter 343 and HAR 11-200-3, the OEQC notifies the public when a Draft EA is available for review in its bimonthly bulletin, the OEQC Environmental Notice. It is anticipated that OEQC will officially announce the availability of the Draft EA on May 23, 2017, which will initiate the 30-day review and comment period under HRS Chapter 343. However, NSF’s comment period under NEPA began on or before May 11, 2017, when the Draft EA was posted on the NSF NEON Program website (https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=13440). The public comment period under both NEPA and HRS Chapter 343 ends on the same date, June 22, 2017.
Notice of the public review period was provided to the project stakeholder list; the distribution list is provided in Appendix B. As indicated in the notice, an electronic copy of the Draft EA was posted to OEQC’s EA and EIS online library (http://oeqc.doh.hawaii.gov/default.aspx) and the NSF NEON Program website (https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=13440). In addition, both a hard copy and electronic copy (on CD) were provided to the following libraries:

- Hilo Public Library (300 Waianuenue Avenue, Hilo, HI 96720)
- Keaau Public and School Library (16-571 Keaau Pahoa Road, Keaau, HI 96749)
- Mountain View Public and School Library (18-1235 Volcano Highway, Mountain View, HI 96771)
- Edwin H. Mookini Library, University of Hawai‘i at Hilo (200 W Kawili Street, Hilo, HI 96720)
- Hawai‘i State Library (478 S King Street, Honolulu, HI 96813)

During the public comment period, NSF will accept written comments on the Draft EA either via electronic or hard-copy mail (postmarked on or before June 22, 2017) addressed to:

Ms. Montona Futrell-Griggs  
RE: NEON Pu‘u Maka‘ala Natural Area Reserve  
National Science Foundation  
4201 Wilson Boulevard, Suite 615N  
Arlington, Virginia 22230  
Email: NEON_EA_comments@nsf.gov

NSF will also hold a public meeting to provide additional opportunity for public participation with respect to the NEPA and HRS Chapter 343 process. The meeting will be held on May 25, 2017, at the DOFAW Hawai‘i Branch Office (19 E. Kawili Street, Hilo, HI 96720) from 5:30 to 7:30 pm. Comments received during the public review period will be reviewed and considered in completing the NEPA and HRS Chapter 343 processes. During this timeframe, additional opportunities for input will also be provided as part of the ongoing NHPA Section 106 consultation process.

NSF intends to finalize the EA (which will incorporate public comments and responses to those comments). If warranted based on the findings of the EA, NSF and DLNR will issue a Finding of No Significant Impact (FONSI) pursuant to NEPA and HRS Chapter 343, respectively. If a FONSI is issued, NSF will obtain the required permits and proceed with implementation of the proposed project, incorporating any mitigation measures identified in the FONSI. If it is determined that implementation of the proposed project would result in significant impact, NSF would publish a Notice of Intent (NOI) to prepare an Environmental Impact Statement (EIS) in the Federal Register and an EIS Preparation Notice (EISPN) in the OEQC Environmental Notice, or would not undertake the proposed project.
This page is intentionally left blank.
SECTION 2

2 Description of Proposed Action and Alternatives

This section presents information regarding the proposed project, as well as alternatives that were considered. The alternatives that were considered but not carried forward are discussed in Section 2.1. The proposed project is described in Section 2.2. The No Action Alternative is presented in Section 2.3.

As described in Section 1.3, uniform infrastructure and standardized data collection methods are required to achieve the overall NEON objectives. Some modifications have been made to tailor the infrastructure and sampling protocols to the local ecology and site-specific conditions. However, alternatives based on fundamentally different technologies, scientific infrastructure and equipment, sampling protocols, and implementation timing and schedule were not considered, as these would not be consistent with NEON’s standardized approach, and therefore, would not meet the project’s purpose and need.

A range of locations were considered for the Domain 20 field study site as part of the identification and selection process summarized in Section 1.1. This process included input from the ecological research community and other stakeholders, and an in-depth evaluation of scientific data collection needs, constructability and impacts to sensitive resources. Given the substantial screening of alternative sites over the course of this process and the site suitability requirements for NEON, only a single alternative has been identified as viable for consideration (in addition to the No Action alternative). The proposed project described in Section 2.2 will be the preferred alternative.

2.1 Alternatives Considered But Not Carried Forward

As summarized in Section 1.1, the location originally selected for the Domain 20 core field study site was within the Laupāhoehoe Forest unit of the Hawai‘i Experimental Tropical Forest. However, this location was subsequently determined to be unsuitable because of challenges implementing the design. Potential replacement sites were subsequently identified within the Upper Waiakea Forest Reserve and at multiple locations within Pu‘u Maka‘ala NAR. The following sections describe the alternative sites that were considered but were not carried forward.

2.1.1 Laupāhoehoe Forest

The original location identified for the Domain 20 core field study site was within the Laupāhoehoe Forest unit of the Hawai‘i Experimental Tropical Forest, located on the eastern flanks of Mauna Kea Volcano in the North Hilo District on Hawai‘i Island. The Hawai‘i Experimental Tropical Forest is an overlying management designation intended to facilitate cooperative management of research and education activities by DOFAW and USFS. The land within the Laupāhoehoe Forest unit of the Hawai‘i Experimental Tropical Forest is made up of the Laupāhoehoe NAR and the Laupāhoehoe Section of the Hilo Forest Reserve, both of which are managed by DOFAW. This location was identified based on a proposal prepared by an interdisciplinary team of more than 80 researchers representing the University of Hawai‘i, USFS, USGS, National Park Service (NPS), and DLNR, in response to the NEON RFI process.

The potential impacts associated with deployment of the NEON infrastructure and data collection in the Laupāhoehoe Forest unit of the Hawai‘i Experimental Tropical Forest were assessed as part of the 2009 NEON EA (NSF, 2009). The EA concluded that with additional agency coordination and implementation of best management practices (BMPs), implementation of NEON at this site (as well as at sites within the other domains) would result in no significant adverse impacts to the natural or human environment.

Subsequent to issuance of the 2009 EA, the Laupāhoehoe site was found to be unsuitable because of logistical challenges in implementing the design. At the time the site selection and evaluation process was
completed, it was believed that the power requirements for the core site infrastructure could be met through supplemental power sources, as no power is available onsite. However, through the detailed design process, it was determined that the power requirements were more substantial, and would require a dedicated electrical line to the site. The lack of access to power and the need to bring in an electrical line over a long distance prevented this location from being further pursued as a viable core field study site.

2.1.2 Upper Waiakea Forest Reserve

Following dismissal of the Laupāhoehoe site, the NEON project team coordinated with the ecological research community (including those that responded to the original RFI) and DOFAW staff to identify a suitable replacement site. Through this effort, the Upper Waiakea Forest Reserve was recommended for consideration based on the known site conditions and NEON project requirements. In particular, this area was considered to be a good match with the site selection criteria, as it consists of an expansive area of high-quality forested habitat that is representative of Domain 20, and includes readily available site access and proximity to power. Detailed evaluation of site conditions and scientific suitability, as well as stakeholder outreach was conducted over the course of more than a year.

Through this process and based on input from DOFAW staff, it was determined that the forest reserve is heavily used by the public for hunting. In the interest of minimizing potential conflicts with recreational use by the local community, DOFAW staff recommended the site instead be located within the boundary of a NAR, where there is less visitation by the public and hunting is not allowed. Based on the potential for the Domain 20 core site to be incompatible with ongoing hunting activities, the Upper Waiakea Forest Reserve site was dismissed from further consideration.

2.1.3 Various Sites Within Puʻu Makaʻala Natural Area Reserve

Subsequent to the dismissal of the Upper Waiakea Forest Reserve site and at the recommendation of DOFAW staff, the NEON project team reviewed multiple sites within the Puʻu Makaʻala NAR. An iterative process involving multiple site visits and site evaluations was conducted in coordination with DOFAW and NARS staff. The objective of this effort was to identify the site that best meets the scientific requirements for NEON, while balancing land use and management goals regarding sensitive resources within the NAR. In total, 11 possible sites were initially identified within Puʻu Makaʻala NAR based on the NEON requirements and high-level information regarding site conditions. The suitability of these sites was then reviewed in coordination with DOFAW and NARS staff, incorporating their more intimate knowledge of site conditions and the NAR management goals. Of the 11 sites initially identified, 3 were carried forward for further consideration; the remainder were dismissed as they either would not meet the NEON requirements or would not be consistent with NAR management goals. The 3 remaining sites (Sites 7, 10, and 11) were evaluated in the field with DOFAW and NARS staff; after evaluation, the following sites were dropped from further consideration:

- **Site 7:** Based on a field investigation, the soils were found to be too shallow to collect the data to meet the NEON scientific requirements. In addition, it was determined that construction and operation of the scientific infrastructure could conflict with existing recreational activities associated with a public access trail in the NAR. Furthermore, the proximity of Stainback Highway was identified as a concern, because vehicle emissions could affect carbon dioxide (CO₂) concentration and flux measurements collected at the tower.

- **Site 10:** It was determined that construction and operation of the core field study site in this location would not be consistent with the management goals for Puʻu Makaʻala NAR and the required terrestrial sampling activities would not be authorized, based on the type and quality of the habitat. Furthermore, it was determined that project-related activities could conflict with existing recreational activities in this area.
2.2 Proposed Action

The proposed project involves construction and operation of the Domain 20 core field study site within Pu’u Maka’ala NAR, as part of the continental-scale network of long-term ecological infrastructure deployments for NEON. Per the designations used to evaluate possible sites within Pu’u Maka’ala NAR (as discussed in Section 2.1.3), the proposed infrastructure would be located at Site 11. As shown in Figure 2, this site is located in the northwestern portion of the NAR, approximately 1.7 kilometers (1 mile) northwest of the Kūlani Correctional Facility. Terrestrial sampling protocols would be conducted within distributed sampling plots located in the surrounding areas within Pu’u Maka’ala NAR. This site was selected as the proposed location for Domain 20 because it was determined to be the best fit based on the NEON scientific requirements and Pu’u Maka’ala NAR management goals. Overall, the purpose of the proposed project aligns with the underlying mission of the NARS, which includes providing a baseline against which environmental changes can be measured (HRS Chapter 195-1). Site-specific characteristics that make the selected location highly suitable for construction and operation of the Domain 20 core field study site include the following:

- The forest in this area is highly representative of the dominant vegetation and soil types across the Hawaiian Islands. It is relatively high-quality, intact habitat with very little development, which meets the NEON criteria for a “wildland” area. However, the scientific infrastructure would be within an area that has been subject to some degree of disturbance, such that it would not affect otherwise pristine forest habitat. The site includes adequate ground and canopy openings such that the tower and instrument hut can be installed with a very minimal amount of vegetation clearing and trimming. In addition, former pastureland located adjacent to the forested area would allow for the precipitation gauge to be proximate to the tower without impacting native species.

- The soils are deeper than those encountered at alternative sites, which provides better opportunity to implement NEON’s proposed soil protocols and installation of soil sensors.

- The site is readily accessible by existing access roads, but does not overlap with any trails or other recreational resources. The area does not support hunting (as it is located within ungulate fencing), and given its proximity to the Kūlani Correctional Facility, the site is rarely (if ever) accessed by the public.

- Existing electrical lines are located reasonably close to the proposed site, thus minimizing the distance of the proposed power run.

As a core field study site in NEON, the proposed project includes deployment of standardized infrastructure and equipment, as well as terrestrial sampling and data collection consistent with NEON protocols. The following sections detail these project components, including the associated construction, operations and maintenance, and site closure activities.

2.2.1 Project Components

2.2.1.1 Core Site Infrastructure and Equipment

Similar to other NEON core field study sites, the Domain 20 site would be fully instrumented with standardized infrastructure and equipment designed to collect biological, biophysical, biogeochemical, and land use data. The following infrastructure and equipment would be deployed to the site; all proposed infrastructure would be located adjacent to existing roads, and no new roads would be required for access to or within the site.

- **Research Tower:** The site would include a single scaffold lattice tower, which would support an array of equipment and sensors to collect data on climate, canopy microclimate, and air quality. A heating, ventilation and air conditioning (HVAC) unit used to cool the auxiliary equipment would also be mounted on the tower. The tower would extend 10 meters above the forest canopy and would be
approximately 30 meters (105 feet) tall. It would be constructed on a concrete foundation pad (approximately 6.5 foot square). Four guy wires would be installed to stabilize the tower. The wires would attach toward the top of the tower (but below the canopy top, to minimize the potential for bird strikes), and would extend approximately 30 meters from the tower base. Minor vegetation trimming would likely be required to maintain proper clearance around the guy wires. The guy wires would be fitted with bird flight diverters to increase the visibility of the guy wires for forest birds. A schematic of the proposed tower is provided in Figure 3.

- **Instrument Hut:** The instrument hut would be a prefabricated module that would house gas-analyzer instruments, data recording equipment, and communications and control hardware. It would be mounted on a buried concrete foundation (approximately 9 feet wide by 22 feet long), and would have a raised boardwalk (46 inches wide) installed around the perimeter with a 10-foot-long ramp to facilitate equipment delivery. The instrument hut would include a climate control system with an HVAC unit; a small drainage trench would be installed to collect condensation generated by this system.

- **Soil Horizon Pit:** A 6-foot by 6-foot pit would be temporarily excavated to a depth of 7 feet (or as deep as reasonably possible based on substrate conditions and depth to bedrock) to allow for inspection and research of soil horizons. The pit would be properly stabilized, covered with plywood and surrounded with construction fencing for safety purposes. The excavated materials would be stockpiled onsite, and once inspection and research activities have been completed, the pit would be backfilled. An approximately 3-foot-wide access path to the soil pit would be cleared during soil pit excavation and evaluation. These activities would all occur during the construction phase.

- **Soil Array:** The soil array would include a series of five sequential soil plots. Each plot would be 5 meters (16.4 feet) square, and would include a network of in-ground soil sensors. The sensors would be installed using minimally intrusive methods, as the goal is to maintain undisturbed native soil for research purposes. Polyvinyl chloride (PVC) conduit with power and communication lines would be routed to each plot (in conjunction with the walkway described immediately below); device posts and metal arbors would be installed at the edge of each plot to support the power and communications equipment needed to operate the soil sensors.

- **Walkways:** Designated walkways would be installed from the access road to the proposed infrastructure within forested habitat to provide a focused point of access and minimize the potential extent of disturbance from repeated visits for maintenance or data collection. The walkways would be approximately 2 feet wide and would consist of flexible honeycomb paver mats designed to reduce soil compaction.

- **Precipitation Gauge:** The precipitation gauge would be a double-fenced intercomparison reference (DFIR) system. The gauge would be mounted to a pipe installed with a 2-foot-diameter concrete foundation. Two concentric fences (each between 5 and 6 feet high) would be installed around the gauge, with diameters of approximately 13 feet and 26 feet, respectively. Clearing of woody vegetation is typically needed within and surrounding the fenced area to preclude interference with the gauge. However, to minimize impacts to native vegetation, the gauge would be located in a former pastureland dominated by grass species, such that no woody vegetation clearing or trimming would be expected to be required.

- **Electrical Equipment:** Power would be obtained from an existing electrical line located at the edge of the Kūlani Correctional Facility property. Secondary power service would extend from an existing pole on this line to a meter socket and transfer switch, which would be owned and used by the local utility to deliver electricity. An auxiliary portal would be installed adjacent to the transfer switch. It would consist of a step-up transformer and communication pedestal, and would serve the research tower and instrument hut. It would also include a plug for a generator, which would only be brought onsite and used in the case of a long-term electrical system outage.
Pu‘u Maka‘ala (Domain 20) Core Tower and Sampling Site

National Ecological Observatory Network (NEON) Project

Hawaii Island, Hawaii

NOTE: It is possible that individual plot or grid locations may be adjusted within the limits of the proposed project area. Any adjustment in plot or grid location would be coordinated with DOFAW/NARS.

Figure 2
Pu‘u Maka‘ala (Domain 20) Core Tower and Sampling Site
National Ecological Observatory Network (NEON) Project
Hawaii Island, Hawaii
This page is intentionally left blank.
FIGURE 3
Schematic Diagram of Proposed Research Tower
The auxiliary portal would be pad-mounted, with the fiberglass pad (approximately 8 feet by 2 feet) installed at existing grade. A second portal (approximately 3 feet by 3 feet) would be installed to serve the precipitation gauge; this portal would include a small HVAC system. From the portals, on-grade electrical and communication lines (contained within PVC conduit) would be laid along an existing fence line to the instrument hut (approximately 2,520 linear feet), and through former pastureland to the precipitation gauge (approximately 600 linear feet).

The conduit would be installed above ground and would kept in place using fiberglass uni-strut supports, placed at regular intervals and staked into the ground. In a single location, the conduit would be trenched (and capped with concrete) across the existing access road.

- **Staging Area:** A staging area would be installed near the research tower and instrument hut to provide for parking and staging of equipment during construction, and continued parking through the operations phase. The staging area would be approximately 40 feet by 40 feet, and would consist of approximately 6 inches of base course underlain by geotextile fabric.

The location of the proposed infrastructure is shown in Figure 2. The approximate dimensions of the proposed infrastructure and equipment is listed in Table 2. A schematic diagram of the proposed research tower is provided in Figure 3. Photographs showing similar infrastructure and equipment at other NEON field study sites are provided in Figure 4.

### TABLE 2
Summary of Core Site Infrastructure and Equipment

<table>
<thead>
<tr>
<th>Project Component</th>
<th>Dimension of Infrastructure/Equipment (ft)</th>
<th>Approximate Footprint (ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Tower</td>
<td>6.5 x 6.5; 105 feet tall</td>
<td>42.5</td>
</tr>
<tr>
<td>Anchors for Guy Wires</td>
<td>5 x 1 bars anchoring 30-foot-deep 2-inch pipes (for each of 4 anchors)</td>
<td>20</td>
</tr>
<tr>
<td>Instrument Hut</td>
<td>9 x 22</td>
<td>198</td>
</tr>
<tr>
<td>Boardwalk (Instrument Hut and Tower)</td>
<td>(26 x 3) + (20 x 4) + (6 x 3)</td>
<td>176</td>
</tr>
<tr>
<td>Soil Horizon Pit</td>
<td>6 x 6</td>
<td>36</td>
</tr>
<tr>
<td>Soil Array</td>
<td>16.4 x 16.4 (for each of 5 plots)</td>
<td>1,345</td>
</tr>
<tr>
<td>Honeycomb Walkways</td>
<td>705 x 2</td>
<td>1,410</td>
</tr>
<tr>
<td>Precipitation Gauge</td>
<td>26 x 26</td>
<td>676</td>
</tr>
<tr>
<td>Auxiliary Portals</td>
<td>8 x 2; 5 feet tall (for tower and instrument hut) 3 x 3; 4.5 tall (for precipitation gauge)</td>
<td>25</td>
</tr>
<tr>
<td>Electrical and Communication Conduit</td>
<td>3120 x 1 (instrument hut and precipitation gauge); 865 x 1 (soil arrays)</td>
<td>3,985</td>
</tr>
<tr>
<td>Staging Area</td>
<td>40 x 40</td>
<td>1,600</td>
</tr>
<tr>
<td>Terrestrial Sampling</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td><strong>TOTAL EXTENT OF DISTURBANCE</strong></td>
<td></td>
<td><strong>9,514 ft²</strong></td>
</tr>
</tbody>
</table>

**Note:**
ft² = square feet
Figure 4a. Representative Photograph of Tower and Instrument Hut (Central Plains Experimental Range [CPER], Central Plains Domain)

Figure 4b. Representative Photographs of Tower (Delta Junction, Tiaga Domain) and Tower Construction Process (Smithsonian Conservation Biology Institute [SCBI], Northeast Domain)
FIGURE 4
Representative Photographs of Infrastructure and Equipment at Similar NEON Research Sites

Figure 4c. Representative Photographs of Tower, Instrument Hut and Soil Array (CPER, Central Plains Domain) and Tower and Instrument Hut (Ordway Swisher Biological Station, Southeast Domain)

Figure 4d. Representative Photograph of Instrument Hut (Jones Ecological Research Center, Southeast Domain)
**Figure 4e.** Representative Photographs of Walkway, Electrical Conduit and Device Post (left) and Arbors Supplying Power to Soil Plots (right) (Oak Ridge National Laboratory [ORNL], Appalachian & Cumberland Plateau Domain)

**Figure 4f.** Representative Photographs of Soil Sensor Equipment (CPER, Central Plains Domain)

**FIGURE 4**
Representative Photographs of Infrastructure and Equipment at Similar NEON Research Sites
FIGURE 4g. Representative Photograph of DFIR Precipitation Gauge with On-Grade Conduit and Device Post (Niwot Ridge, Southern Rockies & Colorado Plateau Domain)

FIGURE 4h. Representative Photograph of DFIR Precipitation Gauge and Device Post (Santa Rita Experimental Range, Desert Southwest Domain)
Before installation of any infrastructure or equipment, the limits of the construction area would be delineated to prevent movement into non-construction areas. Overall, it is estimated that the construction area would encompass no more than 0.5 acre. Temporary construction fencing would be installed to demarcate active work areas within the construction limits (i.e., areas immediately surrounding the proposed infrastructure or equipment), as appropriate.

All construction activities would be conducted during daylight hours and no night work would be performed. Workers would travel to and from the proposed project site together to minimize the number of vehicles accessing Pu‘u Maka‘ala NAR. Vehicle use would be strictly limited to the existing access road or proposed staging area, except where essential for installation of infrastructure. No new access roads would be constructed, but the existing access road may be improved to accommodate construction vehicles.

Equipment and materials would be hand-carried to areas beyond the access road (e.g., the soil plots), as needed.

Installation of infrastructure is expected to require approximately 6 months, and installation and calibration of equipment is expected to require an additional 1 to 2 months. Subject to environmental clearance and permitting, it is currently anticipated that construction would start in fall 2017, with operation of the site starting in spring 2018.

2.2.1.2 Long-Term Terrestrial Sampling

Following construction and over the course of the 30-year operational period for NEON, a suite of terrestrial sampling protocols would be implemented on a routine basis. Sampling would occur at designated plots and grids established in locations throughout the surrounding lands of Pu‘u Maka‘ala NAR. Based on stakeholder concerns, the density and total footprint of sampling plots and grids was substantially reduced from the levels implemented at other NEON field study sites to the minimum level needed to ensure scientific viability of the proposed project. Up to 62 plots or grids, with a total footprint of approximately 650 acres, would be distributed over approximately 11,660 acres of the NAR. The sampling plots and grids would include the following:

- **Tower Plots:** Approximately 20 plots; 16 plots measuring 20 by 20 meters and 4 plots measuring 40 by 40 meters
- **Distributed Plots:** Approximately 20 plots, each measuring 40 by 40 meters
- **Bird Grids:** Approximately 10 grids, each measuring 500 by 500 meters
- **Phenology Transect:** One transect, measuring 800 meters
- **Mosquito Transect:** Approximately 10 plots, each measuring 0.5 by 0.5 meter

The potential locations of the sampling plots and grids are shown in Figure 2. The locations as shown were vetted with DOFAW/NARS staff and reflect the current understanding of existing and future planned research or monitoring activities in Pu‘u Maka‘ala NAR, and an effort to minimize redundancy or excessive activity in any given location. It is possible that the plot and grid locations may be adjusted within the limits of the proposed project area before construction, based on additional stakeholder input. Once the proposed project is operational, the goal would be to keep the plot and grid locations fixed to maximize data integrity. However, there is some degree of flexibility to move individual plots or grids in response to an unanticipated impact or changed conditions within the NAR. Any such decision would be made in direct coordination with the NAR site manager.

The sampling plots and grids would be established at the same time the scientific equipment is installed and calibrated. This effort would include (1) NEON technicians visiting each plot to confirm the scientific validity of the location and (2) placement of permanent markers at a fixed sample point or at the ends of a sample transect. Permanent markers would consist of rebar or survey caps (or similar marking device approved by NARS staff) driven into the ground and would be placed only at the start of the project. If the plot or grid
were to be relocated during the proposed project, the original marker(s) would be removed and new permanent marker(s) would be placed.

Over the 30-year operational period, research technicians would visit each sampling plot and grid on a routine basis, as needed to conduct the prescribed sampling activities. The sampling protocols are consistent with the standardized requirements for NEON, but have been tailored as appropriate based on the local ecology and site-specific conditions. The sampling protocols are designed to be passive, with minimal ground disturbance. Certain sampling protocols require placement of sampling equipment (e.g., pitfall traps and mosquito traps). The list of sampling activities, as well as the associated protocols and required equipment, are listed in Table 3.

Table 3 also lists the sampling frequency, duration, and timing for each of the sampling protocols. Similar to the determination of plot and grid location, the timing for sampling activities is designed to avoid or minimize impacts, including activities during sensitive periods (e.g., breeding season), to the extent possible. In addition, to further minimize disturbance, sampling visits would be combined where possible to minimize the number of times researchers are at the site. It is currently expected that three full-time staff (one domain manager and two research technicians) would be needed to conduct the sampling and other operational requirements. The staff would be supplemented with up to eight temporary technicians during peak sampling periods.

The sampling data collected from the site would be reviewed, synthesized, and packaged by the NEON project team. The resulting data set would be uploaded to an online portal, where it would be made available to the scientific community and general public as part of continental NEON data set. The Domain 20 data would also be transferred directly to DOFAW and NARS staff to assist with management of the site.

2.2.1.3 Aerial Observations

In addition to the terrestrial sampling effort, an aerial flight would be conducted on an annual basis. The aerial flight would use a small aircraft outfitted with remote sensing equipment (including a hyperspectral imager, Light Detection and Ranging [LiDAR] sensor, and high-resolution camera). The typical flight elevation would be approximately 1,000 meters, but would vary based on topography. Data collected from the flight would provide detailed spatial information on the structure and biogeochemical properties of vegetation, and would also facilitate the development of algorithms for scaling up site-specific data.
<table>
<thead>
<tr>
<th>Type of Sampling</th>
<th>Description of Proposed Field Sampling Activity</th>
<th>Equipment Installed</th>
<th>Plot/Grid Location</th>
<th>Sampling Season</th>
<th>Frequency</th>
<th>Duration of Each Event</th>
<th>Number of Visits to Each Plot per Event</th>
<th>Number of Technicians per Visit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil sampling</td>
<td>Three soil samples will be collected at each plot (to a depth of 30 cm or refusal and until 300 g is collected, and diameter ranging between 3.5 and 11 cm); holes will be backfilled at NARS direction. Soil microbiome and soil biogeochemistry ¹. Soil biogeochemistry: N transformations. Three 35-cm x 5-cm-diameter PVC tubes buried such that 5 cm remain above the soil</td>
<td>Tower plots (4); Distributed plots (6)</td>
<td>October, January, April</td>
<td>3 events per year</td>
<td>4-5 days (2-3 plots a day)</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Observations of species presence and cover (at 1 m²) will be made in 400-m², multi-scale plots. Observations within these plots are made at eight 1- and 10-m² subplots. Vouchers of a subset of representative plant species (approximately 20 per year) will be collected.</td>
<td>Tower plots (3)</td>
<td>January-February</td>
<td>1 event per year</td>
<td>2-3 days (1-2 plots per day)</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Litterfall and fine woody debris</td>
<td>Litter (non-living plant material) will be collected from basket-like traps and from paired ground traps for woody material &lt;2 cm in diameter, placed in 20-m x 20-m plots. One 0.5-m² PVC elevated trap per plot (0.8 m off the ground), and one 1.5-m² ground trap per plot.</td>
<td>Tower plots (20)</td>
<td>Year-round</td>
<td>Elevated traps: 26 events per year</td>
<td>Ground traps: One event per year</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Belowground fine root biomass</td>
<td>Two soil cores (7.62 cm in diameter, 30 cm deep) will be extracted from each plot to measure fine root live and dead biomass; holes will be backfilled at NARS direction. Measurements such as height and diameter at breast height of woody individuals will be measured. No collection will be made (unless diagnostic plant part is needed to facilitate species identification).</td>
<td>Tower plots (20)</td>
<td>January-February</td>
<td>1 event every 5 years</td>
<td>5-10 days (2-4 plots per day)</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Vegetation structure</td>
<td>Measurements such as height and diameter at breast height of woody individuals will be measured. No collection will be made (unless diagnostic plant part is needed to facilitate species identification). Aluminum tags hung around woody vegetation with loose wire (no nails would be used).</td>
<td>Tower plots (20)</td>
<td>Any time</td>
<td>1 event per year</td>
<td>10-20 days (0.5-1 day per plot)</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Coarse downed wood (tally)</td>
<td>Nondestructive tall measurements will be made along three 200-m transects originating from each plot.</td>
<td>Tower plots (20)</td>
<td>July-September</td>
<td>1 event every 5 years</td>
<td>20 days (1 plot per day)</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Coarse downed wood (density)</td>
<td>Disks (5-10 cm width) will be cut from downed logs using a chainsaw or hand-powered backsaw. A total of 100-200 disks will be cut; the final number will depend on the number of taxa and the number of decay classes encountered.</td>
<td>Tower plots (20)</td>
<td>Any time</td>
<td>1 event every 5 years</td>
<td>5-6 years later</td>
<td>20 days (1 plot per day)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Canopy foliar chemistry</td>
<td>Sunlit leaves of dominant species will be harvested using a compressed air line-launcher.</td>
<td>Tower plots (10)</td>
<td>August-September</td>
<td>1 event per year</td>
<td>5-10 days (2-4 plots per day)</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Leaf area index</td>
<td>Digital hemispherical photographs of understory and overstory vegetation will be taken at multiple points within each plot.</td>
<td>Tower plots (3)</td>
<td>Year-round</td>
<td>1 event every 2 weeks</td>
<td>26 events per year</td>
<td>1 day (3 plots per day)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Herbaceous biomass</td>
<td>Herbaceous material will be clip harvested from one 0.2-m (0.1 m x 2-m) area.</td>
<td>Tower plots (20)</td>
<td>August-September</td>
<td>1 event per year</td>
<td>10 days (2 plots per day)</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Plant phenology</td>
<td>Phenological status and transitions of plant species will be monitored and recorded. Initially, up to 30 individuals of 3 species will be monitored. Over subsequent years, fewer individuals of 20 species will be monitored. Phenology transect (1); along easily accessible road.</td>
<td>Tower plots (20)</td>
<td>August-September</td>
<td>1 event per year</td>
<td>1 day (1 transect per day)</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Ground beetles</td>
<td>Four pitfall traps at each plot will be deployed and checked at 2-week intervals to capture and describe the diversity and abundance of ground beetles. Four pitfall traps per plot; each trap consists of a cup buried flush with the ground, filled with a preservative, and shaded by a flat cover.</td>
<td>Distributed plots (10)</td>
<td>October-April</td>
<td>13 events per year</td>
<td>1 day every 2 weeks</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Mosquitoes</td>
<td>CO₂ traps will be deployed for 2 nights (approximately 40 consecutive hours) per sampling event; captured mosquitoes will be retrieved from the trap on three occasions (first morning, second evening, and second morning). Trap consisting of small insulated cooler (loaded with CO₂ pellets), rain cover, a fan (with 6 volt battery), and catch cup; trap will be hung from a tree or post.</td>
<td>Mosquito points (10), each within 35 m of road</td>
<td>Year-round</td>
<td>1 event per month (12 events per year)</td>
<td>2 days</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Breeding birds</td>
<td>Bird abundance and diversity data will be collected using binoculars and laser rangefinder; point counts will be conducted for a total of 10 minutes per location</td>
<td>Bird grids (10)</td>
<td>February-March</td>
<td>1 event every three years</td>
<td>5-10 days (1-2 grids per day)</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
¹ Soil biogeochemistry analyses will be conducted on a subset of soil collection every 3 years.
² Timing will be determined in consultation with site host.
This page is intentionally left blank.
2.2.1.4 Infrastructure and Equipment Maintenance

Long-term operation of the NEON project requires ongoing maintenance to ensure the infrastructure and equipment are in optimal working order and remain properly calibrated. Standard maintenance activities would be planned to occur approximately every 2 weeks, with one larger maintenance event conducted annually. In addition, emergency repairs would be conducted as needed. A description of the maintenance activities, and their frequency and duration, are summarized in Table 4.

<table>
<thead>
<tr>
<th>Maintenance Event</th>
<th>Activities to be Conducted</th>
<th>Frequency</th>
<th>Duration of Each Event</th>
<th>Number of Technicians</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard maintenance of tower sensors</td>
<td>Preventative maintenance including inspecting and cleaning sensors, calibration of non-hazardous CO₂ gas cylinders stored in the hut and troubleshooting/repairing sensors and systems.</td>
<td>One event every two weeks</td>
<td>2 days</td>
<td>2</td>
</tr>
<tr>
<td>Annual maintenance of tower and soil array</td>
<td>Instruments will be removed from the tower and soil array annually and replaced with recently recalibrated instruments.</td>
<td>One event per year</td>
<td>5 days</td>
<td>2-3</td>
</tr>
<tr>
<td>Emergency repairs</td>
<td>Emergency repairs to the tower or soil array sensors and infrastructure in the event damage is caused by weather or other unforeseen factor.</td>
<td>As needed</td>
<td>As needed</td>
<td>To be determined</td>
</tr>
</tbody>
</table>

2.2.2 Standard Operating Procedures

Management of Pu‘u Maka‘ala NAR is focused on preserving natural communities of flora and fauna in as unmodified a state as possible. Similarly, avoidance and minimization of impacts to natural resources is fundamental to the long-term success of the NEON project, as the project is intended to assist in detection of natural changes in native ecosystems. To meet the project needs and to maintain consistency with the NAR management goals, the NEON project team considers natural resource protection and impact avoidance and minimization to be paramount.

Furthermore, the NEON project team understands that there are other research and monitoring efforts that are either ongoing or planned within the NAR. Given that the purpose of the NEON project is to improve and contribute to research capabilities, the NEON project team is equally focused on minimizing the potential for overlap or interference with other research and monitoring efforts.

To this end, implementation of the NEON project within Pu‘u Maka‘ala NAR would be governed by standard operating procedures (SOPs) designed to avoid or minimize impacts and promote collaboration with NARS staff and other researchers, while maximizing the scientific integrity and benefit of the project. The following SOPs are based on NEON’s standardized protocols, as well as input received from DOFAW and NARS staff and other stakeholders to date. These will be developed in more detail as part of a Project Work Plan; this plan will be subject to DOFAW and NARS approval before implementation of the proposed project, and, if approved, would continue to be refined over the lifetime of the project.

- **Communication Procedures**: All activities within Pu‘u Maka‘ala NAR would be coordinated directly with the NAR site manager. Frequent and clear communication between the NAR site manager and
the NEON domain manager would be key to successful project implementation, natural resource protection, and coordination with other research and monitoring activities. The NEON domain manager would provide the anticipated schedule for onsite NEON activities in writing to the NAR site manager (e.g., via email) at a frequency requested by DOFAW and NARS staff, to facilitate coordination in timing or location of NEON activities with other work within the NAR. NEON project management staff would also participate in relevant stakeholder meetings to provide information about NEON activities and gather information about other project’s activities to ensure appropriate coordination and minimize possible conflicts with other stakeholders. In addition, NEON would provide a summary annual report that describes the previous year’s activities, as requested by DOFAW.

- **Staff Training:** All onsite staff for the NEON project, including the domain manager and any research technicians or maintenance personnel, would receive adequate training before starting work within the NAR, with refresher training provided as needed. This training would address the specific procedures for decontamination, and would also include information related to recognition of sensitive species, response protocols if threatened or endangered species are encountered, and other relevant conditions of the project permits.

- **Decontamination Procedures:** Key management objectives for Pu‘u Maka‘ala NAR include control of non-native species and disease. Issues of particular concern include the potential introduction and spread of invasive species and Rapid Ōhi‘a Death. Decontamination procedures, consistent with those recommended by the resource agencies and used by DOFAW and NARS staff, would be implemented throughout the construction and operation phases of the NEON project. Any future changes in decontamination procedures, including those adopted by DOFAW or those recommended by the resource agencies, would be incorporated into the proposed project as appropriate.

- **Site Access and Route Planning:** Long-term terrestrial sampling would be conducted in a manner that limits potential disturbance to natural resources to the extent possible. Specifically, all activities would incorporate the following approach:
  - The overall number of visits to the site would be minimized by combining activities to the extent possible.
  - Site visits would be coordinated with NARS staff to reduce impacts during periods when federally listed threatened and endangered species, proposed species, candidate species for listing, and other species of concern are most vulnerable to disturbance.
  - A detailed plan to avoid, work around, and protect federally listed threatened and endangered species, proposed species, candidate species for listing, and other species of concern would be developed and updated as needed.
  - The routes taken throughout the NAR (including to each sampling location) would be developed in coordination with DOFAW and NARS staff. These routes may be varied over time to disperse impact of foot travel, or may follow the same path to concentrate impacts, depending on the specific locations and based on guidance received from DOFAW and NARS staff.
  - Observations that require the most frequent visits (e.g., litter, plant phenology, mosquitoes; see Table 3) would be placed in proximity to roads to reduce foot traffic across the site.

- **Ongoing Impact Assessment and Adaptive Mitigation:** Implementation of the proposed project would incorporate BMPs and other impact avoidance and minimization measures that reflect current best practices and knowledge of site conditions; these are discussed throughout Section 4 of
this document. Consistent with the procedures implemented at all NEON project sites, the domain manager would be responsible for continuously tracking project activities to ensure the efficacy of these measures, and to detect and address unanticipated environmental impacts. This effort would include monitoring parking areas, access routes and sampling locations for disturbance to vegetation and wildlife, as well as the introduction and establishment of invasive species. If it is determined, either through this effort or based on input from DOFAW and NARS staff, that project implementation is resulting in unanticipated environmental impact, any associated project activities would be temporarily halted. In coordination with the NAR site manager, the domain manager would assess the effectiveness of relevant BMPs or other avoidance and minimization measures, and would make any necessary adjustments to adequately address the impact. This effort could also include adjustments to individual sampling plot or grid locations. Additional SOPs would be adopted as needed. Over time, consistent monitoring and evaluation of long-term sampling is expected to result in increased understanding of impacts and subsequent iterations in the approaches to mitigation.

- **Vegetation Trimming:** The proposed project has been designed to minimize the need for any vegetation clearing/trimming, consistent with the overall objective of monitoring natural processes. However, a minimal amount of trimming may be needed to maintain clearance around the project infrastructure (e.g., along the guy wires for the tower). Any vegetation clearing or trimming would first be approved by (1) the NEON science team to make sure it is necessary for scientific purposes, (2) the permitting team to make sure the action is acceptable per the permit conditions and is in compliance with seasonal restrictions related to listed species (e.g., bat-pupping and bird-breeding seasons), and (3) the NARS staff to make sure it is consistent with site management objectives. A qualified arborist with specific knowledge of the target species and site conditions would be engaged, as needed.

- **Stakeholder and Community Engagement:** Consistent with the overall project objectives, the NEON project team is committed to ongoing engagement with the ecological research community and other project stakeholders, as needed to maximize project success. The purpose of these efforts would be to (1) maintain coordination with other relevant activities, (2) keep project stakeholders apprised of the project status, and (3) contribute to the local community’s knowledge of ecological conditions within the project site. Stakeholder and community engagement efforts are expected to include NEON participation in relevant stakeholder meetings, development and maintenance of a project website, and delivery of data to DOFAW, NARS, and other local stakeholders.

In addition to these SOPs, NEON would also incorporate other general BMPs designed to avoid or minimize impacts to the extent practicable. These measures are detailed throughout Section 4, and are summarized in Section 7.1.

### 2.2.3 Project Duration and Site Closure

NEON is projected to operate for 30 years. The exact nature of site closure at the end of the operational period will be based on the interests of DOFAW, as the site host. If requested, it is possible that some or all of the infrastructure or equipment may be retained onsite. The specific decommissioning and closure plans are undefined at this time. However, for the purposes of this EA, it is assumed that all sampling infrastructure (including the tower and instrument hut) would be removed (subject to available funds), but below-grade material (such as the tower foundation) would be left in place. All boardwalk materials, and electrical equipment (including power lines and conduits) would be removed.

Any materials removed during these processes would be reused, recycled, or properly disposed at an approved location. All disturbed ground would be stabilized with biodegradable materials and
revegetated with species (or propagules of such species) that are native to the area and appropriate for the specific disturbed area. Compacted soil would be loosened and aerated before revegetation. Revegetation activities would be coordinated with DOFAW and NARS staff, as appropriate.

2.3 No Action Alternative

Because CEQ regulations for implementing NEPA require consideration of the No Action Alternative (40 CFR 1502.14(d)), a No Action Alternative is evaluated in this EA. The No Action Alternative would not satisfy the need for action. Inclusion of the No Action Alternative serves as a benchmark for evaluating the potential effects of the proposed project.

Under the No Action Alteration, NEON research infrastructure and equipment would not be deployed to the site within Pu‘u Maka‘ala NAR to represent Domain 20. Biological, biophysical, biogeochemical, and land use data would not be collected or made available to the ecological sciences research community. Implementation of the No Action Alternative would eliminate the opportunity to study ecosystem responses and changes at the local scale in Hawai‘i as part of NEON. In addition, it would preclude integration of data from the Pacific Tropical domain into the continental-wide dataset, thus reducing the potential for broad-scale analysis and the overall integrity of NEON.
SECTION 3

3 Affected Environment

This section provides an overview of the existing physical, biological, economic, and social conditions at the proposed project site. In compliance with NEPA and HRS Chapter 343, the description of the affected environment focuses on those resources and conditions potentially impacted by the proposed project.

3.1 Climate

3.1.1 Existing Conditions

Hawai‘i’s subtropical climate is governed by easterly trade winds that regulate weather patterns as part of the North Pacific high-pressure anticyclone. The ‘Pacific High,’ and with it the trade wind zone, moves north and south with the sun, so that it reaches its northernmost position in the summer. This brings the heart of the trade winds across Hawai‘i during the period from May through September, resulting in trade winds that are prevalent 80 to 95 percent of this time. From October through April, the trade winds move to the south, resulting in decreased frequency of the trade winds (commonly referred to as southerly or “Kona” conditions).

Along with the Pacific anticyclone, Hawai‘i’s latitude and the surrounding ocean have a moderating influence on climate. The climate on Hawai‘i Island is further influenced by the topography, which creates a series of microclimates. Given the elevation of over 5,000 feet above mean sea level, the average minimum and maximum daily temperatures in the proposed project area are approximately 55 and 65 degrees Fahrenheit, respectively (State of Hawai‘i, Department of Accounting and General Services [DAGS] and Department of Public Safety [DPS], 2013). Mean annual rainfall, as documented at the nearby Kūlani Camp Station, is approximately 105 inches (Giambelluca et al, 2013). Condensation from low-elevation clouds (fog drip) contributes additional moisture at higher elevations (DOFAW, 2013a).

3.1.2 Climate Change

Greenhouse gases (including CO₂, methane [CH₄], and nitrous oxide [N₂O]) are chemical compounds that are emitted as a result of natural processes and human activities. Greenhouse gases trap heat in the atmosphere, thus affecting the earth’s temperature. Scientific evidence indicates a trend of increasing global temperatures (i.e., global warming) and other related climatic changes over the past century due to an increase in global greenhouse gas emissions.

Table 5 provides a summary of CO₂ emissions in Hawai‘i for 2011 through 2013, which are the most recent data available. CO₂ emissions represent approximately 80 percent of total greenhouse gas emissions and therefore are used as a primary indicator for regional greenhouse gas emissions. The largest source of CO₂ and overall greenhouse gas emissions is fossil fuel combustion; the transportation sector is the largest contributor to greenhouse gas emissions.

A broad spectrum of climate change impacts has been investigated and described for Hawai‘i, including rising surface air temperature, decreasing quantity of total annual precipitation, increasing intensity of storm events, increasing hurricane wind speeds, rising sea levels, increasing ocean temperature, and increasing ocean acidification (Fletcher, 2010; U.S. Fish and Wildlife Service [USFWS], 2011).
Climate change factors that are anticipated within Pu’u Maka’ala NAR include increased air temperatures and altered rainfall patterns and quantities. These are expected to lead to changes in habitat structure and composition, increased distribution and abundance of invasive species, and associated declines in native species (DOFAW, 2013a).

3.2 Land Use and Recreation

Land use is typically defined to reflect either natural or human activities that occur, or could occur, at a given location. Land use in Hawai’i is generally controlled by state land use and county zoning designations. Under HRS Chapter 205-2, the State Land Use Commission has the authority to designate all land within the state as one of four districts—urban, rural, agricultural, or conservation—based on the general activities and uses of the land. Land use is also regulated by the various counties through zoning boundaries, within which development standards are specified for various activities. In general, regulation of land use within the conservation district is conducted by the state; regulation of the other districts is generally delegated to the counties. In addition to the zoning boundaries, there are overlay zones that are subject to further regulation. In particular, the Special Management Area (SMA), a designated area extending inland from the shoreline (ranging from 100 yards to several miles in width), is regulated by the County under the Hawai’i Coastal Zone Management (CZM) program.

3.2.1 Existing Conditions

The proposed project falls entirely within the boundaries of Pu’u Maka’ala NAR, which encompasses a total of approximately 18,730 acres. Historically, this area was primarily comprised of forest reserve lands, with some portions used for cattle ranching or in association with Kūlani Correctional Facility. However, this area is now actively managed by DOFAW and NARS for protection of unique natural resources. Current land uses are generally based on the objectives and allowed activities, as set forth in the Pu’u Maka’ala NAR Management Plan (DOFAW, 2013b) and NARS rules (HAR Chapter 13-209). Public access is allowed in the majority of Pu’u Maka’ala NAR for recreational and cultural uses. There are five specified access points to the NAR: four along Stainback Highway (with the uppermost point located near the boundary of the NAR near Kūlani), and one at the end of Wright Road (near the southwestern tip of the NAR). Current public use of Pu’u Maka’ala primarily includes hiking, bird watching, and hunting (DOFAW, 2013a). The proposed project would be located in an area that is only accessible to the public.

---

3 It is understood that DOFAW is seeking to extend Pu’u Maka’ala NAR to include an additional 342 acres of land that are currently associated with Kulani Correctional Facility; this includes the proposed location for the precipitation gauge. This process is underway, and DOFAW has been granted a management right-of-entry (DOFAW, 2014).
by foot. However, the proposed infrastructure is within an area protected by ungulate fencing such that hunting is not allowed. Based on observations by NARS staff, recreational use in the vicinity of the proposed infrastructure location is minimal to none (personal communication, N. Agorastos, Pu‘u Maka‘ala NAR Manager, September 20, 2016).

The Kūlani Correctional Facility, which occupies approximately 280 acres, is located within an interior portion of the Pu‘u Maka‘ala NAR. This facility is a minimum security prison that houses approximately 200 inmates and 96 staff. The infrastructure for the facility occupies approximately 56 acres, and includes structures and equipment to support vocational programs, such as an automotive shop and agricultural and horticultural facilities. The correctional facility was reopened in 2014, following an approximately 5-year interlude during which time the site was used by the U.S. Department of Defense for a program serving at-risk youth (DAGS and DPS, 2013).

The areas surrounding Pu‘u Maka‘ala NAR (and the proposed project site) are comprised of the Upper Waiakea Forest Reserve to the north and east, the Ōla‘a Forest Reserve on the east, the Ōla‘a Tract of Hawai‘i Volcano National Park to the south, and private property to the west (Kamehameha Schools), southwest, and southeast (multiple agricultural parcels). The general extent and proximity of these adjacent areas is shown in Figure 1. These contiguous areas are managed, in coordination with Pu‘u Maka‘ala, as part of the Three Mountain Alliance. The Three Mountain Alliance is a public-private partnership of landowners and agencies with the objective of land management and conservation at the landscape scale.

3.2.2 Zoning and Land Use Designations

The proposed project site, along with the rest of Pu‘u Maka‘ala NAR, falls entirely within the state Conservation District (with the proposed infrastructure in the general and resource subzones, and some of the sampling plots extending out into the protective subzone). Regulation of land use in the Conservation District is within the jurisdiction of the state. There is no county zoning designation provided for areas within the Conservation District; however, it is understood the project will require plan approval from the County of Hawaii. The proposed project site is not within the SMA or any other special zoning district.

3.3 Geology, Topography and Soils

3.3.1 Existing Conditions

Hawai‘i Island was created by five separate shield volcanoes that erupted somewhat sequentially. These are (from oldest to youngest) Kohala, Mauna Kea, Hualalai, Mauna Loa, and Kilauea. Pu‘u Maka‘ala NAR is located on the eastern, windward slopes of Mauna Loa. Elevations within Pu‘u Maka‘ala NAR range from 2,800 to 6,229 feet (853 to 1,899 meters (DOFAW, 2013b). The proposed infrastructure would be at an elevation of approximately 5,500 feet.

Seven different ages of lava flows from Mauna Loa have been mapped in Pu‘u Maka‘ala NAR, with relatively recent flows (1942) ranging up to those approximately 10,000 years old. Lava substrates include cinder, ash, pāhoehoe and ‘ā‘ā. Several cinder cones serve as prominent landmarks for this region, including Kūlani Cone, Pu‘u Kipu, Pu‘u Maka‘ala, and Na Lua Mahoe. The Kūlani portion of the NAR has experienced the most recent flows and is the most vulnerable to volcanic activity, as it is downslope of potential eruption sites on the northeast rift zone.

The different types and ages of lava flows contribute to a diverse range of soils in this area. Approximately 25 soil types have been mapped within Pu‘u Maka‘ala NAR by the Natural Resources
Conservation Service (NRCS). The most extensive soils within the NAR are the Ekeuiki-Pekailio complex; these primarily occur in the central portion of the site and are deep soils formed in volcanic ash deposited over ‘a’ā lava. Other prominent soil types, particularly in the southern and central portions of the NAR include deep, moderately well drained soils formed in volcanic ash (Hao medial loam); thin, well drained soils formed in organic material and ash overlying ‘a’ā lava (Kiloa extremely cobbly highly decomposed plant material); and deep, well drained soils formed in volcanic ash deposited over cinders (Kūlani mucky loam). The proposed NEON infrastructure would generally be located in an area with thin, well-drained soils formed over ‘a’ā lava (Lalaau very cobbly plant material) (NRCS, 2016).

3.3.2 Seismicity

In Hawai‘i, seismicity is associated with volcanism and earth movement along faults; earthquakes are typically more concentrated in volcanically active areas, with 95 percent of the earthquakes on Hawai‘i Island resulting from volcanism (Fletcher et al., 2002). The majority of the seismicity is related to the movement of magma within Kilauea or Mauna Loa volcanoes. Thousands of earthquakes are documented on the island, although most are too small to be noticed; a total of 14 earthquakes with magnitude 6 or greater have occurred since 1868 (Heliker, 1991). Given the extensive history of seismicity on Hawai‘i Island, the entire island is within the Uniform Building Code seismic zone 4, which is the highest possible rating.

3.4 Water Resources

This section addresses water resources, including both surface and groundwater features, and the quality of those waters.

3.4.1 Waters of the U.S., Including Wetlands

Waters of the U.S. are generally defined to include traditionally navigable waters (including lakes, rivers and streams) and their tributaries, as well as wetlands adjacent to such waters.

The presence of waters of the U.S., including wetlands, within the proposed project site was evaluated through desktop analyses of the USGS National Hydrography Dataset (USGS, 2016), USFWS National Wetlands Inventory mapping (USFWS, 2016), and information contained in the Pu‘u Maka‘ala NAR Management Plan (DOFAW, 2013b). Based on this information, no lakes, rivers or streams are known to occur within Pu‘u Maka‘ala NAR, as is common in young volcanic landscapes.

A variety of wetland features, including bogs, seeps and ephemeral pools occur throughout the NAR (DOFAW, 2013b). No wetland features are present within or immediately proximate to the proposed infrastructure or terrestrial sampling plots.

3.4.2 Groundwater

Groundwater in this region is generally either basal or perched (DAGS, 2002). The proposed project would be located within the Keaau hydrologic unit, which is part of the Northeast Mauna Loa aquifer sector. The sustainable yield of this hydrologic unit is 395 million gallons per day, with existing water use less than 5 percent of this amount (Commission on Water Resource Management [CWRM], 2008). No portion of Hawai‘i Island has been designated as a groundwater management area (CWRM, 2005).

3.5 Biological Resources

This section describes the biological resources found at the proposed project site, which include plants and wildlife, threatened and endangered species, and migratory birds. Biological resources are
protected under both federal and state laws, including the ESA and HRS Chapter 195D. The ESA requires federal agencies to ensure their actions do not jeopardize the continued existence of any federal listed endangered or threatened species; Section 7 of the ESA requires consultation with USFWS regarding any action that may affect a listed species. The status of the ESA Section 7 consultation process is addressed in Section 5.2.

3.5.1 General Setting

The proposed project is located within Pu‘u Maka‘ala NAR, which was established to protect valuable native forest and associated plant and wildlife species. The habitat within Pu‘u Maka‘ala NAR represents some of the highest quality wet and mesic native forest on Hawai‘i Island. It provides an important link between lower elevation forest within Hawai‘i Volcano National Park and higher elevation areas of the Kilauea, Keauhou, and Upper Waiakea forests, which collectively support a range of ‘ōhi‘a (Metrosideros polymorpha) and koa (Acacia koa) forest types (DOFAW, 2013b).

The ‘ōhi‘a and koa forests within Pu‘u Maka‘ala NAR provide important habitat for some of Hawai‘i’s rarest species, as well as several rare plants, as further discussed in Section 3.5.5. These species are particularly vulnerable to damage from feral ungulates (hooved animals such as pigs, goats, and sheep), which damage forests by trampling, uprooting, and eating native plants. Fencing has been found to be the most effective method to protect native forests from the threat of ungulates, while still allowing for public access (DOFAW, 2016a). Most of Pu‘u Maka‘ala NAR, including the entire project area, is protected by ungulate fencing.

3.5.2 Vegetation

There are three general vegetation zones within Pu‘u Maka‘ala NAR. These are generally based on elevation and moisture regime, and comprise one or more vegetation communities, as follows:

- **Lowland Wet:** The lowland wet zone generally occurs in the lower elevations of the NAR, below approximately 3,280 feet (1,000 meters). ‘ōhi‘a Lowland Wet Forest is the predominant vegetation community within this zone.

- **Montane Wet:** Areas above the lowland wet zone (approximately 3,280 feet [1,000 meters]) transition to the montane wet zone, which contains three native plant communities: ‘ōhi‘a/Hāpu‘u Montane Wet Forest, Koa/‘ōhi‘a Montane Wet Forest, and Carex alligata Montane Wet Grassland.

- **Montane Mesic:** The upper-most elevations in the northwestern portion of the NAR are within the montane mesic zone, which contains three native plant communities: Koa/‘ōhi‘a Montane Mesic Forest, ‘ōhi‘a Montane Mesic Forest, and ‘ōhi‘a Woodland (DOFAW, 2013b).

The infrastructure associated with the proposed NEON field study site would be located within Koa/‘ōhi‘a Montane Mesic Forest, with the exception of the precipitation gauge, which would be located in former pastureland dominated by non-native grass species. The terrestrial sampling plots/grids would be distributed across the various montane wet and montane mesic forest vegetation communities, particularly ‘ōhi‘a/Hāpu‘u Montane Wet Forest.

‘ōhi‘a/Hāpu‘u Montane Wet Forest is the most extensive of the vegetation communities within the NAR. In addition to ‘ōhi‘a and hāpu‘u (hāpu‘u pulu [Cibotium glaucum], hāpu‘u ‘i‘i [C. menziesii] and meu [C. chamissoii]), other native species in this habitat include ‘ālaka (Cheirodendron trigynum), kāwā‘u (Ilex anomala), pilo (Coprosma spp.), and kōlea (Myrsine lessertiana). Understory species include Pneumatopteris sandwichensis, hō‘o (Diplazium sandwichianum), ‘ama‘u (Sadleria spp.), Dryopteris spp., uluhe (Dicranopteris linearis), kanawao (Broussaisia arguta), ‘ōhā wai (Clermontia spp.), ha‘iwale (Cyrtandra spp.), hāhā (Cyanea spp.), maile (Alyxia oliviformis), ālani (Melicope spp.), and ‘ōhelo
(Vaccinium spp.). The other wet and montane forest vegetation communities include a similar mix of species, but vary in terms of the density and diversity of the sub-dominant and understory species. Although ‘ōhi’a remains dominant, these vegetation types support less hāpu’u and generally are less diverse. In addition, native trees and shrubs may be more prevalent in the understory, particularly in the mesic forest communities. A prominent feature of both the Koa/‘Ōhi’a Montane Wet Forest and Koa/‘Ōhi’a Montane Mesic Forest are large stature koa trees, ranging up to 120 feet in height.

Overall, more than 160 endemic vascular plant and fern species occur within Pu‘u Maka‘ala; a detailed listing of known vegetation species is provided in the Pu‘u Maka‘ala NAR Management Plan (DOFAW, 2013b). Several of these species are federally and state listed as threatened or endangered, and in some cases, critical habitat has been designated within the NAR. Threatened and endangered species and critical habitat are further discussed in Section 3.5.5.

3.5.3 Wetlands

Pu‘u Maka‘ala NAR supports a variety of wetland types, including bogs, seeps and ephemeral pools (DOFAW, 2013b). None of the proposed infrastructure or terrestrial sampling plots would occur within or in the immediate vicinity of wetland habitat.

3.5.4 Wildlife

The native forest in Pu‘u Maka‘ala NAR provides valuable habitat for a variety of native species, particularly forest birds. These include seven species of honeycreeper (‘akiapōlā‘au [Hemignathus munroi], Hawai‘i ‘amakihi [Hemignathus virens], ‘apapane [Himatione sanguinea], alawi [Loxops mana], Hawai‘i ‘ākea [Loxops coccineus], ‘ō‘ū [Psittirostra psittacea], and ‘i‘wi [Vestiaria coccinea]). Five of these species are listed as endangered, as further discussed in Section 3.5.5. The Kūlani portion of the NAR supports some of the highest densities of these species on Hawai‘i Island (DOFAW, 2013b).

Pu‘u Maka‘ala NAR also provides habitat for the endangered Hawaiian hawk or ʻio (Buteo solitarius) and the Hawaiian goose or nēnē (Branta sandvicensis). Endangered seabird species, including the Hawaiian petrel or ʻau‘u (Pterodroma sandwichensis) and the band-rumped storm petrel or ʻakēʻakē (Oceanodroma castro) may fly over the NAR while travelling between the ocean and nesting areas on the upper, eastern slopes of Mauna Loa. Although the species is not historically known from this location, there are plans to introduce the endangered Hawaiian crow or ʻalalā (Corvus hawaiiensis) within the NAR. These endangered species are further discussed in Section 3.5.5.

Non-endangered native bird species that occur within Pu‘u Maka‘ala NAR include apapane (Himatione sanguinea), amakihi (Hemignathus virens), ʻelepaio (Chasiempis sandwichensis), ʻoma‘o or Hawaiian thrush (Phaeornis obscurus), Hawaiian owl or pueo (Asio flammeus sandwichensis), and Pacific golden-plover or kōlea (Pluvialis fulva). These species are year-round residents and are protected by the Migratory Bird Treaty Act (MBTA). Non-native birds that commonly occur include Japanese white-eye (Zosterops japonicus), red-billed leiothrix (Leiothrix lutea), northern cardinal (Cardinalis cardinalis), and kalij pheasant (Lophura leucometanlos).

Hawai‘i’s only endemic land mammal, the endangered Hawaiian hoary bat or ʻōpe‘ape‘a (Lasius cinereus semotus), is known to occur in the NAR, as further discussed in Section 3.5.5.

A wide variety of invertebrate species have been documented within the NAR, including insects, spiders and snails. These include three species of picture wing flies (Drosophila spp.), three endemic genera of leaf hoppers (Leialoha, Nesodyne, and Nesothoe), and three species of endemic damselfly (Megalagrion hawaiienne, Megalagrion calliphya, and Megalagrion koelense) (DOFAW, 2013b).
3.5.5 Listed Species and Critical Habitat

As noted above, the high quality and expansive tracts of koa and ‘ōhi’a forest in the NAR and surrounding areas provides important habitat for some of Hawai‘i’s rarest birds, plants, and other species. Many of these have been federally listed as threatened or endangered and as such, are afforded protection under the ESA. HRS Chapter 195D-4 specifies that any species designated to be endangered or threatened pursuant to the ESA shall also be designated under state law. DLNR may also designate additional species that are not federally listed.

To identify federally and state-listed species that could occur in the NAR, input was requested from USFWS, DOFAW, and other knowledgeable entities. In addition, the Pu‘u Maka‘ala NAR Management Plan was specifically reviewed for information pertaining to threatened and endangered species occurrence. The resulting list of federally and state-listed species that are known (or were historically known) to occur or otherwise may occur within Pu‘u Maka‘ala NAR, and therefore may be present within the project area, is provided in Table 6.

As indicated in Table 6, critical habitat has been designated within Pu‘u Maka‘ala NAR for multiple plant species, as well as for the picture-wing fly (Drosophila mulli). The extent of critical habitat is illustrated in Figure 5.

**TABLE 6**
Federally and State-listed Species Potentially Occurring at Pu‘u Maka‘ala NAR

<table>
<thead>
<tr>
<th>Species Name</th>
<th>Status</th>
<th>Range or Habitat Requirements</th>
<th>Critical Habitat in Project Area</th>
<th>Potential to Occur in Project Area</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Plants</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mauna Loa (Ka‘u) silversword</td>
<td>Endangered (F,S)</td>
<td>Moist openings and boggy areas in wet ‘ōhi’a forests, and on lava with sparse soil in mesic shrubby ‘ōhi’a forests; occurs in Kūlani portion of NAR (USFWS, 1996 and 2015a; DOFAW, 2010).</td>
<td>Yes (northwestern portion of NAR)</td>
<td>Known to occur (outplanted); some sampling plots would be in critical habitat</td>
</tr>
<tr>
<td>Argyroxiphium kauense</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘ōhā wai Clermontia lindseyana</td>
<td>Endangered (F,S)</td>
<td>Mesic ‘ōhi’a and koa forests on leeward slopes of Haleakalā, Mauna Kea and Mauna Loa; occurs in Kūlani portion of NAR (USFWS, 1996; DOFAW, 2010).</td>
<td>Yes (northwestern portion of NAR)</td>
<td>Known to occur (outplanted); tower and some sampling plots would be in critical habitat</td>
</tr>
<tr>
<td>‘ōhā wai Clermontia peleana</td>
<td>Endangered (F,S)</td>
<td>Grows epiphytically in montane wet forests; outplanted in Kūlani portion of NAR (USFWS, 1996 and 2015b).</td>
<td>No</td>
<td>Known to occur (outplanted)</td>
</tr>
<tr>
<td>hāhā Cyanea copelandii ssp.</td>
<td>Endangered, Possibly Extinct (F,S)</td>
<td>Montane wet forest dominated by hāpu‘u, elevation 2,200-2,900 feet (USFWS, 1996 and 2012a).</td>
<td>No</td>
<td>Unlikely; believed to be extinct</td>
</tr>
<tr>
<td>copelandii</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘akū‘akū Cyanea platiphylla</td>
<td>Endangered (F,S)</td>
<td>Lowland and montane wet forests dominated by koa and ‘ōhi’a; elevation 390-3,000 feet (USFWS, 2012b; DOFAW, 2016b).</td>
<td>No</td>
<td>May occur</td>
</tr>
</tbody>
</table>
### TABLE 6
Federally and State-listed Species Potentially Occurring at Pu’u Maka’ala NAR

<table>
<thead>
<tr>
<th>Species Name</th>
<th>Status</th>
<th>Range or Habitat Requirements</th>
<th>Critical Habitat in Project Area</th>
<th>Potential to Occur in Project Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>hāhā Cyanea shipmanii</td>
<td>Endangered (F,S)</td>
<td>Montane mesic forest dominated by ‘ōhi’a on windward slopes; elevation 5,400-6,200 feet; outplanted in Kūlani portion of NAR (USFWS, 1996; DOFAW, 2010).</td>
<td>Yes (northwestern portion of NAR)</td>
<td>Known to occur (outplanted); some sampling plots would be in critical habitat</td>
</tr>
<tr>
<td>hāhā Cyanea stictophylla</td>
<td>Endangered (F,S)</td>
<td>Grows epiphytically or in moss; lowland to montane, mesic to wet forest dominated by koa and ‘ōhi’a at elevations of 3,500-6,400 feet; outplanted in Kūlani portion of NAR (USFWS, 1996 and 2012c; DOFAW, 2010).</td>
<td>Yes (western portion of NAR)</td>
<td>Known to occur (outplanted); tower and some sampling plots would be in critical habitat</td>
</tr>
<tr>
<td>ʻakū Cyanea tritomanta</td>
<td>Endangered (F,S)</td>
<td>Lowland wet, montane wet, and wet cliff ecosystems; one population known within Pu’u Maka’ala (USFWS, 2013a).</td>
<td>No</td>
<td>Known to occur</td>
</tr>
<tr>
<td>ha’iwale Cyrtandra giffardii</td>
<td>Endangered (F,S)</td>
<td>Wet montane forest dominated by hāpu’u; elevation 2,400-4,900 feet; previously known to occur in Kūlani portion of NAR (USFWS, 1996 and 2012d; DOFAW, 2010).</td>
<td>Yes (southern portion of NAR)</td>
<td>May occur; some sampling plots would be in critical habitat</td>
</tr>
<tr>
<td>ha’iwale Cyrtandra tintinnabula</td>
<td>Endangered (F,S)</td>
<td>Lowland wet forest dominated by dense koa, ʻōhi’a and hāpu’u; elevation 2,100-3,400 feet (USFWS, 1996 and 2012e).</td>
<td>No</td>
<td>May occur</td>
</tr>
<tr>
<td>nānū Gardenia remyi</td>
<td>Endangered (F,S)</td>
<td>Mesic to wet forest on Kauai, Molokai, Maui and Hawai’i Island; elevation 190-2,500 feet (USFWS, 2013b).</td>
<td>No</td>
<td>May occur</td>
</tr>
<tr>
<td>ʻohe Joinvillea ascendens ssp. ascendens</td>
<td>Endangered (F,S)</td>
<td>Wet to mesic ʻōhi’a-koa lowland and montane forests and along intermittent streams; elevation 1,000-4,300 feet (USFWS, 2013b).</td>
<td>No</td>
<td>May occur</td>
</tr>
<tr>
<td>No common name Phyllostegia floribunda</td>
<td>Endangered (F,S)</td>
<td>Lowland wet, montane mesic, and montane wet habitat; one occurrence known in wild (plus outplanting) in Pu’u Maka’ala NAR (USFWS, 2013a).</td>
<td>No</td>
<td>Known to occur</td>
</tr>
<tr>
<td>kiponapona Phyllostegia racemosa</td>
<td>Endangered (F,S)</td>
<td>Mesic to wet ʻōhi’a-koa forests on the windward slopes of Mauna Kea and Mauna Loa; elevation 2,300-6,350 feet; outplanted in Kūlani portion of NAR (USFWS, 2012f; DOFAW, 2010).</td>
<td>Yes (northwestern portion of NAR)</td>
<td>Known to occur; tower and some sampling plots would be in critical habitat</td>
</tr>
<tr>
<td>No common name Phyllostegia velutina</td>
<td>Endangered (F,S)</td>
<td>Montane mesic and dry forests to montane wet forests; occurs in Kūlani portion of NAR (USFWS, 2012g; DOFAW, 2010).</td>
<td>Yes (northwestern portion of NAR)</td>
<td>Known to occur; tower and some sampling plots would be in critical habitat</td>
</tr>
<tr>
<td>ʻānunu Sicyos alba</td>
<td>Endangered (F,S)</td>
<td>Montane wet forest dominated by ʻōhi’a and hāpu’u; elevation 3,270-5,072 feet; one known occurrence at Pu’u Maka’ala (USFWS, 2012h).</td>
<td>Yes (southern portion of NAR)</td>
<td>Known to occur; some sampling plots would be in critical habitat</td>
</tr>
<tr>
<td>Species Name</td>
<td>Status</td>
<td>Range or Habitat Requirements</td>
<td>Critical Habitat in Project Area</td>
<td>Potential to Occur in Project Area</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--------------</td>
<td>------------------------------------------------------------------------------------------------</td>
<td>----------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Hawaiian vetch Vicia menziesii</td>
<td>Endangered</td>
<td>Wet to mesic ʻōhiʻa-koa forest; elevation 1570-5640 feet; outplanted in Kūlani portion of NAR (USFWS, 2012); DOFAW, 2010.</td>
<td>No</td>
<td>Known to occur</td>
</tr>
<tr>
<td><em>Ferns</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>palai laʻaʻu Adenophorus periens</td>
<td>Endangered</td>
<td>Grows epiphytically in lowland wet and wet cliff ecosystems (USFWS, 2010).</td>
<td>No</td>
<td>May occur</td>
</tr>
<tr>
<td>No common name Asplenium fragile var. insulare</td>
<td>Endangered</td>
<td>Grows in lava tubes, pits, deep cracks, and lava tree molds in montane wet, mesic, and dry forest habitats (USFWS, 1988).</td>
<td>No</td>
<td>May occur</td>
</tr>
<tr>
<td><em>Birds</em></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nēnē, Hawaiian goose Branta sandvicensis</td>
<td>Endangered</td>
<td>Frequents scrubland, grassland, golf courses, sparsely vegetated slopes, and open lowland country. Their current distribution has been highly influenced by captive-bred releases into the wild. Known to occur in Kūlani portion of NAR (DOFAW, 2010).</td>
<td>No</td>
<td>Known to occur</td>
</tr>
<tr>
<td>ʻio, Hawaiian hawk Buteo solitarius</td>
<td>Endangered</td>
<td>Needs native forest to nest; but able to use a broad range of habitats for foraging, including forests dominated by native and introduced vegetation; elevation from sea level to 6,500 feet; known to occur in Kūlani portion of NAR (DOFAW, 2010).</td>
<td>No</td>
<td>Known to occur</td>
</tr>
<tr>
<td>ʻakãpōlãʻau Hemignathus munroi</td>
<td>Endangered</td>
<td>Montane mesic and wet forest dominated by koa and ʻōhiʻa; predominantly at elevations above 4000 feet with lower numbers of mosquitos; known to occur in Kūlani portion of NAR (USFWS, 2006a; DOFAW, 2010).</td>
<td>No</td>
<td>Known to occur</td>
</tr>
<tr>
<td>Hawaiʻi ʻākepa Loxops coccineus</td>
<td>Endangered</td>
<td>Old-growth ʻōhiʻa or ʻōhiʻa/koa forest, with nesting in cavities of large trees; known to occur in Kūlani portion of NAR (USFWS, 2006a; DOFAW, 2010).</td>
<td>No</td>
<td>Known to occur</td>
</tr>
<tr>
<td>alawi Loxops mana</td>
<td>Endangered</td>
<td>Upper elevation ʻōhiʻa and ʻōhiʻa/koa forests on the windward coast, at elevations above 2200 feet; known to occur in Kūlani portion of NAR (DOFAW, 2010).</td>
<td>No</td>
<td>Known to occur</td>
</tr>
<tr>
<td>ʻōʻū Psittirostra psittacea</td>
<td>Endangered</td>
<td>Mid-elevation (3,000-5,000 feet) mesic and wet ʻōhiʻa forests; may be extinct (last detected in 1989) (USFWS, 1996).</td>
<td>No</td>
<td>Species is believed to be extinct</td>
</tr>
<tr>
<td>ʻiʻwi, scarlet honeycreeper Vestiaria coccinea</td>
<td>Proposed Threatened</td>
<td>Montane mesic and wet forest dominated by koa and ʻōhiʻa; predominantly at elevations above 4000 feet with lower numbers of mosquitos; known to occur in Kūlani portion of NAR (DOFAW, 2010).</td>
<td>No</td>
<td>Known to occur</td>
</tr>
</tbody>
</table>
TABLE 6
Federally and State-listed Species Potentially Occurring at Pu’u Maka’ala NAR

<table>
<thead>
<tr>
<th>Species Name</th>
<th>Status</th>
<th>Range or Habitat Requirements</th>
<th>Critical Habitat in Project Area</th>
<th>Potential to Occur in Project Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘alalā, Hawaiian crow</td>
<td>Endangered</td>
<td>Upland ‘ōhi’a or ‘ōhi’a-koo forests on Hualalai and Mauna Loa; elevation 3000-6000 feet; currently extinct, but captive bred birds will be released within Pu’u Maka’ala starting in late 2016 (DOFAW, 2016c).</td>
<td>No</td>
<td>May occur (depending on the location of future releases of captive bred birds)</td>
</tr>
<tr>
<td>‘oké’oké, band-rumped storm petrel</td>
<td>Endangered</td>
<td>Known to nest on Hawai’i Island in burrows and crevices in high elevation lava fields, which are visited after dark. When not at nest locations, it forages on the open ocean.</td>
<td>No</td>
<td>Species may fly over site while travelling between upland nest sites and the ocean</td>
</tr>
<tr>
<td>‘uo’u or Hawaiian petrel</td>
<td>Endangered</td>
<td>Nest in burrows, primarily in remote montane locations, along large rock outcrops, under cinder cones, under old lichen-covered lava, or in soil beneath dense vegetation.</td>
<td>No</td>
<td>Species may fly over site while travelling between upland nest sites and the ocean</td>
</tr>
<tr>
<td>Newell’s shearwater</td>
<td>Threatened</td>
<td>Nests in burrows under ferns on forested mountain slopes; needs an open downhill flight path. Burrows are used year after year, usually by the same pair of birds.</td>
<td>No</td>
<td>Species may fly over site while travelling between upland nest sites and the ocean</td>
</tr>
</tbody>
</table>

**Mammals**

<table>
<thead>
<tr>
<th>Species Name</th>
<th>Status</th>
<th>Range or Habitat Requirements</th>
<th>Critical Habitat in Project Area</th>
<th>Potential to Occur in Project Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘ōpe’ape’o, Hawaiian hoary bat</td>
<td>Endangered</td>
<td>Roosts in a variety of native and non-native vegetation from 3-29 feet above ground level; rarely observed using lava tubes, cracks in rocks, or manmade structures for roosting. Water courses and edges appear to be important foraging areas; known to occur in Kūlani portion of NAR (DOFAW, 2010).</td>
<td>No</td>
<td>Known to occur</td>
</tr>
</tbody>
</table>

**Invertebrates**

<table>
<thead>
<tr>
<th>Species Name</th>
<th>Status</th>
<th>Range or Habitat Requirements</th>
<th>Critical Habitat in Project Area</th>
<th>Potential to Occur in Project Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picture-wing fly</td>
<td>Threatened</td>
<td>Restricted to the island of Hawai’i; historically known from three locations, 3,200-4,000 feet in elevation. Adult flies are found on the leaf undersides of <em>loulu</em> (<em>Pritchardia beccariana</em>) (USFWS, 2006b).</td>
<td>Yes (in far eastern tip of NAR)</td>
<td>Known to occur (but not recorded since 2000)</td>
</tr>
</tbody>
</table>

The ‘Alalā Project

Historically known from dry and mesic forests in the western and southern portions of Hawai’i Island, ‘alalā has been extinct in the wild for approximately 15 years. The ‘Alalā Project is a joint effort by DOFAW, USFWS, and San Diego Zoo Global to reintroduce ‘alalā to the wild and establish a self-sustaining population. Pu’u Maka’ala NAR was selected as the primary site for release of the captive raised birds. Although the species did not historically occur in this location, it was known to be present in nearby areas, including Hawai’i Volcanoes National Park, as recently as 1983. Pu’u Maka’ala was selected as the release site because the high quality forest habitat and the protection provided by ungulate fencing.
NOTE: It is possible that individual plot or grid locations may be adjusted within the limits of the proposed project area. Any adjustment in plot or grid location would be coordinated with DOFAW/NARS.
This page is intentionally left blank.
The first release occurred in December 2016; however, three of the birds did not survive and the remaining birds were taken back into captivity. Twelve birds are planned to be released at a new, undisclosed location within the NAR in late summer or early fall 2017. Similar releases are anticipated to occur annually for the next 5 years, depending on the success and survival of the released birds. Following each release, there will be a team of onsite biologists providing supplemental feeding, conducting ongoing predator control, monitoring life history, and conducting nest searches for approximately 5 years.

3.5.6 Invasive Species

Invasive species are widely recognized as a significant threat to native species and habitat in Hawai‘i. Given the prevalence of native species in Pu‘u Maka‘ala NAR, invasive species are considered to be a severe threat, and are actively managed by NARS staff through implementation of their management plan.

Invasive plant species are problematic because they readily disperse over long distances and can easily establish and rapidly spread in undisturbed habitats, thus displacing native species across broad tracts of land. These changes can lead to a loss of species diversity, loss of habitat for native fauna, and long-term changes in ecosystem function. High priority invasive weeds (i.e., species that are considered to be particularly problematic because of their ability to spread or modify natural habitat) currently present in Pu‘u Maka‘ala NAR include strawberry guava (Psidium cattleianum), banana pokua (Passiflora tarminiana), himalayan raspberry (Rubus ellipticus), cane tibouchina (Tibouchina herbacea), kāhili ginger (Hedychium gardnerianum), palm grass (Setaria palmifolia), Australian tree fern (Sphaeropteris cooperi), clidemia or Koster’s curse (Clidemia hirta), tropical ash (Fraxinus uhdei), and silver-leaf cotoneaster (Cotoneaster pannosus). Other species that have not been identified in the NAR, but are of serious concern in adjacent areas include miconia (Miconia calvescens) and night-blooming jasmine (Cestrum nocturnum) (DOFAW, 2013a).

A variety of invasive animal species also pose threats to biodiversity and the natural ecosystem in this region. Particularly problematic species include feral pigs, rats (Rattus spp.), mice (Mus musculus), cats (Felis catus), and mongoose (Herpestes auropunctatus). These species are known to compete with or consume native species (particularly native bird species). The NAR has also been invaded by non-native birds (e.g., Japanese white-eye, northern cardinal, and others). Other invasive species that threaten the native ecosystem and are known from this region include Jackson’s chameleon (Chamaeleo jacksonii), coqui frog (Eleutherodactylus coqui), and a variety of invertebrate species, including fire ants (Wassmania auropunctata). Feral goats and feral mouflon sheep are invasive species that are prevalent just outside the NAR border.

The proposed NEON infrastructure would be located in an area that is actively managed to preclude invasive species, particularly feral pigs, cats, mongoose, rats and mice. No priority weed species are known to occur in this area.

Rapid ʻŌhiʻa Death

Rapid ʻŌhiʻa Death is a newly identified disease, associated with the fungus Ceratocystis fimbriata, which is killing mature ʻōhiʻa trees. It has killed hundreds of thousands of trees in the South Hilo, Puna, Kau, and Kona districts of Hawaiʻi Island, and has the potential to affect ʻōhiʻa forests statewide. The fungus attacks the vascular system of the tree, causing the crown of the tree to turn yellow then brown in a matter of days or weeks. The fungus lives in the sapwood of infected trees and can persist for more than a year after a tree is cut. The fungus can be spread through movement of infected wood or soil, as
well as on clothing, gear and equipment. There is no known cure for this disease (University of Hawai‘i, College of Tropical Agriculture and Human Resources [CTAHR], 2016).

In an effort to prevent the spread of the disease, the Rapid ‘Ōhi’a Death Working Group (comprising agencies, land managers, and researchers) has established recommended measures for work in affected or potentially affected areas. These include avoiding movement or transport of ‘ōhi’a wood, cleaning tools used to cut ‘ōhi’a, cleaning gear and clothing/shoes before and after entering the forest, and washing vehicles that are taken off-road. In addition, the Hawai‘i Board of Agriculture has approved a quarantine on intrastate movement of ‘ōhi’a and ‘ōhi’a products.

3.6 Archaeological, Architectural, and Cultural Resources

Cultural resources include prehistoric and historic archaeological sites, historic architectural properties (including buildings, structures, and objects), historic districts, designed landscapes, and traditional cultural properties (TCPs). These resources are protected under both federal and state laws, including NHPA and HRS Chapter 6E. In addition, HRS Chapter 343 and its implementing rules (HAR 11-200) require consideration of a proposed project’s potential effect on cultural beliefs, practices, and resources. Four sub-resources (archaeological sites, architectural properties, TCPs, and other cultural uses, practices, and properties) are discussed as part of this section. Additional detail regarding the status of the NHPA Section 106 consultation process is provided in Section 5.2.

3.6.1 Area of Potential Effects

As described in Section 1.4.1, the NHPA Section 106 process requires identification of the APE, which is the geographic area(s) within which a project may directly or indirectly affect historic properties. The APE for the proposed project, as described in correspondence with the SHPD (see Appendix C), was defined to include the proposed location for the scientific infrastructure and all potential terrestrial sampling areas, as shown in Figure 6.

3.6.2 Historical Context

Early Hawaiian settlement is traced back to A.D. 300 and was primarily concentrated along the “watered, windward (ko‘olau) shores” of Hawai‘i’s main islands (Maly and Maly, 2004). With an abundant supply of reliable water, these areas were conducive to agricultural production and the establishment of communities. The population primarily “engaged in subsistence practices in the form of fishing, and in agriculture on lands extending towards the uplands from the bays” (Maly and Maly, 2004). Hilo Bay attracted a large concentration of settlers due to its “lush tropical verdure and beauty” (Maly and Maly, 2004). As the population increased, settlers moved away from the more naturally rich areas and towards the more inaccessible areas of the islands.

Traditionally, natural and cultural resources are considered indistinguishable from one another in Hawaiian culture (Maly and Maly, 2004):

Native traditions described the formation (literally the birth) of the Hawaiian Islands and the presence of life on, and around them, in the context of genealogical accounts. All forms of the natural environment, from the skies and mountain peaks, to the watered valleys and lava plains, and to the shore line and ocean depths are believed to be embodiments of Hawaiian gods and deities.

Hawai‘i, the largest of the islands, was the first island to be “born.” Since ancient times, Hawaiians have established land and resource management systems. By circa 1525, the island of Hawai‘i had been divided into six districts (moku-o-loko), one of which was Hilo.
Figure 6
Area of Potential Effects (APE)
National Ecological Observatory Network (NEON) Project
Hawaii Island, Hawaii

LEGEND
- Precipitation Gauge
- Tower
- Instrument Hut
- Staging Area
- Soil Horizon
- Soil Array
- Existing Power Pole
- Power Drop from Existing Power Pole
- On-grade Electrical Conduit
- Boardwalk
- Existing Access Road
- Extent of Potential Construction Activities
- Extent of Potential Terrestrial Sampling
- Tax Map Key
- Pu'u Maka'ala Natural Area Reserve
- Area of Potential Effects (APE)

Aerial Source: NAIP, 2016
This page is intentionally left blank.
The “district of Hilo itself, extends from the shore up to the 9,000 foot level on Mauna Kea, and up to the summit of Mauna Loa, where it joins the districts of Kaʻu, Kona and Hamakua” (Maly and Maly, 2004). Hilo itself was subdivided into three traditional regions: Hilo Hanakeahi, Hilo One, and Hilo Paliku. Today, the district is divided into North and South Hilo. As a whole, “Hilo has been most famed for its rains, and is commemorated in many traditional mele (chants) and ‘olelo no‘eau (poetical sayings) by reference to the rains” (Maly and Maly, 2004).

Archibald Menzies and Captain George Vancouver were among the first Europeans to visit Hawaiʻi. They arrived in 1793-1794 and were the first foreigners to reach the top of Mauna Loa, a feat that would not be repeated by another foreigner until 1834. Because of the remoteness of the ʻŌla’a and Waiakea forest lands that make up the Puʻu Makaʻala NAR, the area remained largely untouched by government infrastructure projects, including trails or roads (Maly and Maly, 2004). With the arrival of more European explorers, however, came new plant and animal species that often posed a threat to the natural Hawaiian landscape. In 1876, King David Kalākaua established the Act for the Protection and Preservation of Wood and Forests, which authorized the Minister of the Interior to “set apart and protect from ‘damage by trespass of animals or otherwise, such woods and forest lands, the property of government...best suited for the protection of water resources...”” (Maly and Maly, 2004). In 1904, the Board of Commissioners of Agriculture and Forestry enacted further legislation to protect the district of Hilo; “the Commissioners approved the recommendation that “all government and other lands in the district of Hilo, Island of Hawaiʻi, lying above a line approximately 1750 feet above the sea, be set apart as forestry reservation’” (Maly and Maly, 2004). More land was added to the reservation in 1905 and 1913, including sections of the ʻŌla’a tract and upland sections of the Waiakea, “thus, making a contiguous line of forest across the Hilo District, and adjoining the Puna District” (Maly and Maly, 2004).

Records indicate that ‘practitioner’ trails associated with traditional and customary activities such as bird catching and canoe-making likely existed in the region (Maly and Maly, 2004). It was not until the 1940s that a road was constructed through the ʻŌla’a and Waiakea forest lands, around the same time that the Kūlani Prison Farm (now Kūlani Correctional Facility) was opened. An access road was constructed in the early 1950s that connected the prison to Mauna Loa’s summit region (Maly and Maly, 2004).

Hawaiʻi was among the first states in the United States to establish a system of NARs. In 1981, Executive Order (E.O.) 3102, enacted by Governor Waiheʻe, dedicated sections of the Waiakea and ʻŌla’a Forest Reserve lands as the Puʻu Makaʻala NAR (Maly and Maly, 2004).

3.6.3 Archaeological Resources

Prehistoric and historic archaeological resources are items or sites resulting from human activities that predate and postdate written records, respectively. A literature review was completed at the SHPD library and additional research was conducted to locate previous EAs and cultural studies completed for the proposed site area. Three reports have been produced relating to the area within the APE and are listed in Table 7.
TABLE 7
Cultural Resources Studies Conducted within the APE

<table>
<thead>
<tr>
<th>Title</th>
<th>Author</th>
<th>Date</th>
<th>Findings</th>
</tr>
</thead>
</table>
| Archaeological Inventory Survey and Limited Cultural Assessment for the Proposed Wastewater Treatment Facility at Kūlani Correctional Facility (TMK:3-2-4-08:9) | Rechtman, Robert B. Ph.D. | July 2001 | No sites found. Archeological expectations for the general area are very limited due to location in the "rainforest zone."
| He Mo‘olelo ʻĀina: A Cultural Study of the Pu‘u Maka‘ala Natural Area Reserve Districts of Hilo and Puna, Island of Hawai‘i | Maly, Keapa and Onaona Maly (Kumu Maly Associates LLC) | May 2004 | No references to archaeological sites. The overall NAR was characterized as a cultural landscape, but no formal determination of eligibility was made. |
| SHPD Consultation for the Pu‘u Maka‘ala Natural Area Reserve Management Plan | DOFAW/SHPD | September, November 2011 | DOFAW requested concurrence with determination of “no historic properties affected” (dated September 23, 2011); SHPD concurred with determination (dated November 18, 2011) |

The literature review indicated that no archaeological sites have been previously identified within the APE. No records or references to specific archaeological sites within the APE were mentioned in the 2004 cultural study by Kumu Pono and the findings were negative for the other two reports listed in Table 7. No additional archaeological survey work was conducted for this undertaking.

3.6.4 Architectural Resources

Historic architectural resources consist of buildings, structures, objects, or other manmade items resulting from human activities that occurred after European settlement.

One architectural resource that is more than 50 years old is located within the APE: the Mauna Loa Boys School building. The school was constructed in 1952 and remained open for only 1 year, closing in 1953. At various points in its history, it was used by the Kūlani Correctional Facility and for military training activities. Currently, the dilapidated building is used to store fencing materials. Original fenestration has been removed and replaced with plywood, large sections of the roof are missing, and the surrounding landscape is overgrown. The building has not been used as a school since 1953. The building lacks integrity of materials, design, workmanship, feeling, association, and setting. A November 18, 2011, letter from the Deputy SHPO to DOFAW regarding the Pu‘u Maka‘ala NAR Management Plan describes the school as in “poor condition.” During a Section 106 Consulting Parties meeting held for the proposed project on October 26, 2016, meeting attendees likewise noted the poor condition of the former school and that the proposed NEON site would have no potential to affect the building. The building was not identified as a historic property. In addition to the Mauna Loa Boys School, there are several water tanks in the APE; however, these are less than 50 years old and do not meet any other criteria for NRHP eligibility. Because the proposed project has no potential to affect the Mauna Loa Boys School, architectural resources are not further analyzed.

3.6.5 Traditional Cultural Properties

TCPs are sites, areas, and materials associated with cultural practices or beliefs of a living community that are rooted in that community’s history and are important in maintaining the continuing cultural identity of the community. The 2004 study by Kumu Pono (Maly and Maly, 2004), which was a cultural study of the Pu‘u Maka‘ala NAR (which includes the entire APE), notes:
...the mountain landscape, its native species, and the intangible components therein, are a part of a sacred Hawaiian landscape. Thus, the landscape itself is a highly valued cultural property. Its protection, and the continued exercise of traditional and customary practices, in a traditional and customary manner, are mandated by native custom, and State and Federal Laws (as those establishing the ‘Ola’a and Waiakea Forest Reserves, the Pu’u Maka’ala NAR, and the Endangered Species Act).

As such, the overall NAR has been characterized as a cultural landscape, but no formal determination of NRHP-eligibility for the landscape as a TCP has occurred. Although the cultural landscape has not been identified as eligible for listing, potential impacts to this resource are considered in Section 4.6.

3.6.6 Cultural Uses, Practices, and Properties

Other cultural resources can include plant or animal species, objects, places, uses or practices that are considered culturally or spiritually significant. While these properties may be culturally significant, they are not eligible as historic properties under the NRHP and thus are not covered by the NHPA.

Individual species in the NAR may be culturally significant, such as the ‘alalā or ‘io, both of which are regarded as ‘aumakua (Hawaiian ancestral spirits). While species with spiritual or cultural significance are not eligible for inclusion in the NRHP, they may be considered potentially significant cultural properties. Descriptions of species known to occur within the NAR are included in Biological Resources, Section 3.5.

Historically, areas of the NAR were used to build bird-catcher’s shelters, canoes, trails, and trailside resting places and shelters. The 2004 Kumu Pono report notes:

Because of the remote nature of the ‘Ola’a and Waiakea forest lands which comprise the present-day Pu’u Maka’ala NAR, no government communications pertaining to historic trails or government road projects exist for the region. Boundary Commission testimonies describe trails through the forest lands, rising from the lowlands of Waiakea, ‘Ola’a, Keauhou and Humu’ula. Based on the native traditions and kama’aina testimonies, it is likely that ‘practitioner’ trails existed throughout the forest region. Features such as ‘kahuale manu’ (bird-catcher’s shelters), ‘kahua kalaiwaa’ (canoe-makers clearings), ‘oioina’ (trailside resting places and shelters), the ‘ala hele’ (trails), and other features associated with traditional and customary accesses, would leave little evidence in the present-day, as the traditional features and uses generally had minimal impact on the natural landscape. Those things left behind, not cared for or maintained, were simply reabsorbed into the landscape.

NARS staff were interviewed to identify any known cultural sites or practices. Mr. Nick Agorastos, NAR Specialist with DLNR DOFAW, stated that he had never encountered anyone engaged in cultural practices in the site area, even though he or his staff are on the property almost daily. He noted that the NAR rules specify the need for a permit to conduct cultural practices within the NAR, and that he is only aware of two previous permit requests for Pu’u Maka’ala NAR, both involving removal of a koa log to build a canoe (Rau, 2016). There are no cultural uses or practices that are currently known to occur within the NAR or the APE.
3.7 Visual Resources

3.7.1 Background

Visual resources include natural and built features that can be seen by the public and contribute to the public’s appreciation and enjoyment of these features. Visual resources can include solitary built and natural landmarks (such as buildings, trees, and bodies of water) or entire landscapes.

Impacts to visual resources are defined in terms of the extent to which a proposed project’s presence would change the visual character and quality of the environment as seen by the public. Visual character is defined by the relationships between the existing visible natural and built landscape features. These relationships are considered in terms of how objects in the viewed landscape relate to each other in terms of visual dominance, scale, diversity, and continuity. Visual character is non-evaluative, in that it is simply a description of the viewed environment and does not assign value or degree of attractiveness to the viewed environment. Visual quality is considered in terms of the extent to which the visual elements work together to create a pleasing composition (versus contrasting with one another, thus creating an eyesore), and whether the resulting view is considered dramatic (versus common or average).

3.7.2 Existing Conditions

Pu‘u Maka‘ala NAR is located in a natural area characterized by forested vegetation and rugged, mountainous terrain. These features, combined with the remoteness of the site, generally limit the visual environment. Within and surrounding the NAR, the visual environment is dominated by the dense forest vegetation, which generally precludes broad landscape views. The NAR is not visible from any of the nearby communities. The only locations that offer any broad landscape views of the NAR are expected to be limited to Pu‘u Kipu, Kūlani Cone, some of the higher elevations within the NAR, and the NAR entrance near Kūlani Correctional Facility. Even from these higher elevations, views of the surrounding environment are still heavily dominated by the surrounding forest vegetation. There is some existing infrastructure present within the NAR that affects the visual character in the project vicinity: various fences and gates, electrical lines and poles (serving Kūlani Correctional Facility), and radio and cellular telephone towers (e.g., on Kūlani Cone). However, given the expansive natural setting, the proposed NEON site is considered to have high visual quality. Figure 7 contains photographs that illustrate the existing visual character of the proposed site.

3.8 Hazardous Materials

3.8.1 Background

Consideration of hazardous materials includes existing materials in or on the ground or in existing structures (e.g., asbestos or lead-based paint), soil or groundwater contamination (e.g., from a leaking underground storage tank), as well as materials that would be brought to or generated at the site in association with the proposed project.

3.8.2 Existing Conditions

As described throughout this document, Pu‘u Maka‘ala NAR is comprised of natural forested habitat that is actively managed by DOFAW for the protection of natural resources. This area is not known to have supported any previous land uses that would have involved or generated hazardous materials.
Figure 7a. Photograph of Proposed Tower Location and Adjacent Access Road (Pu‘u Maka‘ala NAR)

Figure 7b. Photograph of Proposed Instrument Hut and Tower Guy Wire Location (Pu‘u Maka‘ala NAR)

FIGURE 7
Photographs of Proposed Locations for NEON Infrastructure and Equipment
Figure 7c. Photograph of Proposed Precipitation Gauge Location (left side of frame) and Existing Power Line (right side of frame) *(Pu‘u Maka‘ala NAR)*

Figure 7d. Photographs of Proposed Power Drop and Auxiliary Portal Location *(Pu‘u Maka‘ala NAR)*

FIGURE 7
Photographs of Proposed Locations for NEON Infrastructure and Equipment
Furthermore, visual inspection of the proposed project area and the surrounding areas by the NEON project team did not suggest the use or presence of hazardous materials, including the presence of structures, equipment, or storage containers that might be indicative of hazardous material use. Therefore, based upon prior and present use of the proposed project site, no hazardous substances or hazardous conditions are expected to be present within the proposed project area.

3.9 Air Quality

3.9.1 Background

Under the authority of the Clean Air Act, the U.S. Environmental Protection Agency (USEPA) has established nationwide air quality standards to protect public health and welfare. These federal standards, known as National Ambient Air Quality Standards (NAAQS), represent the maximum allowable atmospheric concentrations for six criteria pollutants: carbon monoxide (CO), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), ozone, lead, and particulate matter (respirable particulate matter less than or equal to 10 micrometers in diameter [PM₁₀] and respirable particulate matter less than or equal to 2.5 micrometers in diameter [PM₂.⁵]). The NAAQS are based primarily on evidence of acute and chronic (or short-term and long-term) health effects, and apply to outdoor locations to which the general public has access.

Based on measurements of ambient criteria pollutant data, the USEPA designates areas of the United States as having air quality equal to or better than NAAQS (attainment) or worse than NAAQS (non-attainment). The general conformity rule requires federal agencies to ensure that actions they undertake in nonattainment and maintenance areas are consistent with air quality management plans for those areas.

Pursuant to HRS Chapter 342B (Air Pollution Control), the Clean Air Branch of the State of Hawai‘i Department of Health (HDOH) is responsible for implementing air pollution control in the State and has established Hawai‘i ambient air quality standards (HAAQS), which in some cases are more stringent than the comparable federal standards or address pollutants that are not covered by the federal standards. The HAAQS are based primarily on health effects data, but also reflect other considerations, such as protection of crops, protection of materials, or avoidance of nuisance conditions (such as objectionable odors).

3.9.2 Existing Conditions

In general, air quality in Hawai‘i is some of the best in the nation, primarily because of consistent trade winds and limited emission sources. Consistent with this trend, the existing air quality in the proposed project area is considered to be relatively good, in particular because of low levels of development and human activity, as well as exposure to consistently strong winds that work to disperse emissions.

HDOH and USEPA maintain a network of air quality monitoring stations throughout the islands. The closest air quality monitoring stations to the proposed project area are the Hilo and Mountain View stations. The Hilo station is located on Waianuenue Avenue near the Hilo Medical Center, and the Mountain View station is located on Volcano Road at the Mountain View Elementary School. Both stations were established to monitor vog during Kona or southerly wind conditions, and collect measurements for SO₂ and PM₂.⁵.

The most recent summary report published by HDOH provides measurements recorded in 2014. In general, the data indicate that criteria pollutant levels remain below the federal and state ambient air quality standards (HDOH, 2015). However, a vent opening on Kilauea Volcano has resulted in increased...
emissions of SO\textsubscript{2} and PM\textsubscript{2.5}, with regular exceedances of the NAAQS for SO\textsubscript{2} and occasional exceedances of the NAAQS for PM\textsubscript{2.5}. However, USEPA considers volcanic activity to be a natural, uncontrollable event and therefore the State requests exclusion of these NAAQS exceedances from attainment/non-attainment determination. Excluding these exceedances, Hawai‘i as a state is designated as having attainment status for all criteria pollutants (HDOH, 2015). Therefore, the requirements of the General Conformity Rule of the Clean Air Act do not apply.

3.10 Noise

3.10.1 Background

Noise is defined as unwanted or undesirable sound. Noise intensity, or loudness, is determined by how sound pressure fluctuates. Because the range of sound pressure ratios vary greatly over many orders of magnitude, a logarithmic scale is used to express sound levels in dimensionless units of decibels (dB).

A-weighted sound levels are typically measured or presented as equivalent sound pressure level (Leq), which is defined as the average noise level, on an equal energy basis for a stated period of time and is commonly used to measure steady state sound or noise that is usually dominant. Statistical methods are used to capture the dynamics of a changing acoustical environment. Statistical measurements are typically denoted by L\textsubscript{xx}, where “\textsubscript{xx}” represents the percentile of time the sound level is exceeded. The L\textsubscript{90} is a measurement that represents the noise level that is exceeded during 90 percent of the measurement period. Similarly, the L\textsubscript{10} represents the noise level exceeded for 10 percent of the measurement period. Table 8 shows the relative A-weighted noise values of common environmental and industrial sounds.

**TABLE 8**

Comparison of dBA Levels of Common Sounds

<table>
<thead>
<tr>
<th>Noise Source at Give Distance</th>
<th>A-Weighted Sound Level in Decibels (dBA)</th>
<th>Subjective Impression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loud Rock Music</td>
<td>110</td>
<td>Very loud</td>
</tr>
<tr>
<td>Jet Flyover at 1,000 feet</td>
<td>100</td>
<td>--</td>
</tr>
<tr>
<td>Gas lawnmower at 3 feet</td>
<td>90</td>
<td>--</td>
</tr>
<tr>
<td>Garbage disposal at 3 feet</td>
<td>80</td>
<td>--</td>
</tr>
<tr>
<td>Vacuum cleaner at 10 feet</td>
<td>70</td>
<td>Moderately loud</td>
</tr>
<tr>
<td>Heavy traffic at 300 feet</td>
<td>60</td>
<td>--</td>
</tr>
<tr>
<td>Quiet urban daytime</td>
<td>50</td>
<td>--</td>
</tr>
<tr>
<td>Quiet urban nighttime</td>
<td>40</td>
<td>Quiet</td>
</tr>
<tr>
<td>Library</td>
<td>30</td>
<td>--</td>
</tr>
<tr>
<td>Recording studio</td>
<td>10</td>
<td>Threshold of hearing</td>
</tr>
</tbody>
</table>

Note:

dBA = A-weighted decibel

Source: Caltrans, 1998

The Noise Control Act of 1972, along with its subsequent amendments (Quiet Communities Act of 1978 [42 U.S.C. Parts 4901-4918]), delegates the authority to regulate environmental noise to each state. The State of Hawai‘i has adopted statewide noise standards, set forth in HAR 11- 46 (“Community Noise
Control”); these are administered by HDOH. The stated purpose of the standards is to “provide for the prevention, control, and abatement of noise pollution in the State from the following noise sources: stationary noise sources (such as air-conditioning units, exhaust systems, generators, compressors, and pumps); and equipment related to agricultural, construction, and industrial activities” (HAR 11-46). The noise standards are the maximum permissible sound levels (as measured from the property line) and vary according to land use district. The maximum permissible sound levels for each class of land uses are listed in Table 9.

TABLE 9
Maximum Permissible Sound Levels By Zoning District

<table>
<thead>
<tr>
<th>Zoning District</th>
<th>Maximum Permissible Sound Levels [dBA] a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Daytime (7 am—10 pm)</td>
</tr>
<tr>
<td><strong>Class A:</strong> All areas equivalent to lands zoned residential, conservation,</td>
<td>55</td>
</tr>
<tr>
<td>preservation, public space, open space, or similar type</td>
<td></td>
</tr>
<tr>
<td><strong>Class B:</strong> All areas equivalent to lands zoned for multi-family dwellings,</td>
<td>60</td>
</tr>
<tr>
<td>apartment, business, commercial, hotel, resort, or similar type</td>
<td></td>
</tr>
<tr>
<td><strong>Class C:</strong> All areas equivalent to lands zoned agriculture, country, industrial,</td>
<td>70</td>
</tr>
<tr>
<td>or similar type</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
a These maximum permissible sound levels apply to the following excessive noise sources: (1) stationary noise sources and (2) equipment related to agricultural, construction and industrial activities (HAR 11-46-4).

Pursuant to HAR 11-46-7, a permit may be obtained for operation of an excessive noise source beyond the maximum permissible sound levels. Factors that are considered in granting of such permits include whether the activity is in the public interest and whether the best available noise control technology has been incorporated into the activity.

3.10.2 Existing Conditions

The proposed project is located in an expansive natural area characterized by densely vegetated forest, with very limited development and human activity. Ambient noise levels are associated with environmental sounds such as wind, rain, and animals (particularly birds), and are typically low. The primary source of human-derived noise in the vicinity of the proposed project is Kūlani Correctional Facility, a minimum security prison that houses approximately 200 inmates. Vehicular traffic along Stainback Highway is infrequent, but also generates intermittent noise. A minimal amount of noise may also result from routine site management activities by DOFAW staff within Pu‘u Maka‘ala NAR.

With the exception of Kūlani Correctional Facility, the areas immediately adjacent to the proposed project site are comprised of open space. The nearest residential area is approximately 6 miles (9.6 kilometers) to the south.

3.11 Transportation and Traffic

The roadway system in East Hawai‘i includes one principal highway (Hawai‘i Belt Road, or Māmalahoa Highway), which consists of Route 19 and Route 11. Route 19 runs from Hilo Harbor around the northern side of the island to Kona; Route 11 intersects with Route 19 near Hilo Harbor, and runs around the southern side of the island to Kona. Secondary highways in this area include Keaaupahoa Road (Route 130), which extends from Māmalahoa Highway (Route 11) at Keau towards Kalapana, and
Saddle Road (Route 200) which spans the island between Hilo and Kohala. These roadways fall under the jurisdiction of the State of Hawai‘i Department of Transportation (HDOT, 2016). A network of smaller, local roadways provide access within and between Hilo and adjoining communities. These other roadways fall within the jurisdiction of Hawai‘i County (Department of Public Works).

Access to Pu‘u Maka‘ala NAR is provided in two locations, via Wright Road and Stainback Highway. Wright Road intersects with Māmalahoa Highway (Route 11) south of Mountain View; it is a local roadway within Volcano Village and also provides access to the southwestern tip of the NAR. Stainback Highway intersects with Māmalahoa Highway (Route 11) just south of Hilo, and extends approximately 19 miles to provide access to Kūlani Correctional Facility and the northwestern edge of the NAR; the lower portion of Stainback Highway also provides an alternate route to residences in Mountain View (via North Kūlani Road). Access to the proposed NEON project site would be via Stainback Highway. A series of existing unimproved roads provide limited access within the NAR.

There are no other transportation resources, including those related to bicyclists, pedestrians, or mass transit, in the project vicinity. The nearest airport is the Hilo International Airport, which is located more than 20 miles northeast of the proposed tower location. Based on the criteria provided in Federal Aeronautical Administration (FAA) regulations, NSF has concluded that the proposed tower would not meet the height criteria requiring that notice be given to the FAA; as such, potential impacts associated with air traffic are not further addressed.

3.12 Human Health and Safety

3.12.1 Natural Hazards

Potential natural hazards that could threaten human health and safety include volcanic activity, flooding, tsunami inundation, and wildfire.

3.12.1.1 Volcanic Activity

As noted in Section 3.3.1, Pu‘u Maka‘ala NAR is located on the eastern slopes of Mauna Loa. Eruptions from Mauna Loa have resulted in various lava flows within the NAR, dating from more than 10,000 years ago up through as recent as 1942. The Kūlani portion of the NAR has experienced the most recent flows and is the most vulnerable to volcanic activity, as it is downslope of potential eruption sites on the northeast rift zone.

The USGS has mapped the volcanic hazard zones on Hawaii Island. These zones reflect the probability of volcanic activity based on location, topography, and frequency of historic and prehistoric eruptions. The project area is primarily in Zone 3, with a small area in the northern portion of the site within Zone 2 (Wright et al., 1992).

3.12.1.2 Flooding

The flood zone classification for the proposed project site was obtained from the Hawai‘i National Flood Insurance Program (NFIP) Flood Hazard Assessment Tool (DNLR, 2016). Based on NFIP information, Pu‘u Maka‘ala NAR is located entirely within an area that has been designated as Zone X, which is defined as those areas outside the 0.2-percent-annual-chance (or 500-year) flood event.

3.12.1.3 Tsunami

A tsunami is a series of ocean waves generated by sudden displacements in the sea floor, landslides or volcanic activity. A tsunami inundation zone means an area of expected tsunami inundation, based on scientific evidence that may include geographic field data and tsunami modeling. The Pu‘u Maka‘ala site
is not located in the tsunami inundation zone, as defined by the National Oceanic and Atmospheric Administration (NOAA) (NOAA, 2016).

3.12.1.4 Wildfire
Given the relatively high levels of rainfall in this region, wildfire is not a serious concern in Pu‘u Maka‘ala NAR. However, the threat of wildfire is elevated in drier portions of the site (including Kūlani), particularly during periods of drought, and along publicly accessible roads due to the potential ignition threats associated with vehicles (DOFAW, 2013b).

3.12.2 Occupational Health and Public Safety
Occupational health risks are defined as those arising from physical, chemical, and other workplace hazards that interfere with establishing and maintaining a safe and healthy working environment. Existing hazards that could affect construction personnel, NEON and NARS personnel, and the general public include physical hazards (such as slip, trip, and fall hazards) and biological hazards (such as botanical or wildlife hazards, including thorned plants or stinging insects).

3.12.3 Protection of Children
E.O. 13045, Protection of Children from Environmental Health Risks and Safety Risks, requires federal agencies to identify and assess environmental health and safety risks that may disproportionately affect children. Based on available information, there are no child-centric resources within or directly adjacent to Pu‘u Maka‘ala NAR.

3.13 Public Services and Utilities
3.13.1 Public Services
Fire protection services for Hawai‘i Island are provided by the Hawai‘i Fire Department. The fire department is responsible for fire protection and suppression, pre-hospital emergency medical services, land and sea search and rescue, hazardous materials response, ocean safety, and fire prevention and public education for the County of Hawai‘i. There are a variety of full-time fire/medic stations and volunteer fire stations, the nearest of which is located in Hilo. Fire suppression activities are also provided by the DOFAW Fire Management Program for areas including forest reserves, natural area reserves, wildlife and plant sanctuaries, public hunting areas and other wildland areas. The Hawai‘i Fire Department and DOFAW have established a cooperative agreement that specifies primary response and cooperative response areas for each agency. DOFAW is the primary responder for Pu‘u Maka‘ala NAR.

Police services are provided by the Hawai‘i Police Department, with nearby stations located in Hilo and Keaau.

3.13.2 Utilities
Utility infrastructure relates to services such as electric, gas, telephone, sanitary sewer, domestic water, and solid waste management. Existing utilities provided within the County of Hawai‘i include electricity, telecommunications, solid waste management, domestic water and wastewater, and storm water drainage facilities.

No utility infrastructure is present within Pu‘u Maka‘ala NAR. Electrical and telecommunication service is provided to the adjacent Kūlani Correctional Facility; given the remote location, no other utility services (e.g., domestic water or sanitary sewer) are available.
3.14 Socioeconomics

The Pu‘u Maka‘ala NAR is located in a remote forested area. The largest town in the vicinity of Pu‘u Maka‘ala NAR is Hilo (approximately 19 miles to the northeast), which has a population of 37,000 individuals. A number of small communities are located in closer proximity (south and east of the NAR); the populations of these communities range from approximately 500 to 2,000 individuals. The communities around the Pu‘u Maka‘ala NAR have a large concentration of Native Hawaiians, which constitute a minority community in the U.S. (United States Census Bureau, 2015).

The economy of Hilo is diverse and depends primarily on government, agriculture, tourism and education (Hawai‘i County, 2016a). The median household income of Hilo is $53,939, which is less than 1 percent above the average U.S. median household income of $53,889 (United States Census Bureau, 2015).
4 Environmental Consequences

Pursuant to NEPA and its implementing regulations (40 CFR Part 1500 through Part 1508), federal agencies are required to undertake an assessment of the environmental effects of their proposed actions before making decisions. Similarly, HRS Chapter 343 and its implementing rules (HAR 11-200) also require environmental review for projects that include certain regulatory triggers; in the case of this proposed project, the applicable triggers include use of state land and use within land classified as Conservation District. The purpose of both NEPA and HRS Chapter 343 is to inform decision-makers and the public of the likely environmental consequences of the proposed action and its alternatives.

Consistent with these regulations, this section identifies the anticipated effects of the proposed project on environmental and socioeconomic conditions for each resource. The analysis of resource impacts focuses on environmental issues in proportion to the degree of impact within the Region of Influence (ROI), or the area in which project-related impacts could occur for each resource. For most resources, the ROI is generally limited to the project limits, as shown in Figure 2. However, for some resources, the potential impacts of the proposed project must be considered within the context of the surrounding vicinity. For example, the evaluation of land use, aesthetics, noise, transportation and traffic, and socioeconomics also includes the surrounding areas. Potential effects relative to resources that occur across a broader area – such as climate and air quality – were considered at a regional scale.

Analysis of impacts in terms of their duration, intensity, and scale is provided where possible. Mitigation measures or BMPs that would be implemented to avoid or minimize potential impacts are identified, where relevant. As required under NEPA, the environmental effects of the no action alternative were also evaluated, based on a comparison to the baseline conditions presented in Section 3.0.

4.1 Climate

This section identifies potential climate-related impacts that may result from implementing the Proposed Action and No Action alternatives. This assessment considers the potential for the proposed project to affect climatic conditions, including emission of greenhouse gases (including CO₂, CH₄, and N₂O), chemical compounds that trap heat in the atmosphere, contributing to climate change. The ROI for this analysis includes the proposed project limits and Stainback Highway (as the access route to the site). Table 10 presents the impact thresholds relative to climate.

**TABLE 10**
Impact Thresholds for Climate

<table>
<thead>
<tr>
<th>Impact Intensity</th>
<th>Intensity Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negligible</td>
<td>The alternative would either not cause emissions of greenhouse gases or the change would be so small that it would not result in a measurable or perceptible consequence.</td>
</tr>
<tr>
<td>Minor</td>
<td>The alternative would result in a detectable level of change, but the impact would be small, localized, and of little consequence at a regional scale.</td>
</tr>
<tr>
<td>Moderate</td>
<td>The alternative would result in a measurable and consequential change in greenhouse gas emissions, which could adversely affect climate. Mitigation may be needed to offset adverse impacts, but would be relatively simple to implement and would have a high likelihood for success.</td>
</tr>
<tr>
<td>Major</td>
<td>The alternative would result in a substantial change in greenhouse gas emissions, which could adversely affect climate. Extensive mitigation would be needed to offset adverse impacts, and the success could not be guaranteed.</td>
</tr>
</tbody>
</table>

**Duration:** Short term – occurs only during the construction or decommissioning periods

Long term – continues after the construction and decommissioning periods
4.1.1 Proposed Action Alternative

Implementation of the proposed project would not be expected to have a measurable effect on climate, either during construction or as a result of long-term operations. A limited amount of greenhouse gas emissions, which contribute to climate change, would be associated with construction of the project. Emissions would primarily result from the use of heavy equipment, although some emissions would also be due to vehicle use. Published data from the USEPA indicate that 22 pounds of CO₂ are produced for every gallon of diesel fuel burned, and 19.4 pounds are produced for every gallon of gasoline used (USEPA, 2008). Given the scale of the proposed project, the total amount of emissions resulting from construction would be unnoticeable at a regional scale, considering the average greenhouse gas emissions in Hawai’i is approximately 18.2 million metric tons a year (USEIA, 2016). As such, project construction would be expected to have a negligible, short-term impact on greenhouse gas emissions and climate change. Similarly, over the longer-term, operation of the proposed project would have a negligible effect on greenhouse gas emissions and climate change as no heavy equipment would be used and only a limited number of vehicles would be accessing the site.

Over the lifetime of the proposed project, the effects of climate change are expected to be increasingly realized at a global scale, and climate change variables could influence the conditions within the proposed project site. As discussed in Section 3.1, these variables could include increasing air temperatures and changes in rainfall, which could alter the natural resources within the NAR. These changes are expected to have a negligible long-term impact on the proposed project; rather, as discussed in Section 1, the proposed project has been specifically designed to help measure and assess any such changes.

4.1.2 No Action Alternative

Under the No Action Alternative, various climate change factors would still influence conditions at Pu’u Maka’ala NAR, including increasing air temperatures and changes in rainfall patterns. Data regarding changes in climate conditions and other related effects would not be collected as part of NEON, substantially limiting the ability for ecological scientists to study any such changes. However, no new climate-related impacts would be expected.

4.2 Land Use and Recreation

This section identifies potential direct and indirect impacts to land use and recreation that may result from implementing the Proposed Action and No Action alternatives. The assessment considered the potential for the project to displace an existing land use; preclude use of an area for its intended purpose; reduce access to recreational or open space areas; or conflict with the objectives of any applicable land use plan or policy. The ROI for land use and recreation is the area within and adjacent to Pu’u Maka’ala NAR.

The impact thresholds related to land use and recreation are defined in Table 11.
### TABLE 11
Impact Thresholds for Land Use and Recreation

<table>
<thead>
<tr>
<th>Impact Intensity</th>
<th>Intensity Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negligible</td>
<td>The alternative would either not result in a change in land use or recreational access, or the change would be so small that it would not be perceptible. The alternative would be consistent with all applicable land use plans and policies.</td>
</tr>
<tr>
<td>Minor</td>
<td>The alternative would result in a detectable change in land use or recreational access, but the impacts would be localized and of little consequence. The alternative would be consistent with all applicable land use plans and policies.</td>
</tr>
<tr>
<td>Moderate</td>
<td>The alternative would result in a measurable and consequential change in land use or recreational access, or would be inconsistent with an applicable land use plan, policy, or both. However, the potential impacts could be reasonably mitigated to an acceptable level.</td>
</tr>
<tr>
<td>Major</td>
<td>The alternative would result in a substantial changes in land use or recreational access, would be inconsistent with an applicable land use plan, policy, or both. The potential impacts could not be reasonably mitigated.</td>
</tr>
</tbody>
</table>

**Duration:**
- **Short term** – occurs only during the construction or decommissioning periods
- **Long term** – continues after the construction and decommissioning periods

### 4.2.1 Proposed Action Alternative

Implementation of the proposed project would involve installation of scientific infrastructure and long-term terrestrial sampling within Pu‘u Maka‘ala NAR. The infrastructure would have a permanent footprint of approximately 0.2 acre. The terrestrial sampling would include approximately 62 plots, with a total footprint of approximately 650 acres; these plots would be distributed across approximately 11,660 acres of the NAR, and would involve very little ground disturbance (a few plots would involve soil sampling, as detailed in Table 3). As discussed in Section 2, the NEON project is intended to monitor the natural environment, and therefore, is designed to have minimal impact. Furthermore, the proposed site at Pu‘u Maka‘ala NAR was selected in coordination with DOFAW and NARS staff, in order that it would have minimal imposition on NAR management activities and other ongoing research efforts. As such, short-term construction and long-term operation of the NEON project is expected to have negligible impact on existing land uses and would not preclude any intended uses within and surrounding the project site. Although the NAR is publicly accessible for recreational use (excluding hunting), there is little evidence that the proposed project site is used for recreational activities. Regardless, project implementation would not restrict access or other otherwise preclude recreational uses, should they occur.

Given its purpose of ecological monitoring and the potential for minimal environmental impact, the proposed project is also expected to be consistent with the objectives of the underlying state land use designation as Conservation District, as well as those relating to the NAR. The regulations governing these land use designations specify the need for a Conservation District Use Permit and NAR Special Use Permit (respectively); these approvals would be obtained prior to construction. Consistency with the Conservation District and NAR criteria are discussed in Section 6, and will be further documented as part of the permit application packages.
4.2.2 No Action Alternative

Under the No Action Alternative, land use and recreation in the area within and surrounding the proposed project site is expected to be commensurate with the existing condition and there would be no new impacts.

4.3 Geology and Soils

This section identifies potential direct and indirect impacts to geology, geologic resources, and soils that may result from implementation of the Proposed Action and No Action alternatives. This impact assessment considers the extent to which each alternative could (1) disturb or alter an important natural geologic feature or landform, (2) change the local topography, (3) contribute to soil erosion, or (4) increase the exposure of people or property to seismic-related activities or other geologic processes (or any combination thereof). The ROI for geology and soils is the area within and surrounding Pu‘u Maka‘ala NAR. The impact thresholds related to geology and soils are defined in Table 12.

**TABLE 12**

Impact Thresholds for Geology and Soils

<table>
<thead>
<tr>
<th>Impact Intensity</th>
<th>Intensity Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negligible</td>
<td>The alternative would either not result in a change to geologic or soil resources, or the change would be so small that it would not be of any measurable or perceptible consequence.</td>
</tr>
<tr>
<td>Minor</td>
<td>The alternative would result in a detectable change to geologic or soil resources; however, the impact would be small, localized, and of little consequence.</td>
</tr>
<tr>
<td>Moderate</td>
<td>The alternative would result in a measurable and consequential change to geologic or soil resources. Mitigation would be needed to offset adverse impacts. It would be relatively simple to implement and would have a high likelihood for success.</td>
</tr>
<tr>
<td>Major</td>
<td>The alternative would result in a substantial change to the character or usability of geologic or soil resources. Extensive mitigation would be needed to offset adverse impacts, and the success could not be guaranteed.</td>
</tr>
</tbody>
</table>

**Duration:**  
- **Short term** – occurs only during the construction or decommissioning periods  
- **Long term** – continues after the construction and decommissioning periods

4.3.1 Proposed Action Alternative

Overall, construction of the proposed NEON field study site would involve a minimal amount of ground disturbance; no geologic features or landforms would be affected, nor would the local topography be altered as a result of construction and operation of the proposed project.

As detailed in Section 2.2, ground disturbance associated with project construction would be restricted to the area within the construction limits, with a total footprint of approximately 0.2 acre. Ground disturbing activities within this area would include excavation, grading, and use of heavy equipment, which collectively could result in soil erosion. The erosion potential is low because of the relatively small area of disturbance and type of soils present. Regardless, BMPs would be implemented to minimize the potential for construction-related erosion. Specifically, the extent of ground disturbance would be minimized to the extent practicable, and temporarily disturbed areas would be stabilized and revegetated as quickly as possible. Following construction, long-term terrestrial sampling activities would involve little to no ground disturbance, and as such, are not expected to contribute to soil erosion. At the end of the 30-year operational period, the scientific infrastructure would be removed. As
detailed in Section 2.2, it is expected that all infrastructure would be removed, but below-grade material (e.g., tower foundation) would be left in place. These decommissioning activities would include a limited amount of ground disturbance, which could result in soil erosion; the above-listed BMPs would be implemented to minimize the potential for decommissioning-related erosion. With inclusion of these mitigation measures, implementation of the proposed project is expected to have a minor short-term impact on soil erosion, with no long-term impacts to soils.

The proposed NEON site is located in a region that is volcanically active and is prone to seismic activity. However, implementation of the proposed project would not increase any risks associated with seismic activity, nor would these events increase any risks associated with operation of the NEON field study site; as such, no seismic-related impacts are anticipated as a result of the proposed project. Proper precautions would be taken if there were any indication of a potential eruption, and additional maintenance would be conducted as needed after a seismic event, should one occur.

4.3.2 No Action Alternative

Under the No Action Alternative, the geology and soils within the proposed project area would remain the same as the existing condition and there would be no new impacts.

4.4 Water Resources

This section identifies the potential direct and indirect impacts to water resources that may result from implementation of the Proposed Action and No Action alternatives. Impacts to water resources were assessed based on an evaluation of the potential to impact either a surface or groundwater feature within the context of the applicable regulations that protect water resources. Given the lack of surface water features in the proposed project area, the impact assessment is primarily focused on the extent to which surface or groundwater quality would be degraded. The ROI for water resources is Pu‘u Maka‘ala NAR and the adjacent areas that contribute to groundwater recharge. The impact thresholds related to water resources are presented in Table 13.

**TABLE 13**
Impact Thresholds for Water Resources

<table>
<thead>
<tr>
<th>Impact Intensity</th>
<th>Intensity Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negligible</td>
<td>The alternative would either not affect water quality, or the change in water quality would be below or at the level of detection.</td>
</tr>
<tr>
<td>Minor</td>
<td>The alternative would result in a detectable change in water quality, but the impact would be small, localized, and of minimal consequence.</td>
</tr>
<tr>
<td>Moderate</td>
<td>The alternative would result in a measurable and consequential change in water quality. Mitigation would be needed to offset adverse impacts. It would be relatively simple to implement and would have a high likelihood for success.</td>
</tr>
<tr>
<td>Major</td>
<td>The alternative would result in a substantial change in water quality. Extensive mitigation would be needed to offset the adverse impacts, and the success could not be guaranteed.</td>
</tr>
</tbody>
</table>

**Duration:**
- **Short term** – occurs only during the construction or decommissioning periods
- **Long term** – continues after the construction and decommissioning periods
4.4.1 Proposed Action Alternative

As discussed in Section 3.4, there are no lakes, rivers or streams located within Pu‘u Maka‘ala NAR. There is a limited number of isolated wetland features scattered throughout the NAR; however, none of the proposed project infrastructure or long-term terrestrial sampling would occur within or immediately adjacent to a wetland feature.

Installation of the proposed project components would require minimal subsurface work. The depth of excavation would generally be limited to approximately 2.5 feet, with the exception of drilling for anchors at each guy-wire anchor location (four 2-inch-diameter holes, 30 feet deep). Over the long-term, ground disturbance required for operation of the proposed project would be limited to shallow subsurface soil sampling for chemical analyses. The depths associated with these ground-disturbing activities are well above the water table, and therefore, no interference with groundwater is anticipated as a result of either construction or operation.

The proposed project would involve a minimal increase in impervious surface (approximately 0.2 acre), which is a fractional percentage of the open space area in Pu‘u Maka‘ala NAR; as such, groundwater recharge is not expected to be measurably affected. Water consumption associated with construction and operation would also be minimal (generally limited to drilling for the guy-wire anchors), and all water would either be transported to the site or obtained from existing water tanks within the NAR. As such, the proposed project is not expected to affect groundwater availability.

Although project-related ground disturbance is not expected to affect groundwater resources, it could increase the amount of sediment and other pollutants in stormwater runoff, which could affect water quality in receiving waters. However, as described in Section 2.2, the extent of ground disturbance would be very limited and with implementation of mitigation measures discussed in Section 4.3.1, the potential for erosion is expected to be minimal. Additional measures to minimize the potential for sedimentation and other water quality impacts to receiving waters would be implemented during construction and operation (particularly decommissioning), including the following:

- Erosion and sediment control measures (such as silt fences) would be installed before earth moving activities are initiated, and would be inspected and properly maintained throughout the construction period.
- Disturbance of soil would be minimized during periods of heavy rain.
- Vehicles and equipment would be inspected for leaks and contamination on a daily basis.
- In the event of a spill or leak of fuel or lubricants from onsite equipment, the materials would be cleaned in a timely manner and disposed of at an approved site.

With implementation of these measures, water quality impacts associated with the project are expected to be negligible and short-term.

4.4.2 No Action Alternative

Under the No Action Alternative, the proposed Domain 20 field study site would not be implemented as part of NEON. Conditions within Pu‘u Maka‘ala NAR would be commensurate with the existing conditions and there would be no new impacts to water resources.
4.5 Biological Resources

This section identifies the potential direct and indirect impacts to biological resources that may result from implementation of the proposed alternatives. Impacts to biological resources were assessed based on an evaluation of the potential for each alternative to (1) cause the loss of habitat, diminished health or reduction in diversity of native species, (2) adversely affect any protected species or habitat (particularly species listed or proposed for listing under the ESA or HRS Chapter 195D), or (3) introduce or contribute to the spread of invasive species. The ROI for biological resources is the area within and immediately surrounding Pu‘u Maka‘ala NAR; however, a broader area was considered where needed to assess the stability of a species’ population over the greater region. The impact thresholds related to biological resources are presented in Table 14.

**TABLE 14**
Impact Thresholds for Biological Resources

<table>
<thead>
<tr>
<th>Impact Intensity</th>
<th>Intensity Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negligible</td>
<td>The proposed alternative would either not affect biological resources, or the impacts to biological resources would be below or at the lower levels of detection.</td>
</tr>
</tbody>
</table>
| Minor            | The proposed alternative would result in a detectable change to biological resources or habitat; however, the change would be small, localized, and of little consequence.  
Any disruption to wildlife would be short term and species would be expected to return to normal activities after disturbance. No measurable reduction in species population stability would occur.  
Threatened or endangered species (or those proposed for listing) or migratory birds may occur in the project area but the species would not be adversely affected. Critical habitat may occur in the project area but it would not be adversely modified.  
There may be some increase in the presence of weed species over a small area, but the increase would be easily controllable. |
| Moderate         | The proposed alternative would result in a readily apparent change to biological resources or habitat over a relatively wide area; however, the change would not constitute substantial degradation in the character of the biological resource or habitat.  
A permanent loss of vegetative cover or other habitat may occur; however, no measurable reduction in species population stability would occur.  
Any effects to threatened and endangered species (or those proposed for listing) or migratory birds would be temporary and would not result in mortality or impacts to population size.  
There would be a noticeable increase in the presence of weed species and would require long-term or extensive control efforts. |
| Major            | The proposed alternative would result in a substantial change to the character of the biological resource or habitat.  
A permanent loss in vegetative cover or other habitat would occur, resulting in a measurable reduction in species population stability.  
Effects to threatened and endangered species or migratory birds would result in mortality or impacts to population size. Critical habitat would be adversely modified.  
There would be a large and uncontrollable increase in the presence of invasive species. |

*Duration: Short term* – occurs only during the construction or decommissioning periods

*Long term* – continues after the construction and decommissioning periods
4.5.1 Proposed Action Alternative

4.5.1.1 Vegetation

As described in Section 3.5, the majority of Pu‘u Maka‘ala NAR consists of relatively high-quality forest dominated by a variety of native species. A number of threatened and endangered species are known to occur, or could occur within the NAR. DOFAW and NARS staff maintain a detailed inventory of the threatened and endangered plant species within the NAR, and the proposed NEON infrastructure has been sited to avoid any known occurrences. A more detailed discussion of potential impacts to threatened or endangered species is provided in the following subsection.

During construction, impacts to vegetation would be limited to areas where ground disturbance or clearing is needed to allow installation of the infrastructure or equipment. However, as previously described, the extent of ground disturbance is fairly limited and the infrastructure was specifically sited to minimize vegetation impacts. The infrastructure, including the tower, instrument hut, precipitation gauge and auxiliary portals, has been sited to best avoid woody vegetation and any sensitive native species. Vegetation that would be affected by installation of this infrastructure is primarily non-native grass species or other understory species that are common to Hawai‘i.

The only infrastructure that would require clearing or trimming of woody vegetation is one of the tower guy wires, as the wires must be maintained free of vegetation to preserve their integrity and support to the tower. Three of the four guy wires for the tower would be located in relatively open areas; however, the guy wire that extends south from the tower would be located in an area that is heavily vegetated with ʻōhiʻa, koa, ʻōlapa, hāpuʻu, and pilo. Clearing and trimming of these species would be conducted along the guy-wire path in a highly targeted manner, with only the least amount of vegetation removal required to provide clearance for the wire to be conducted. A minimal amount of clearing or trimming of vegetation may also be needed along the access path to the soil array. All vegetation removal would be conducted in accordance with the SOPs for the project (see Section 2.2.2), including obtaining prior approval by the NEON science team, permitting team, and site host (DOFAW/NARS). A qualified arborist with specific knowledge of the target species and site conditions would be engaged, as needed.

Following construction and throughout the operational period of the project, very minimal disturbance of vegetation is anticipated. Some trimming may be needed to maintain clearance around the tower guy wires and other infrastructure; this work would be conducted in accordance with the SOPs. A small amount of vegetative material would be collected as part of the terrestrial sampling activities (see Table 3); no threatened or endangered plant species would be collected. Terrestrial sampling activities would be conducted in accordance with the SOPs for the proposed project, particularly those related to site access, route planning, and ongoing impact assessment and mitigation. In sampling plots where tree tagging is needed, coiled wire would be wrapped around the tree (instead of standard tree tags) to avoid physical impact to the tree.

As described in Sections 2.2 and 4.5, areas that are temporarily disturbed during construction (e.g., the staging area), decommissioning, or both, would be revegetated. Revegetation efforts would use species (or propagules of such species) that are native to the area and appropriate for the specific disturbed area. Revegetation efforts would be coordinated with DOFAW and NARS staff.

Given the very limited disturbance and with implementation of the measures described above, the proposed project is expected to have a minor impact on non-listed vegetation within the NAR, both during the short-term construction and long-term operation phases.
4.5.1.2 Wildlife
As described in Section 3.5, Puʻu Makaʻala NAR supports a variety of native and non-native wildlife species, including bird species, mammals, and invertebrates. Several threatened and endangered species are known to occur or have the potential to occur within the NAR. Potential impacts to these species are discussed in the following subsection.

Potential effects to non-listed native wildlife species could include both direct impacts (e.g., disturbance or collision with project vehicles) and indirect impacts associated with habitat loss and displacement of individuals. Construction-related activities could disrupt wildlife in their natural state, particularly as a result of increased human presence and noise levels. Increased noise levels would generally be associated with use of construction vehicles and equipment. However, construction-related noise would not be continuous and would attenuate as sound travels from the construction area, as a function of distance, terrain and the dense forest vegetation. Wildlife in proximity to active construction areas would likely respond to the increased noise levels during construction. More mobile wildlife (e.g., birds) would be expected to exhibit avoidance behaviors and relocate to avoid noise. Construction-related noise and disturbance would cease at the end of the construction period. Human presence would continue through the operational phase of the project as part of the terrestrial sampling activities; however, these activities would be minimally intrusive and are expected to be generally commensurate with other ongoing research and management activities in Puʻu Makaʻala NAR. As detailed in Section 4.10, operation of the tower and instrument hut would generate a humming sound. Noise dampening mufflers are being developed to further reduce noise from the tower and hut, and it is expected that the sound would attenuate such that the impacts would be localized and wildlife would acclimate or relocate from the affected area, as needed.

The SOPs described in Section 2.2.2 would be implemented throughout construction and operation of the proposed project. These include site access and route planning efforts designed to limit potential disturbance, and ongoing impact assessment and mitigation. The amount of potential habitat that would be affected during construction and operation of the proposed project represents a very small percentage of that available within and surrounding Puʻu Makaʻala NAR. It is expected that wildlife species would readily occupy the remaining available habitat, such that habitat loss or degradation would not be expected to measurably affect the size or stability of any wildlife populations.

Given the very limited disturbance and with implementation of the measures described above, the proposed project is expected to have a minor effect on non-listed wildlife within the NAR, both during the short-term construction and long-term operation phases.

4.5.1.3 Listed Species and Critical Habitat
As detailed in Table 6, a variety of federally and state-listed threatened and endangered species are either known to occur or could occur within the proposed project site. This section discusses potential impacts to each of these species and the proposed measures that would be implemented to avoid and minimize those impacts. Any refinements or additional measures identified through the ongoing ESA Section 7 consultation process (see Section 5.2.2) would be implemented as part of the proposed project. With implementation of these measures, impacts to federally and state-listed threatened and endangered species are expected to be minor over both the short and long term.

Plant Species
Puʻu Makaʻala NAR provides suitable habitat for many threatened and endangered plant species, several of which are known to occur or may occur within the proposed project area. These species are listed in Table 6. Direct impacts to threatened and endangered plant species could include destruction of
individual plants as a result of project-related activities. Listed plant species could also be indirectly affected by loss or degradation of suitable habitat.

DOFAW and NARS staff actively monitor and inventory the occurrence and location of these protected plant species (personal communication, N. Agorastos, Pu’u Maka’ala NAR Manager, September 20, 2016). The proposed project infrastructure was sited in close coordination with DOFAW and NARS staff, including multiple field inspections, specifically intended to avoid any protected plant species. Based on this effort, there are no known occurrences of protected plant species within the footprint of the proposed infrastructure. Listed plant species that occur in proximity to the proposed tower location include Phylllostegia velutina, Cermonia lindseyana, and Cyanea shipmanii; however, these would be outside the limits of the construction area. Furthermore, the proposed infrastructure was micro-sited to be in areas that are within or in proximity to representative native forest habitat, but that have been previously disturbed, such that project-related impacts to these areas are not expected to degrade potential habitat for listed species.

During the operational phase of the proposed project, terrestrial sampling activities would primarily involve passive observation and data collection tasks. These are expected to be similar in nature to other ongoing monitoring and research activities in the NAR. Data collection tasks would require selective biomass harvest of live plant material (see Table 3), but would not include collection of threatened or endangered plant species. As discussed in Section 2.2.2, SOPs would be incorporated into project implementation, and would include provisions for staff training, site access and route planning, and ongoing impact assessment and adaptive mitigation. In addition, the following measures would be implemented to avoid and minimize potential impacts to listed plant species. With implementation of these measures, the proposed project is not expected to adversely impact threatened and endangered plant species:

- Preconstruction surveys would be conducted throughout the construction limits. In the event that a protected plant species is identified, the NEON project team would work directly with DOFAW and NARS staff to adjust the construction limits or implement design modifications to avoid potential impacts.
- Temporary protective fencing would be erected around any protected plant species located in close proximity to the access road or construction limits.

As summarized in Table 6, portions of the proposed project area have been designated as critical habitat for the following plant species: Mauna Loa (Ka’u) silversword, ‘ōhā wai (Clermontia lindseyana), hāhā (Cyanea shipmanii), hāhā (Cyanea stictophylla), ha’iwale (Cyrandra giffardi), kiponapona (Phylllostegia racemosa), Phylllostegia velutina, and ‘ānunu (Sicyos alba). For each species, the physical or biological features used to define the critical habitat were based on the areas in which the species was reported from at the time critical habitat was designated, as described by the type of plant community, associated native plant species, locale information (e.g., steep rocky cliffs, talus slopes, stream banks), and elevation (USFWS, 2002); this information is summarized in Table 6. Project implementation would not affect any of these defined features within designated critical habitat for the above-listed plant species. Placement of infrastructure was designed to minimize the potential for habitat degradation, such as previously disturbed areas that do not provide life history requirements for protected species. The selective harvest of limited biomass (leaf and stem tissue, but no whole plants) would not alter microclimate or microhabitat and would not cause a change in the ability of the critical habitat to support populations of protected species. Removal of infrastructure at the close of the proposed project would allow for the eventual recovery of these areas. For these reasons, the proposed project is not
expected to result in destruction or adverse modification of critical habitat for the above-listed plant species, such that both short- and long-term impacts to critical habitat would be negligible.

**Nēnē (Hawaiian Goose)**

Nēnē do not use closed forest habitat, but are known to occur in the open areas in the Kūlani portion of Pu‘u Maka‘ala NAR. Although they prefer the mowed baseball field at the Kūlani Correctional Facility, nēnē have also been observed within and surrounding the former pastureland in the NAR (personal communication, N. Agorastos, Pu‘u Maka‘ala NAR Manager, September 20, 2016). This portion of the proposed project area provides suitable nesting and foraging habitat for nēnē.

Direct impacts to nēnē could occur if a nest is damaged, goslings are separated from adults, or if an adult permanently leaves an area as a result of project-related activities. Short-term indirect impacts could occur if nēnē are temporarily displaced from their habitat as a result of noise or other disturbance associated with construction activities. Displacement could alter an individual’s typical foraging and roosting patterns, forcing it to search for new foraging and roosting locations. Displacement from roosting or foraging habitat could also lead to increased predation if a nēnē is forced to change its behavior and search for suitable habitat. Permanent removal of suitable nesting habitat would constitute a long-term indirect impact; however, this impact is considered discountable because only approximately 676 square feet of suitable habitat would be removed (for the precipitation gauge) and there is ample habitat available in the proposed project vicinity.

During the operational phase of the proposed project, terrestrial sampling activities would generally involve passive observation and data collection tasks, similar to other ongoing monitoring and research activities in the NAR. The only activities that are expected to occur in areas with suitable habitat for nēnē relate to maintenance of the precipitation gauge.

The following measures would be implemented to avoid and minimize potential impacts to nēnē during construction and operation of the proposed project. With implementation of these measures, the proposed project is not expected to adversely impact this species:

- A biologist familiar with the nesting behavior of the nēnē would survey suitable habitat within the construction area before the initiation of any construction activities, or after any subsequent delay in work of 3 or more days (during which time, the birds could attempt nesting). If a nest were discovered, USFWS would be contacted.

- All NEON staff would be trained to identify nēnē and know the appropriate steps to take if nēnē are present within the proposed project area or encountered in transit to sampling locations.

- If a nēnē is encountered within the proposed project area, the bird would not be approached, and all activities within 100 feet of the bird would cease until the bird leaves the area of its own volition.

- If a nēnē is encountered while in transit to a sampling location, the researcher(s) would stop and remain in place until the bird moved more than 100 feet from the travel route of its own volition or slowly retreat and return for sampling at a later time.

- A maximum speed limit of 15 miles per hour (mph) would be enforced for all project vehicles traveling within the project site to minimize potential collisions with nēnē.

**ʻIo (Hawaiian Hawk)**

The Hawaiian hawk is known to occur in the Kūlani portion of Pu‘u Maka‘ala NAR (DOFAW, 2010). The native forest (particularly areas with large, mature ʻōhiʻa) provides suitable nesting habitat, and the former pastureland may be used for foraging.
The Hawaiian hawk could be directly impacted by project construction in the event a nest is damaged or destroyed. Operation of heavy equipment and other loud or unpredictable construction activities could also indirectly affect this species through nest failure. Harassment of nesting sites could result in altered feeding and breeding patterns or nest or chick abandonment. Nest disturbance could also increase exposure of chicks and juveniles to inclement weather or predators (USFWS, 2016).

During the operation period of the project, terrestrial sampling activities would generally involve passive observation and data collection tasks, similar to other ongoing monitoring and research activities in the NAR.

The following measures would be implemented to avoid and minimize potential impacts to the Hawaiian hawk. With implementation of these measures, the proposed project is not expected to adversely impact this species:

- Vegetation clearing or construction would not be conducted during the Hawaiian hawk breeding season (March through September). If it is not possible to avoid vegetation clearing or construction during these months, a nest survey would first be conducted by a qualified biologist. The survey would be conducted no more than 14 days before the start of vegetation clearing or construction, and would include all areas within 1,600 feet of the construction area. Appropriate survey methodology (including avoidance and minimization measures in the event a nest is found) would be coordinated with USFWS.

- If determined to be needed, nesting deterrents would be placed on the tower. Any deterrent used would first be approved by USFWS and DOFAW.

- NEON staff would be trained to recognize the Hawaiian hawk and their nests. In the event that a Hawaiian hawk nest is identified within or directly adjacent to a terrestrial sampling plot, sampling activities would be temporarily halted until the nest is no longer occupied. If a nest were identified along the pedestrian route to a sampling plot, an alternate route that is at least 1,600 feet from the nest would be used until the nest were no longer occupied.

**Honeycreepers**

ʻAkiapōlā‘au, Hawai‘i ‘ākepa, alawī, and ʻi‘iwi (collectively referred to as honeycreepers) are forest birds known to occur within Pu‘u Maka‘ala NAR, particularly in the Kūlani area. High quality nesting and foraging habitat is present throughout the native ʻōhi‘a forest.

Construction of the proposed project could directly impact honeycreepers if a nest is damaged or destroyed. Operation of heavy equipment and other loud or unpredictable construction activities could also indirectly affect honeycreepers through nest failure. Harassment of nesting sites could result in altered feeding and breeding patterns or nest or chick abandonment. Nest disturbance could also increase exposure of chicks and juveniles to inclement weather or predators (USFWS, 2016).

During the operation period of the proposed project, terrestrial sampling activities would generally involve passive observation and data collection tasks, similar to other ongoing monitoring and research activities in the NAR.

The following measures would be implemented to avoid and minimize potential impacts to honeycreepers. With implementation of these measures, the project is not expected to adversely impact these species:

- If vegetation clearing or construction occurs during the honeycreepers’ breeding season (February through July), a nest survey would first be conducted by a qualified biologist. The survey would be conducted no more than 14 days before the start of vegetation clearing or construction, and would
include all areas within 500 feet of the construction area. Appropriate survey methodology (including avoidance and minimization measures in the event a nest occurs) would be coordinated with USFWS.

- The guy wires for the research tower would be fitted with bird flight diverters to increase their visibility to birds.

ʻAlalā (Hawaiian Crow)

As described in Section 3.5.5, ʻalalā have been extinct in the wild for approximately 15 years, but captive bred birds are in the process of being released to areas of suitable habitat. The first release occurred in December 2016; however, no birds are currently present in the NAR from that release. A second release is planned in late summer or early fall 2017. Similar releases are anticipated to occur annually for the next 5 years, depending on the success and survival of the released birds.

Similar to the other forest birds, construction of the proposed project could directly impact ʻalalā if a nest were to be damaged or destroyed. Operation of heavy equipment and other loud or unpredictable construction activities could also indirectly affect ʻalalā through nest failure. Harassment of the ʻalalā near their nesting sites could result in altered feeding and breeding patterns or nest or chick abandonment. Nest disturbance could also increase exposure of chicks and juveniles to inclement weather or predators (USFWS, 2016). In addition, given their curious nature, ʻalalā may be attracted to some of the project components (particularly items that are shiny), which could endanger their health or otherwise diminish their ability to adapt to life in the wild.

During the operation period of the proposed project, terrestrial sampling activities would generally involve passive observation and data collection tasks, similar to other ongoing monitoring and research activities in the NAR. Maintenance activities would involve periodic inspection and replacement of equipment and instruments, and may include infrequent vegetation trimming.

Ongoing coordination has been conducted with the ʻalalā release team to better understand the potential for the impacts described above and to identify measures to avoid and minimize potential impact. As a result of this coordination, the proposed project has been sited such that none of the infrastructure or terrestrial sampling plots would be located within 1,600 feet of the initial release site. Additional measures would be implemented to avoid and minimize potential impacts to ʻalalā in the event that an ʻalalā release has occurred and there is the potential for ʻalalā to be present in the vicinity of NEON-related activity. With implementation of the following measures, the proposed project is not expected to adversely impact the species, either over the short term or long term:

- If vegetation clearing or construction occurs during the ʻalalā breeding season (February through July), a nest survey would first be conducted by a qualified biologist. The survey would be conducted no more than 14 days before the start of vegetation clearing or construction, and would include all areas within 1,600 feet of the construction area. Appropriate survey methodology (including avoidance and minimization measures in the event a nest occurs) would be coordinated with USFWS.

- The use of shiny materials would be minimized and shiny surfaces would be masked to decrease their attractiveness to ʻalalā. Specifically, the tower would be constructed of materials that are a dull, galvanized gray. An exterior treatment involving dark or dull colors would be added to any shiny surfaces, such as power boxes and communication equipment.

- All trash would be placed into appropriate containers and promptly removed from the project site, to avoid inadvertent discarding of shiny materials or other items that may be of interest to ʻalalā.
The guy wires for the research tower would be fitted with bird flight diverters to increase their visibility to birds.

The beetle traps would be fitted or retrofitted, depending on timing of ‘alalā releases, with chicken wire to limit the extent to which ‘alalā could access the traps. Any preservatives used in the beetle traps would be verified to be non-toxic to birds.

NEON staff would be trained to recognize ‘alalā and their nests. In the event that an ‘alalā nest is identified within or directly adjacent to a terrestrial sampling plot, sampling activities would be temporarily halted until the nest is no longer occupied. If a nest were to be identified along the pedestrian route to a sampling plot, an alternate route that is at least 1,600 feet from the nest would be used until the nest were no longer occupied.

Seabirds
Hawaiian petrels, Newell’s shearwaters, and band-rumped storm-petrels (collectively referred to as seabirds) may fly over the proposed project area in transit between the ocean and upland breeding sites. Seabirds are vulnerable to striking objects that protrude above the vegetation canopy, such as antennas or guy wires. In addition, they are attracted to lights, which can cause disorientation (Banko et al., 1991; Ainley et al., 1997; Mitchell et al., 2005). Fledging seabirds are especially affected by artificial lighting and can become exhausted from circling the light sources, resulting in grounding. Once grounded, the birds are vulnerable to predation by small mammals (e.g., cats and mongoose).

To avoid and minimize any such impacts to seabirds, the following measures would be implemented. With implementation of these measures, the project is not likely to adversely affect seabirds:

- Construction activities would be restricted to daylight hours to avoid the use of nighttime lighting that could attract seabirds.
- Installation of outside lighting would be avoided, to the extent possible. If outside lights are required for safety or security purposes, directional lighting or shielded lighting would be used to prevent upward radiation. The shields would be completely opaque, sufficiently large, and positioned so that the bulb is only visible from below. Outside lights that are not needed for security and safety would be turned off from dusk through dawn during the seabird fledging season (September 15 to December 15).
- The guy wires for the research tower would not extend above the top of the tree canopy to minimize the potential for bird strikes.

Hawaiian Hoary Bat
The Hawaiian hoary bat is known to occur within Pu‘u Maka’ala NAR, particularly in the Kūlani area. Roosting typically occurs in dense canopy foliage or in the subcanopy when canopy is sparse, with open access for launching into flight (U.S. Department of Agriculture [USDA], 2009). It forages in open, wooded, and linear habitats with a wide range of vegetation types (USFWS, 2014), and while foraging, leaves young unattended in ‘nursery’ trees and shrubs.

If trees or shrubs suitable for bat roosting are cleared during the Hawaiian hoary bat breeding season (June 1 to September 15), there is a risk that young bats that cannot yet fly on their own could inadvertently be harmed or killed. To avoid and minimize any such impacts to Hawaiian hoary bats, the following measures would be implemented. With implementation of these measures, the project is not likely to adversely affect this species:

- In general, no trees taller than 15 feet would be trimmed or removed as a result of this proposed project between June 1 and September 15, when juvenile bats that are not yet capable of flying may...
be roosting in the trees. However, if a limited number of trees need to be trimmed or removed during that time period, a qualified biologist would use appropriate protocols to ensure no juvenile bats are in the affected trees before trimming or cutting.

- No fences are proposed to be installed as part of the project. In the event a fence is needed, it would have barbless top-strand wire to prevent entanglement of Hawaiian hoary bats on barbed wire.

**Picture-Wing Fly (Drosophila mulli)**

*Drosophila mulli* is restricted to the distribution of its host plant, *loulu* (*Pritchardia beccariana*). It was previously documented in the far eastern tip of Pu’u Maka’ala NAR, along Stainback Highway, but was last observed in this area in 2000. If still present in this location, this species could be affected by project-related activities. Specifically, if any *loulu* that are being used by *Drosophila mulli* are cleared, trimmed, or otherwise damaged, *Drosophila mulli* that are occupying the plant could inadvertently be harmed or killed.

To avoid and minimize any such impacts to *Drosophila mulli*, the following measures would be implemented. With implementation of these measures, the project is not likely to adversely affect this species.

- No *loulu* or wet montane forest habitat would be cleared or trimmed, nor would vegetation biomass be harvested as part of sampling within areas that are designated critical habitat for *Drosophila mulli*. If *loulu* is to be cleared, trimmed or harvested in portions of the project area that are not within designated critical habitat, they would first be inspected for *Drosophila mulli* by a qualified biologist. If *Drosophila mulli* are found, the NEON project team would work directly with DOFAW and NARS staff to adjust the construction limits or implement design modifications to avoid impacts to the occupied *loulu*. Temporary protective fencing would be installed around the occupied *loulu*, as appropriate.

- Mosquito traps would not be installed within 1,000 feet of critical habitat for *Drosophila mulli* or any location where the species was previously documented within Pu’u Maka’ala NAR.

As listed in Table 6 and shown in Figure 5, a small area on the northeastern edge of the project area (along Stainback Highway) has been designated as critical habitat for *Drosophila mulli*. Designation of critical habitat for *Drosophila mulli* was based on the following features: (1) wet, montane ʻōhi’a forest between the elevations of 1,955 and 3,585 feet (596 to 1,093 meters) and (2) the larval stage host plant *Pritchardia beccariana*, which exhibits one or more life stages (from seedlings to senescent individuals) (USFWS, 2008). Project implementation would not affect *loulu*, or the above-listed features within designated critical habitat for *Drosophila mulli*, and therefore, would result in no adverse modification of critical habitat.

### 4.5.1.4 Invasive Species

As described in Section 3.5, there are already a variety of invasive species established within Pu’u Maka’ala NAR. However, given the prevalence of native and sensitive species and the objective for the NAR, invasive species are considered to be a severe threat and are actively managed by NARS staff through implementation of their management plan.

Project implementation could provide pathways and opportunities for introduction of additional invasive species to the proposed project site or could create conditions suitable for establishment and spread of invasive species within the NAR. Invasive species could accidentally be introduced to the project site via vehicles, construction equipment, materials, or personnel. Invasive species currently
within the NAR could take advantage of construction-related habitat disturbance to become established or spread across a larger area. To avoid and minimize the potential for introduction and spread of invasive species, the sanitation procedures used by DOFAW and NARS staff would be implemented over the lifetime of the project. The current procedures are listed below; any future modifications or additions made by DOFAW and NARS would be incorporated, as appropriate.

- All vehicles, tools, equipment and building materials, and packaging and shipping containers will be cleaned and fumigated before being shipped to Hawaii and again once they arrive. The same protocol will be followed before leaving the local port.
- All vehicles, equipment, and materials will be stored offsite at a clean staging area and will be subject to sanitation protocols daily before they are returned to the site. This measure will be randomly inspected for compliance and enforced.
- All other materials (including personal equipment and boots) will be inspected for foreign matter (including dirt, seeds, eggs, larvae, or other propagules) and cleaned prior to site entry.
- All workers would be instructed on specific procedures to prevent the introduction and spread of invasive species in the proposed project area.
- All trash, including food waste, would be placed into appropriate containers, removed from the project site, and properly disposed of.
- NEON domain staff would conduct regular monitoring for invasive species within the proposed project area throughout the operational period. If invasive species were detected, removal and control would be coordinated with the NARS site manager.

In addition to introduction and spread of invasive plant and animal species, the proposed project could also contribute to the spread of Rapid ʻŌhiʻa Death, which is spreading across the eastern side of Hawaiʻi Island. To avoid and minimize the potential for Rapid ʻŌhiʻa Death to spread to the proposed project area, the sanitation procedures set forth by the Rapid ʻŌhiʻa Death Working Group would be implemented throughout construction and operations of the NEON project. The current procedures are listed below; any future modifications or additions to these procedures will be adopted for the proposed project, as appropriate.

- A survey of the proposed project site would be conducted no more than two weeks before any tree cutting to determine if there are any infected ʻōhiʻa trees. If infected ʻōhiʻa are suspected at the site, the appropriate agencies would be contacted for further guidance (including USFWS, University of Hawaiʻi Cooperative Extension Service, USDA Forest Service, and USDA Agriculture Research Service).
- Tools used to cut ʻōhiʻa would be cleaned with a 70 percent rubbing alcohol solution or a freshly prepared 10 percent chlorine bleach solution. If a bleach solution is used, tools would be oiled afterwards to prevent corrosion. Chainsaw blades would be brushed clean, sprayed with the cleaning solution, and run briefly to lubricate the chain.
- Personal gear, including shoes and clothes, would be cleaned before and after entering the forest. Shoes would be brushed to remove soil, then sprayed with a 70 percent rubbing alcohol solution or a freshly prepared 10 percent chlorine bleach solution. Other personal gear would also be sprayed with the cleaning solution. Clothing would be washed with hot water and detergent.
- Vehicles used off-road or in infected forest areas would be thoroughly cleaned using a pressure-washer and detergent. All soil would be removed from the tires and vehicle undercarriage.
• If clearing or trimming of ʻōhiʻa is required for the proposed project, the cut wood would be left onsite and would not be transported.

With implementation of these measures, project-related impacts related to invasive species are expected to be minor, both during short-term construction and over the course of long-term project operations.

4.5.2 No Action Alternative

Under the No Action Alternative, biological resources within Puʻu Makaʻala NAR would not be affected by construction and operation of the NEON project and are expected to be commensurate with the existing condition. The NAR would continue to be managed to protect threatened and endangered species and minimize the ongoing threat associated with introduction and spread of invasive species. There would be no new impacts from the No Action Alternative. However, as the NEON project would not be implemented, long-term ecological data would not be collected and made available to inform ecological research and land management activities.

4.6 Archaeological, Architectural, and Cultural Resources

This section describes the potential impacts to cultural resources within the APE that may result from implementation of the Proposed Action and No Action alternatives. As shown in Figure 6, the APE includes the proposed location for the scientific infrastructure and all potential terrestrial sampling areas. Because NEPA and NHPA Section 106 are parallel processes that are closely related in their findings of consequences for cultural resources, this section presents the findings for both regulations. For purposes of clarity, this section uses the term “impact” when discussing NEPA and the term “effect” when discussing Section 106. Under Section 106, the Proposed Action is referred to as the undertaking. Additional detail on the status of Section 106 consultation process is provided in Section 5.2.

Methodology

Once historic properties and other cultural resources within the APE were identified, the proposed project was analyzed to determine whether it would have direct or indirect impacts on those resources. The intensity level and duration of the impact were then determined for the purposes of the NEPA analysis. If any historic properties were identified, the potential for adverse effects was assessed for the purposes of the Section 106 analysis.

For the NEPA analysis, the assessment of direct impacts considered the potential for any of the following to occur as a result of project implementation: (1) destruction or alteration of historic properties, (2) alteration of cultural practices or traditions, or (3) physical changes to the setting and integrity of historic properties. The extent to which the proposed project could impact historic properties and other cultural resources was based on the description of the proposed project (see Section 2.2) and the types of properties and resources identified.

For indirect impacts, broader changes that could result from project implementation (such as changes in land use) were identified and analyzed qualitatively, based primarily on those seen from other similar projects. This includes impacts that would be caused by the proposed project but that would occur at a later time and distance from the proposed project activities. No indirect impacts to historic properties or other cultural resources were identified for the Proposed Action or No Action alternatives. Therefore, no further discussion of indirect impacts is included in this section.

Section 106 Assessment of Effects

Because this section addresses both NEPA and Section 106, the following presents an explanation of how Section 106 evaluates consequences of proposed project activities on historic properties. The
ACHP’s regulations implementing Section 106 of the NHPA create a process by which federally assisted projects are reviewed for their effects on historic properties. After the historic property is identified and evaluated, the Criteria of Adverse Effect (36 CFR 800.5[1]) are applied. These criteria are used to determine whether the undertaking could change the characteristics that qualify the property for inclusion in the NRHP in a manner that would diminish the integrity of the property’s location, design, setting, materials, workmanship, feeling, or association. Section 106 of the NHPA allows the following three findings for effects on historic properties:

- No Historic Properties Affected
- No Adverse Effect
- Adverse Effect

An effect is adverse under Section 106 if it diminishes the integrity of the property’s historically significant characteristics. Examples of adverse effects include, but are not limited to, the following:

- Deconstruction of the historic property
- Relocation of the historic property
- Introduction of visual, audible, or atmospheric elements that are out of character with the setting of the historic property

The federal agency makes the determination of effects for each historic property. Based on these determinations, an overall finding of effect for the undertaking is reached, in consultation with the SHPD and other consulting parties.

When an undertaking is found to have an adverse effect, Section 106 requires notification to the ACHP and consultation with the SHPO (which in Hawai‘i is carried out by SHPD as the administering division), and other interested parties regarding appropriate avoidance, minimization, or mitigation measures. Examples of mitigation measures include such things as redesigning aspects of a proposed project, or relocating or documenting historic properties. For a finding of adverse effect, the product of consultation is usually an MOA (per 36 CFR 800.6(c)) containing stipulations specifying measures that would be implemented to avoid, minimize, or mitigate the adverse effects.

**NEPA Impact Thresholds and Section 106 Effects**

Table 15 identifies impact thresholds for the NEPA analysis relevant to historic properties and other cultural resources, and also lists the correlation between NEPA impacts and NHPA Section 106 effects.

**TABLE 15**
Impact Thresholds for Archaeological, Architectural, and Cultural Resources

<table>
<thead>
<tr>
<th>Impact Intensity</th>
<th>Intensity Description</th>
</tr>
</thead>
</table>
| Negligible       | Impacts on historic properties or other cultural resources would not be detectable and would not alter resource characteristics.  
                  | *The NHPA Section 106 determination would be no historic properties affected or no adverse effect on historic properties.* |
| Minor            | Impacts on historic properties or other cultural resources would result in little, if any, loss of integrity and would be slight but noticeable. Impacts would not appreciably alter resource characteristics.  
                  | *The NHPA Section 106 determination would be no adverse effect on historic properties.* |
| Moderate         | Impacts on historic properties would result in some loss of integrity and would be noticeable. Impacts could appreciably alter resource characteristics. Measures to mitigate impacts would be relatively easy to implement (e.g., through consultation, changes in project design, or via an MOA), and would be sufficient to reduce the intensity of impacts to a level less than major under NEPA. |
TABLE 15
Impact Thresholds for Archaeological, Architectural, and Cultural Resources

<table>
<thead>
<tr>
<th>Impact Intensity</th>
<th>Intensity Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major</td>
<td>The NHPA Section 106 determination would likely be no adverse effect, but only after implementing minimization or mitigation measures sufficient to reduce the adverse effects on historic properties. Impacts on historic properties or other cultural resources would result in disturbance to an important site, substantial loss of integrity, or severe alteration of property conditions, the result of which would significantly affect the human environment. Mitigation would not be sufficient to reduce the intensity of impacts to a level less than major under NEPA. The NHPA Section 106 determination would be adverse effect to historic properties. Measures to mitigate, avoid, or minimize adverse effects under Section 106 would be decided through consultation and stipulated in an MOA.</td>
</tr>
</tbody>
</table>

Duration:  
- Short term – occurs only during the construction or decommissioning periods  
- Long term – continues after the construction and decommissioning periods

Note:  
Text shown in italics is the corresponding NHPA Section 106 Finding of Effect.

4.6.1 Proposed Action Alternative

As described in Section 3.6, there are no known historic properties that are eligible for or listed in the NRHP located within the APE. In addition, there are no known cultural sites or practices associated with the APE. However, the overall NAR has been characterized as a cultural landscape. As discussed in this section, impacts from the proposed project would not be detectable and are not anticipated to alter the significant aspects of the cultural landscape present within the APE. Therefore, the proposed project would result in a finding of negligible, short- and long-term impacts to cultural resources under NEPA and no historic properties affected under Section 106. An unanticipated discovery plan would be in place before initiating project activities to address any archaeological resources that might be inadvertently found.

4.6.1.1 Archaeological Resources

There are no known archaeological resources within the APE. Although the proposed site area has not been surveyed, previous cultural resources studies indicate that the probability of historic properties being present in the proposed site area is very low. Several factors diminish the likelihood for archaeological resources to be present within the APE: the property site is in a remote area with a high elevation, there are no known archaeological or historic properties in the vicinity, and archaeological studies in adjacent areas have not found any sites and have determined that there is a low likelihood of sites in the western upper-elevation of the rain forest. The area was not historically inhabited and the historic uses associated with the area were limited to transient activities, such as bird catching, canoe making, and trail building that did not alter the natural landscape (Maly and Maly, 2004). No physical evidence of features associated with these historic uses is extant. Therefore, the site elevation and difficult accessibility, combined with the ephemeral nature of traditional uses and features, make the archaeological expectations for the area very low. Should any historic properties be present, the likelihood of adverse effects to them from the proposed project is low because the site components entail only minimal ground disturbance.

As with any ground-disturbing project, there remains a potential for discovery of buried cultural resources. If previously unidentified archaeological resources were discovered during project activities, ground-disturbing activities would be halted in the vicinity of the find and NSF would consult with the
SHPD and other consulting parties, as appropriate, regarding eligibility for listing in the NRHP, project effects, necessary mitigation, or other treatment measures. An unanticipated discovery plan would be in place before initiating project activities to address any archaeological resources that might be discovered.

With implementation of these BMPs, the proposed project is expected to result in no impacts to archaeological resources under NEPA and no historic properties affected under Section 106.

4.6.1.2 Traditional Cultural Properties

There are no known TCPs within the APE that have been determined eligible for or are listed in the NRHP. The NAR is characterized as a cultural landscape, although it has never been formally evaluated for the NRHP. The ACHP defines landscapes as “large-scale properties often comprised of multiple, linked features that form a cohesive area or place” (ACHP, 2016). Landscapes acquire cultural and historical meaning through traditional use “by the peoples who have traveled, used, and interwoven these places into generations of practices” (ACHP, 2016). Physical characteristics, as well as visual and audio aspects can all contribute to the significance of a landscape (ACHP, 2016). Because cultural landscapes gain their significance through traditional cultural practices, they are viewed as a type of TCP. The NAR is an approximately 18,730-acre site and a determination of eligibility for this large property as a cultural landscape is beyond the scope of this proposed project. The proposed project would encompass the scientific infrastructure and a total of approximately 62 sampling plots (comprising approximately 650 acres) that would be distributed throughout approximately 11,663 acres of the 18,730-acre Pu‘u Maka‘ala NAR, with a permanent project footprint of approximately 0.2 acre. Because of the dense forest vegetation and remote nature of this area, potential visual changes associated with the proposed project would be very limited and are not expected to significantly affect the visual quality of the site, as further discussed in Section 4.7. The proposed site components are small intrusions into the expansive cultural landscape, and their presence should not inhibit traditional or customary practices, should they occur. Therefore, the proposed project would result in negligible, short- and long-term impacts to the potential TCP of the cultural landscape under NEPA and no adverse effects under Section 106.

4.6.1.3 Cultural Uses, Practices, and Properties

There are no cultural uses or practices that are currently known to occur within the APE or other portions of the NAR. As described in Section 3.6.6, individual species that occur in the NAR (or are planned to occur in the NAR) may be culturally significant, such as the ‘alalā or ‘io, both of which may be regarded as ‘aumakua. Potential impacts to species are discussed further in Section 4.5 (Biological Resources). The proposed project is not anticipated to alter the cultural or spiritual associations with any individual species. The research tower could result in slight changes to the visual character of the species’ habitat, but this is not expected to diminish their cultural or spiritual significance. In addition, the types of activities associated with the proposed project (pedestrian access to conduct terrestrial sampling and research) are consistent with the activities associated with cultural practices that have occurred in the area historically, including access for establishing bird-catcher shelters, canoe-makers clearings, trailside resting places and shelters, and trails. Therefore, the proposed project would result in negligible, short- and long-term impacts to cultural uses, practices, and properties.

4.6.2 No Action Alternative

Under the No Action Alternative there would be no change from the existing conditions. The No Action Alternative would result in a finding of no impacts to cultural resources under NEPA and no historic properties affected under NHPA Section 106.
4.7 Visual Resources

This section describes the potential impacts to visual resources that may result from implementation of the Proposed Action and No Action Alternatives. This impact assessment evaluates impacts to primary viewers based on the extent to which the proposed project would result in a perceivable change in the visual character of the proposed project site, and whether those changes would provide the same visual quality as the current condition. The ROI for visual resources is the area within and surrounding Pu’u Maka’ala NAR. The impact thresholds related to visual resources are defined in Table 16.

**TABLE 16**
Impact Thresholds for Visual Resources

<table>
<thead>
<tr>
<th>Impact Intensity</th>
<th>Intensity Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negligible</td>
<td>The alternative would either not impact the visual quality of the landscape, or changes would be so slight that there would be no measurable or perceptible consequence.</td>
</tr>
<tr>
<td>Minor</td>
<td>The alternative would result in a detectable change to the visual quality of the landscape. However, this change would be small, localized, and of little consequence.</td>
</tr>
<tr>
<td>Moderate</td>
<td>The alternative would impact the visual quality of the landscape; the impact would be readily detectable, with consequences at the regional level. Mitigation may be needed to offset adverse impacts. It would be relatively simple to implement and would have a high likelihood for success.</td>
</tr>
<tr>
<td>Major</td>
<td>The alternative would result in extensive changes to the visual quality of the landscape, with substantial consequences at the regional level. Extensive mitigation would be needed to offset adverse impacts, and the success could not be guaranteed.</td>
</tr>
</tbody>
</table>

**Duration:**  
- **Short term** – occurs only during the construction or decommissioning periods  
- **Long term** – continues after the construction and decommissioning periods

4.7.1 Proposed Action Alternative

Construction and operation of the proposed project could affect visual resources within and surrounding Pu’u Maka’ala NAR. Visual impacts could occur during the construction period as a result of dust and the presence of heavy equipment. However, these activities would be localized and temporary in nature; in addition, the construction site would be kept free of litter and excess equipment and materials, and generally maintained in a clean and organized condition, such that short-term construction-related impacts are expected to be minor.

Over the 30-year operational period for the project, new man-made structures would be permanently located at the proposed project site, which could alter the visual qualities of the area. However, as described in Section 3.7, the proposed project site is not readily accessible by the public and views from the surrounding community are limited by the dense forest vegetation and remote nature of the site.

Based on input from DOFAW and NARS staff, it is expected that the only project-related structure that may be visible from surrounding areas is the tower, which would extend approximately 10 meters above the existing forest canopy. Locations from which the tower may be visible are expected to be limited to Pu’u Kipu, Kūlani Cone, some of the higher elevations within the NAR, and the NAR entrance near Kūlani Correctional Facility. Of these, the NAR entrance is the only location that is readily accessible by the public. Given the viewing distances and its relatively low profile, the tower is not expected to be a prominent feature of the views from these locations. Moreover, it would be similar in nature to other existing infrastructure (e.g., an existing tower located on Kūlani Cone). As such, it is not expected that the proposed tower would diminish the overall visual quality of the area. Installation of the proposed...
infrastructure would also affect aesthetics at a localized scale within the NAR. Specifically, the infrastructure would introduce built elements that would contrast with the surrounding natural environment. However, the infrastructure has been sited in areas that have been previously disturbed and support existing infrastructure (e.g., fences, electrical lines, and power poles). To minimize the potential obtrusiveness of the proposed infrastructure, the tower and ancillary components would be designed to blend into the surrounding environment to the degree possible. The tower would be constructed of galvanized steel, which blends well with forest vegetation. Cloaking methodologies would be applied to decrease the visibility of specific objects, including the auxiliary portals and electrical lines. With implementation of these measures, project-related impacts to visual resources would be perceivable, but the visual quality of the site would remain high, such that long-term impacts are expected to be minor.

4.7.2 No Action Alternative

Under the No Action Alternative, the NEON project would not be constructed and the visual character and quality of the site would not change. Therefore, the No Action Alternative would have no impact to visual resources.

4.8 Hazardous Materials

This section identifies the potential direct and indirect impacts related to hazardous materials that may result from implementation of the Proposed Action and No Action Alternative. Impacts related to hazardous materials were assessed based on an evaluation of the potential to either uncover or expose an existing hazardous material, or to accidentally release a hazardous material to the site. The ROI for this analysis is Pu’u Maka’ala NAR. The impact thresholds related to hazardous materials are presented in Table 17.

TABLE 17
Impact Thresholds for Hazardous Materials

<table>
<thead>
<tr>
<th>Impact Intensity</th>
<th>Intensity Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negligible</td>
<td>The alternative would either not result in a change relative to hazardous materials, or the change would be so small that it would not be of any measurable or perceivable consequence.</td>
</tr>
<tr>
<td>Minor</td>
<td>The alternative would result in a detectable change relative to hazardous materials; however, the impact would be small, localized, and of little consequence.</td>
</tr>
<tr>
<td>Moderate</td>
<td>The alternative would result in a measurable and consequential change relative to hazardous materials. Mitigation may be needed to offset adverse impacts. It would be relatively simple to implement and would have a high likelihood for success.</td>
</tr>
<tr>
<td>Major</td>
<td>The alternative would result in a substantial change relative to hazardous materials. The change would be measurable and would result in a severe impact. Extensive mitigation would be needed to offset adverse impacts, and the success could not be guaranteed.</td>
</tr>
</tbody>
</table>

Duration: Short term – occurs only during the construction or decommissioning periods

Long term – continues after the construction and decommissioning periods

4.8.1 Proposed Action Alternative

Given the lack of hazardous materials present within Pu’u Maka’ala NAR, implementation of the proposed project is not expected to uncover or otherwise expose any hazardous materials within the project site.
Construction would require the use of some hazardous materials, including diesel fuel, gasoline and lubricants. Similar materials may also be occasionally used for operations and maintenance activities, as well as during decommissioning and site closure. Propylene glycol, ethanol, and other chemicals would also be used for sampling, instrument operations and instrument maintenance. However, only a limited amount of these materials would be present onsite, and BMPs would be implemented to avoid and minimize potential impact. BMPs include use of proper handling and storage procedures and routine inspection of vehicles and equipment for leaks, as needed to prevent spills or releases of hazardous materials during construction activities. With implementation of these measures, impacts related to hazardous materials are expected to be negligible over both the short and long term.

4.8.2 No Action Alternative

Under the No Action Alternative, the proposed Domain 20 core site would not be implemented as part of NEON. Conditions within Puʻu Makaʻala NAR would be commensurate with the existing conditions and there would be no impacts related to hazardous materials.

4.9 Air Quality

This section identifies potential direct and indirect impacts to air quality that may result from implementation of the Proposed Action and No Action Alternative. This assessment of impacts is based on the potential for construction and long-term operation to affect air quality relative to applicable federal and state standards that apply to regulation of air quality. The ROI for air quality is the area within and surrounding Puʻu Makaʻala NAR. The thresholds for impacts related to air quality are defined in Table 18.

**TABLE 18**

<table>
<thead>
<tr>
<th>Impact Intensity</th>
<th>Intensity Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negligible</td>
<td>The alternative would either not result in a change to air quality or the change would be so small that it would not be of any measurable or perceptible consequence.</td>
</tr>
<tr>
<td>Minor</td>
<td>The alternative would result in a detectable change in air quality, but the change would be small, localized, and of little consequence.</td>
</tr>
<tr>
<td>Moderate</td>
<td>The alternative would result in a measurable and consequential change to air quality. Mitigation may be needed to offset adverse impacts. It would be relatively simple to implement and would have a high likelihood for success.</td>
</tr>
<tr>
<td>Major</td>
<td>The alternative would result in a substantial change in air quality; the change would be measurable and would result in a severe impact (such as an exceedance of federal or state air quality standards). Extensive mitigation would be needed to offset adverse impacts, and the success could not be guaranteed.</td>
</tr>
</tbody>
</table>

**Duration:**
- **Short term** – occurs only during the construction or decommissioning periods
- **Long term** – continues after the construction and decommissioning periods

4.9.1 Proposed Action Alternative

Construction of the proposed project would require the use of vehicles and heavy equipment, which would generate internal combustion engine emissions and fugitive dust. Short-term emissions of CO₂, nitrogen oxides, VOCs, sulfur oxides, PM₁₀, and PM₂.₅ would occur from burning fossil fuels and from
generating fugitive dust. Workers commuting daily to and from the work site in their personal vehicles would also result in emissions of criteria air pollutants.

Emissions would occur over the approximately 8-month construction period, with potential impacts generally limited to the project site and along roadways to and within the Pu’u Maka’ala NAR. As such, the emissions would be temporary, intermittent, and localized in nature. In comparison to overall emissions in the region, these contributions are relatively small and would not be expected to affect attainment of the federal or state ambient air quality standards, such that construction-related impacts would be minor and short-term in nature.

State law (HAR Title 11 Chapter 60.1, Air Pollution Control) requires that the best practical operation or treatment be implemented during construction activities such that there is not discharge of visible fugitive dust beyond the property lot line. To comply with these requirements and to minimize any other adverse effects on air quality, the following BMPs would be implemented during construction:

- All construction vehicles and equipment would be maintained in proper tune according to manufacturer’s specifications.
- The number of vehicles accessing and moving within the project area would be limited to the extent possible. Vehicles speed on unpaved roads within the project area would be limited to 15 miles per hour or less.
- Vehicles and equipment would not be allowed to idle for extended periods of time (i.e., more than 20 minutes).
- The extent of ground disturbance would be minimized where possible. Temporarily disturbed areas would be stabilized and revegetated as quickly as possible.
- All trucks hauling soil or other loose materials would be covered.
- The entrance to the proposed project site would be stabilized to avoid offsite tracking of sediment.

Operations-related impacts associated with the proposed project would be similar to the existing conditions. Emissions sources would be limited to vehicle traffic to and from the site for ongoing sampling activities (see Table 3 for sampling frequency). The tower and instrument hut HVAC units would result in some condensation, but are expected to produce little to no emissions. Although the proposed project is designed to accommodate a generator, one would only be used in the event of an emergency, where any generator-related emissions would be of short duration and temporary. Long-term operation-related air quality impacts would be negligible.

4.9.2 No Action Alternative

Under the No Action Alternative, monitoring equipment would not be installed and sampling activities would not be conducted, such that no emissions of criteria pollutants would occur. The existing range of air pollution sources within the proposed project area would not be expected to change substantially over the period of analysis. With continuing trade wind patterns, air quality levels are expected to remain relatively constant and would continue to be in compliance with federal and state standards. As such, the No Action Alternative would have negligible adverse impacts on air quality over both the short and long term.

4.10 Noise

This section identifies potential direct and indirect noise impacts that may result from implementation of the Proposed Action and No Action Alternative. Noise impacts were determined based on potential
increased noise levels around noise-sensitive land uses. For such uses, unwanted sound would adversely affect the designated use within a particular area, and typically include residential areas, hospitals, places of worship, libraries, schools, historic structures and districts, wildlife preserves, and parks. Noise impacts to wildlife are discussed in Section 4.5. The ROI for noise includes Pu‘u Maka‘ala NAR, Stainback Highway (as the access route to the site), and the adjacent properties. The impact thresholds related to noise are presented in Table 19.

**TABLE 19**
Impact Thresholds for Noise

<table>
<thead>
<tr>
<th>Impact Intensity</th>
<th>Intensity Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negligible</td>
<td>The alternative would either not result in a change in noise levels over the ambient condition, or the change would be so small that it would not be measurable or perceptible.</td>
</tr>
<tr>
<td>Minor</td>
<td>The alternative would result in a detectable change in noise levels over the ambient condition; however, the impact would be small, localized, and of little consequence.</td>
</tr>
<tr>
<td>Moderate</td>
<td>The alternative would result in a measurable and consequential change in noise level over the ambient condition. Mitigation may be needed to offset adverse impacts. It would be relatively simple to implement and would have a high likelihood for success.</td>
</tr>
<tr>
<td>Major</td>
<td>The alternative would result in a substantial change in noise level over the ambient condition. The change would be measurable and would result in a severe impact. Extensive mitigation would be needed to offset adverse impacts, and success could not be guaranteed.</td>
</tr>
</tbody>
</table>

**Duration:**
- **Short term** – occurs only during the construction or decommissioning periods
- **Long term** – continues after the construction and decommissioning periods

### 4.10.1 Proposed Action Alternative

Construction of the proposed project would require operation of construction vehicles and heavy equipment (e.g., mini excavator with hydraulic hammer and skid steer, and drill rig) for various activities, including delivery of the infrastructure and equipment, excavation and pouring of foundations, and installation of the tower, instrument hut and other equipment. Typical construction equipment generally emits noise in the range of 80 to 90 dBA at 50 feet (USEPA, 1971); earth-moving equipment is expected to be the loudest equipment used during construction. Construction related noise would occur throughout the construction period, but would occur intermittently and for relatively short durations of time. The nearest offsite noise-sensitive land uses are residences located approximately 6 miles (9.7 km) from the proposed location where the NEON infrastructure would be installed. Given this distance, and because noise dissipates based on the distance to the source, construction-related noise is not expected to have any effect on these residences or other offsite noise-sensitive land uses.

Per HAR 11-46-3, the proposed project area is located in Class A Zoning District (open space, conservation and residential). Under the Class A Zoning District, the maximum permissible sound levels are 55 dBA during the daytime (7 am to 10 pm) and 45 dBA during the nighttime (10 pm to 7 am). Based on the typical noise levels emitted by construction equipment, construction noise levels may exceed the State’s maximum permissible property line noise levels. Pursuant to HAR 11-46-7, a Community Noise Permit would be obtained from HDOH to allow the operation of construction-related equipment, as needed. It is expected that the permit would restrict the times of day when construction activities may emit noise in excess of the maximum permissible sound levels. The HDOH may also require the incorporation of noise mitigation into the construction plan. BMPs that would be implemented to reduce noise levels are expected to include the following:
• Proper tuning and balancing of construction equipment, and maintenance in accordance with the manufacturer’s specifications
• Use of noise barriers, mufflers, or both on diesel and gasoline engines
• Restriction of construction activities to typical working days/hours
• Keeping unnecessary noise to a minimum

Given the short duration and temporary nature of the construction activities, and with approval of a Community Noise Permit (including implementation of noise-reduction measures), construction-related noise is expected to result in a minor short-term impact.

Long-term operation of the site would include routine terrestrial sampling activities and maintenance of the infrastructure/equipment. Noise associated with these activities would be limited to intermittent use of passenger vehicles (e.g., pickup truck) and field crew activity, which is expected to be similar in nature to current research and monitoring activities within the NAR. Operation of the infrastructure would not produce any noise, with the exception of HVAC systems, pumps in the instrument hut and a few of the tower-mounted sensors. Based on conditions experienced at other NEON project sites, the noise levels in the immediate vicinity of this infrastructure could result in a detectable change over the ambient environment, but would attenuate over a short distance and are expected to be of little consequence. If needed, engineered mufflers may be added to the pumps to reduce noise levels during operations. Although the proposed project is designed to accommodate a generator, one would only be brought onsite and used in the event of an emergency, in which case, generator associated noise impacts would be short in duration and temporary. Overall, with implementation of mitigation measures as needed, operation of the NEON Domain 20 site is expected to result in a minor, long-term impact to noise levels.

4.10.2 No Action Alternative

Under the No Action Alternative, noise associated with the implementation of the proposed project would not occur and ambient noise levels would remain consistent with the existing conditions. There would be no new noise-related impacts.

4.11 Transportation and Traffic

This section identifies the potential direct and indirect impacts related to transportation and traffic that may result from implementation of the Proposed Action and No Action alternatives. Impacts to transportation and traffic were assessed based on an evaluation of the extent to which each alternative would affect traffic levels or patterns, or otherwise alter the transportation network. The ROI for transportation and traffic is Pu’u Maka’ala NAR and the roadways that will be used to access to the site. The impact thresholds related to the transportation and traffic analysis are presented in Table 20.
TABLE 20
Impact Thresholds for Traffic and Transportation

<table>
<thead>
<tr>
<th>Impact Intensity</th>
<th>Intensity Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negligible</td>
<td>The alternative would not result in a change in traffic or transportation resources, or the change would be so small that it would not be of any measurable or perceptible consequence.</td>
</tr>
<tr>
<td>Minor</td>
<td>The alternative would result in a change in traffic or transportation resources, but the change would be small, localized and of little consequence.</td>
</tr>
<tr>
<td>Moderate</td>
<td>The alternative would result in a measurable and consequential change in traffic or transportation resources. Mitigation may be needed to offset adverse impacts. It would be relatively simple to implement and would have a high likelihood for success.</td>
</tr>
<tr>
<td>Major</td>
<td>The alternative would result in a substantial change in traffic or transportation resources; the change would be measurable and would result in a severe impact. Extensive mitigation would be needed to offset adverse impacts, and success could not be guaranteed.</td>
</tr>
</tbody>
</table>

**Duration:**
- **Short term** – occurs only during the construction or decommissioning periods
- **Long term** – continues after the construction and decommissioning periods

### 4.11.1 Proposed Action Alternative

During the construction phase of the proposed project, a range of vehicles would be used to access the site, including those needed to transport construction personnel and those for equipment delivery. Standard passenger vehicles would be used to transport construction personnel, and would be accessing the site daily during the construction period. A range of larger vehicles (e.g., flat-bed trucks) would be needed to transport the proposed infrastructure and other project equipment. A total of 5 loads would be required to transport the tower and instrument hut, with additional loads transporting concrete and conduit, as needed.

Over the course of the 30-year operational period, transportation to the site would generally be limited to passenger vehicles for NEON domain personnel. On average, it is expected that personnel would be visiting the site several times per week to perform sampling or maintenance activities. Larger vehicles are expected to be required on a very infrequent basis, as needed for occasional maintenance tasks (e.g., equipment replacement) and infrastructure removal during decommissioning.

During both construction and operations, vehicles would access the proposed project site via Stainback Highway. Given the relatively small number of vehicles associated with project implementation, there is not expected to be a measurable change in traffic levels or roadway capacity along Stainback Highway (or any of the roads leading to Stainback Highway) during either the construction or operation phase. There could be short-term delays along Stainback Highway during large vehicle deliveries to and from the site, as the roadway is relatively narrow and may not be able to accommodate two-way traffic involving large construction vehicles. Large vehicle deliveries along Stainback Highway would be timed to avoid typical commute hours, to minimize the potential impacts to other motorists, particularly residents traveling to and from Mountain View via North Kūlani Road, to the extent possible. The timing of large vehicle deliveries would also be coordinated with Kūlani Correctional Facility, as appropriate. Traffic controls (including signage, flagging, or other similar methods) would also be implemented as needed, to further minimize impacts to other vehicles travelling on Stainback Highway.

As previously described in Section 2.2, an existing road would be used for access within Pu‘u Maka’ala NAR. No additional roadway would be constructed, but improvements may be needed along certain segments of the existing road to accommodate construction vehicles. In general, vehicular traffic within
Pu‘u Maka‘ala NAR would be minimized to the extent practicable, so as to decrease potential roadway impacts. This effort will include (1) coordination of deliveries to minimize the total number of trips needed and (2) carpooling requirements for construction and operations staff.

Given the relatively minimal transportation requirements for the proposed project, and with implementation of the above-listed measures, traffic-related impacts are expected to be minor over both the short and long term.

4.11.2 No Action Alternative

Under the No Action Alternative, the Domain 20 core site would not be implemented as part of NEON, and associated changes in transportation or traffic would not occur. Therefore, there would be no new impacts related to transportation or traffic.

4.12 Human Health and Safety

This section identifies potential direct and indirect impacts related to human health and safety that may result from implementation of the Proposed Action and No Action alternatives. This assessment of impacts considers natural hazards, occupational health and public safety, and protection of children. The ROI for this analysis includes the proposed site boundaries and encompasses land within 0.5 mile of the site. The impact thresholds related to human health and safety are defined in Table 21.

**TABLE 21**
Impact Thresholds for Human Health and Safety

<table>
<thead>
<tr>
<th>Impact Intensity</th>
<th>Intensity Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negligible</td>
<td>The alternative would either not result in a change relative to human health and safety, or the change would be so small that it would not be of any measurable or perceptible consequence.</td>
</tr>
<tr>
<td>Minor</td>
<td>The alternative would result in a detectable change relative to public safety, occupational health, and protection of children; however, the impact would be small, localized, and of little consequence.</td>
</tr>
<tr>
<td>Moderate</td>
<td>Potential impacts would result in a measurable and consequential change to public safety, occupational health, and protection of children. Mitigation may be needed to offset adverse impacts. It would be relatively simple to implement and would have a high likelihood for success.</td>
</tr>
<tr>
<td>Major</td>
<td>Potential impacts would result in a substantial change to public safety, occupational health, and protection of children; the change would be measurable and could result in substantial injury or loss of life. Extensive mitigation would be needed to offset adverse impacts, and the success could not be guaranteed.</td>
</tr>
</tbody>
</table>

**Duration:**
- **Short term** – occurs only during the construction or decommissioning periods
- **Long term** – continues after the construction and decommissioning periods

4.12.1 Proposed Action Alternative

4.12.1.1 Natural Hazards

As described in Section 4.3, the proposed NEON site is located in a region that is volcanically active and is prone to seismic activity. However, implementation of the proposed project would not increase any risks associated with volcanic eruptions or seismic activity, nor would these events increase any risks associated with operation of the NEON field study site. As such, impacts associated with volcanic eruptions or seismic activity are not anticipated as a result of the proposed project. Proper precautions would be taken if there were any indication of a potential eruption or seismic event.
The proposed NEON site is not located within an identified floodplain (DNLR, 2016) or the tsunami inundation zone (NOAA, 2016); as such, it is extremely unlikely that hazardous conditions associated with flooding or a tsunami would occur within the proposed project area. The potential for wildfire within or near the site is also considered highly unlikely because of the high levels of rainfall. For these reasons, impacts associated with natural hazards are considered negligible over both the short and long term.

4.12.1.2 Occupational Health and Public Safety

Hazards associated with construction and operation of the proposed NEON site at Pu‘u Maka‘ala NAR are expected to be limited to physical and biological hazards. Physical hazards include the potential for slips, trips, and falls because of uneven ground surfaces and working at heights (e.g., on the tower), as well as those associated with operation of construction equipment. Natural hazards include exposure to dangerous plants or animals (e.g., thorned plants or stinging insects) and extreme elements (e.g., sunburn and heat stroke). Occupational health and safety are a high priority to NSF and Battelle, and all personnel and contractors working at the site would comply with applicable Occupational Safety and Health Administration (OSHA) regulations. In addition, the construction contractor would develop and implement a Health and Safety Plan to minimize risks associated with potential hazards. Based on implementation of these measures, construction and operation of the project is expected to have a negligible impact on occupational health over both the short and long term.

Although the proposed project site is accessible to the general public, very little (if any) public access occurs in the area where the proposed infrastructure would be located. As such, the hazards discussed above are not expected to pose a risk to the general public.

4.12.1.3 Protection of Children

The proposed project site would be located in a remote portion of Pu‘u Maka‘ala NAR, and there are no child-centric resources within a 0.5-mile radius of the site. Consequently, the presence of children in areas within or surrounding the project site is highly unlikely. If children were to visit the proposed project site, it is expected that it would be under very controlled circumstances, with adult supervision. Therefore, the proposed project is not expected to pose any health and safety risks that would disproportionately affect children.

4.12.2 No Action Alternative

Under the No Action Alternative, the Domain 20 field study site would not be implemented as part of NEON, and there would be no new impacts associated with human health and safety.

4.13 Public Services and Utilities

This section identifies potential direct and indirect impacts related to public services and utilities that may result from implementation of the Proposed Action and No Action alternatives. This assessment of impacts considers the extent to which the action would interfere with police, fire, or emergency medical providers; disrupt service for any public utility; or burden a public service or utility system. The ROI for public services and utilities is the area within and surrounding Pu‘u Maka‘ala NAR. The impact thresholds related to public services and utilities are defined in Table 22.
TABLE 22
Impact Thresholds for Public Services and Utilities

<table>
<thead>
<tr>
<th>Impact Intensity</th>
<th>Intensity Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negligible</td>
<td>The alternative would either not result in a change to public services and utilities, or the change would be so small that it would not be of any measurable or perceptible consequence.</td>
</tr>
<tr>
<td>Minor</td>
<td>The alternative would require or result in a change to public services and utilities, but the change would be small, localized, and of little consequence.</td>
</tr>
<tr>
<td>Moderate</td>
<td>The alternative would require or result in a measurable and consequential change to public services and utilities. Mitigation would be needed to offset adverse impacts. It would be relatively simple to implement and would have a high likelihood for success.</td>
</tr>
<tr>
<td>Major</td>
<td>The alternative would require or result in a substantial change to public services and utilities; the change would be measurable and would result in a severe impact (e.g., substantial interference or interruption of a public service or utility). Extensive mitigation would be needed to offset adverse impacts, and the success could not be guaranteed.</td>
</tr>
</tbody>
</table>

Duration: 
- **Short term** – occurs only during the construction or decommissioning periods
- **Long term** – continues after the construction and decommissioning periods

### 4.13.1 Proposed Action Alternative

The proposed project is not expected to interrupt, increase the demand for, or otherwise affect police, fire, or emergency medical services.

As described in Section 3.13, no utility infrastructure is present within Pu’u Maka’ala NAR. Electrical and telecommunication lines are located nearby, within the adjacent Kūlani Correctional Facility property. To obtain power and telecommunication service for the proposed project, service lines would be installed from the existing infrastructure to a new meter socket and transfer switch, which would be owned and used by the utility company.

The proposed project is not expected to affect the existing utility infrastructure or the current level of service. Electrical and telecommunication utilities would remain functional during construction but may experience temporary and short-term interruptions; these would be limited to the extent possible. Further coordination with utility owners would occur before and during construction. Short-term impacts on utilities would be negligible because service would be maintained during construction, and there would be no long-term adverse impacts related to utilities.

### 4.13.2 No Action Alternative

Under the No Action Alternative, the proposed Domain 20 core site would not be implemented as part of NEON. Conditions within Pu’u Maka’ala NAR would be commensurate with the existing conditions, such that no impacts to public services or utilities would occur.

### 4.14 Socioeconomics

This section identifies potential direct and indirect impacts related to socioeconomics that may result from implementation of the proposed project. This assessment of impacts considers potential effects to population, the local economy and environmental justice. The ROI for socioeconomics is the County of Hawai’i. The thresholds for impacts related to human health and safety are defined in Table 23.
### TABLE 23
Impact Thresholds for Socioeconomics

<table>
<thead>
<tr>
<th>Impact Intensity</th>
<th>Intensity Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negligible</td>
<td>The alternative would either not result in a change to socioeconomic conditions, or the change would be so small that it would not be of any measurable or perceptible consequence.</td>
</tr>
<tr>
<td>Minor</td>
<td>The alternative would result in a detectable change to socioeconomic conditions; however, the impact would be small, localized, and of little consequence.</td>
</tr>
<tr>
<td>Moderate</td>
<td>The alternative would result in a measurable and consequential change to socioeconomic conditions. Mitigation may be needed to offset adverse impacts. It would be relatively simple to implement and would have a high likelihood for success.</td>
</tr>
<tr>
<td>Major</td>
<td>The alternative would result in a substantial change to socioeconomic conditions; the change would be measurable and would result in a severe impact. Extensive mitigation would be needed to offset adverse impacts, and the success could not be guaranteed.</td>
</tr>
</tbody>
</table>

**Duration:**
- Short term – occurs only during the construction or decommissioning periods
- Long term – continues after the construction and decommissioning periods

#### 4.14.1 Proposed Action Alternative

##### 4.14.1.1 Population

There are adequate construction resources within the local workforce to complete the necessary construction activities, and the housing of scientists during operations would be primarily temporary. Consequently, impacts to the regional population would be negligible over the short and long term.

##### 4.14.1.2 Economy

Maintenance staff and research scientists would be employed in association with the proposed project, but the long-term benefit to the local economy is expected to be negligible, because of the limited number of individuals employed.

##### 4.14.1.3 Environmental Justice

Executive Order (E.O.) 12898, *Federal Actions to Address Environmental Justice in Minority and Low-Income Populations*, requires federal agencies to consider disproportionate risks to minority and low-income communities. The communities surrounding the Pu‘u Maka‘ala NAR have a large concentration of Native Hawaiians (U.S. Census Bureau, 2015), which constitutes a minority community in the U.S. However, the impacts from the proposed project are less than significant and would remain within the boundaries of Pu‘u Maka‘ala NAR. There would be no disproportionate high and adverse environmental impacts to minority or low-income communities. Potential impacts to Native Hawaiian cultural resources are described in Section 4.6.

#### 4.14.2 No Action Alternative

Under the No Action Alternative, socioeconomic conditions in the area within and surrounding the proposed project site would be expected to remain relatively unchanged; therefore, there would be no new impacts.
4.15 Cumulative Impacts

Cumulative impacts are those impacts that result from the incremental impact of the proposed project when added to other past, present, and reasonably foreseeable future projects, regardless of the person or agency that undertakes the other projects. Principles of cumulative impact analysis in the CEQ guide Considering Cumulative Effects under the National Environmental Policy Act (CEQ, 1997) states: “for cumulative effects analysis to help the decision maker and inform interested parties, it must be limited through scoping to effects that can be evaluated meaningfully.”

The potential for cumulative impacts to the environment from the proposed project was evaluated by reviewing other projects and activities in the region that could affect the same environmental resources within a similar timeframe. Actions that were considered include those projects that were recently completed, are currently underway, or are expected to occur in the foreseeable future. Potential cumulative activities identified in the vicinity of the project area include the following:

- **DOFAW Activities in Pu‘u Maka‘ala NAR**: DOFAW and NARS staff actively manage the Pu‘u Maka‘ala NAR to protect the native ecosystems and cultural resources found at the site. DOFAW and NAR management activities, which could combine with those associated with the proposed project, include the following categories (DOFAW, 2016d):
  - Non-native Animal Control: Involves removal of ungulates (hooved animals) and small mammals to limit effects of non-native animal species at the NAR. Control activities include fencing, one-way gates, and other innovative actions.
  - Non-native Plant Pest Control: Involves management of weed species. Control activities include hand pulling of weeds, herbicides, and biological controls.
  - Restoration and Habitat Enhancement: Involves the enhancement of habitat and population size of native birds and plants. In Pu‘u Maka‘ala NAR, DOFAW and NARS staff are actively reforesting 340 acres of previous pastureland, which were grazed until 2007. DOFAW and NARS staff are also actively involved in the ‘Alalā Release Project.
  - Monitoring: Surveys are routinely performed to help managers understand the specific resources in the Pu‘u Maka‘ala NAR.
  - Research: Scientific research is performed to better understand the life history of bird and plant species, and obtain an understanding of restoration effort success.

- **ʻAlalā Release Project**: The ‘Alalā Project is a joint effort by DOFAW, USFWS, and San Diego Zoo Global to reintroduce ʻalalā to the wild and establish a self-sustaining population. The first release occurred in December 2016, although no birds from that release are currently in the NAR. Twelve birds are planned to be released at a new, undisclosed location within the NAR in late summer or early fall 2017. Similar releases are anticipated to occur annually for the next 5 years, depending on the success and survival of the released birds. Following each release, there will be a team of onsite biologists providing supplemental feeding, conducting ongoing predator control, monitoring life history, and conducting nest searches for approximately 5 years (DOFAW, 2016c).

- **Kūlani Correctional Facility**: The 280-acre Kūlani Correctional Facility is located adjacent to the Pu‘u Maka‘ala NAR and approximately 1 mile southwest of the proposed NEON site. The facility houses approximately 200 low-risk inmates and provides vocational training and substance abuse treatment programs. The vocational programs include facility maintenance, agriculture/horticultural and other
technology training programs. The facility was reopened in 2014 after closure in 2009. There are no current plans to make additions or expansions of the current facilities (DAGS and DPS, 2013).

The proposed project would result in limited adverse impacts and measures would be implemented to avoid and minimize the impacts. Nonetheless, cumulative impacts can result from implementation of multiple projects that have individually minor but collectively significant impacts. Upon review, it has been determined that there would be negligible short-term and long-term cumulative effects to the resources identified in this EA. The following is an explanation of this finding, by resource:

- **Climate Change:** The identified cumulative activities would result in exceptionally low amounts of greenhouse gas emissions when compared to statewide emissions, and would not noticeably effect global climate change.

- **Land Use and Recreation:** The identified cumulative activities would not result in a change in land use or recreation opportunities.

- **Geology, Topology, and Soils:** The identified cumulative activities require limited ground-disturbing activities; therefore, there is little potential to effect geology, topology, or soils.

- **Water Resources:** The identified cumulative activities require limited ground-disturbing activities; therefore, there is little potential impact to water resources.

- **Biological Resources:** The necessary construction and increased human presence during monitoring from the proposed project could adversely affect native plant and bird species present at the site. While the Kūlani Correctional Facility would also involve substantial human activity, the facility has limited native habitat and expected impacts to biological resources are expected to be minimal (State of Hawai‘i, 2012). The other identified activities (DOFAW activities in the NAR and the ‘Alalā Project) would also increase human activity, but would be restricted to trained natural resource personnel, whose objective is to protect the biological resources at the site. For this reason, it is not expected that there would be a noticeable adverse cumulative impact to native vegetation, birds, or threatened or endangered species. It is expected that if additional adverse impacts were noticed, revised monitoring, research, and control protocols would be enforced.

- **Archaeological, Historic, and Cultural Resources:** The identified cumulative activities are not expected to affect any known resources. If a resource was to be effected, it is expected that DOFAW or the Department of Public Safety would consult with the SHPO, pursuant to HRS Chapter 6E, and appropriate mitigation measures would be developed and implemented.

- **Visual Resources:** No changes to the visual environment are expected from the identified cumulative activities.

- **Hazardous Materials:** It is expected that any hazardous material usage resulting from the identified cumulative activities would be handled in accordance to applicable state and federal regulations; therefore, the potential for cumulative impacts is limited.

- **Air Quality:** The identified cumulative activities would not result in substantial emissions in NAAQS criteria pollutants.

- **Noise:** Limited amounts of noise are associated with the identified activities, and cumulatively, are expected to be of little consequence relative to the current noise environment.

- **Transportation and Traffic:** The identified cumulative activities would not result in a noticeable increase in traffic, nor would they affect current road infrastructure.
- Human Health and Safety: It is assumed that standard safety protocols would be followed during the identified cumulative activities; therefore, there is little likelihood for cumulative impacts.

- Socioeconomics: The reopening of the Kūlani Correctional Facility has resulted in increased regional jobs; which would be a beneficial socioeconomic impact. The other projects would have limited to no socioeconomic impacts.
5 Agency Coordination, Public Involvement and Consultation

5.1 Agency Coordination

NSF began the process of informal consultation with federal, state, and local agencies in 2010, as part of the environmental compliance effort for the overall NEON project. Agency consultation has been ongoing for the various locations that have been considered for the Domain 20 field study site; as described in Section 2.1, these include the Laupāhoehoe site, the Upper Waiakea site, and the proposed Puʻu Makaʻala NAR site. Consultation efforts have been conducted in support of general project development, as well as for specific regulatory purposes, including NHPA Section 106 and ESA Section 7 consultation.

The agencies that have been consulted specifically in regard to the Puʻu Makaʻala NAR site, as presented in this document, are listed in Table 24.

<table>
<thead>
<tr>
<th>TABLE 24 Agency Consultation</th>
</tr>
</thead>
</table>
| **Federal**                  | SHPO  
USFWS                        |
|                               | USDA and USFS (Institute of Pacific Island Forestry) |
| **State of Hawaiʻi**          | OEQC  
OCCL                         |
|                               | DOFAW                         |
|                               | NARS                          |
|                               | SHPD                          |
| **County of Hawaiʻi**         | County of Hawaiʻi Planning Department |
| **Other Public-Private Stakeholder Organizations** | ʻAlalā Working Group  
Three Mountain Alliance  
Rapid ʻŌhiʻa Death Working Group |

5.2 Public Involvement and Consultation

5.2.1 Scoping

NEPA regulations (40 CFR 1501.7) specify that “there shall be an early and open process for determining the scope of issues to be addressed and for identifying the significant issues related to a proposed action.” Similarly, HAR 11-200-9.1 requires that an applicant for an action requiring compliance with HRS Chapter 343 seek advice and input from agencies with jurisdiction or expertise, as well as citizen groups and individuals that may be affected at the earliest practicable time.

In compliance with these requirements, NSF conducted scoping before developing the Draft EA. As described in Section 1.5, a scoping letter containing preliminary project information and requesting input was distributed to more than 200 agencies, organizations, and individuals. Table 25 summarizes the 11 responses received.
TABLE 25
Comments Received as Part of Scoping Process for Draft EA

<table>
<thead>
<tr>
<th>Commenter</th>
<th>Date</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Landowner (D. Aki)</td>
<td>August 15, 2016</td>
<td>Letter requesting to be removed from project stakeholder list</td>
</tr>
<tr>
<td>State of Hawai‘i Department of Health Clean Water Branch</td>
<td>August 18, 2016</td>
<td>Letter providing standard project requirements relating to water quality standards</td>
</tr>
<tr>
<td>National Park Service</td>
<td>August 18, 2016</td>
<td>Letter providing recommended BMPs to minimize the potential for introduction and spread of invasive species, and impacts related to seabirds</td>
</tr>
<tr>
<td>State of Hawai‘i DLNR, Land Division</td>
<td>August 22, 2016</td>
<td>Letter indicating that the Land Division has no comments on the proposed project</td>
</tr>
<tr>
<td>State of Hawai‘i Department of Agriculture</td>
<td>August 22, 2016</td>
<td>Email describing concerns related to the potential spread of Rapid ‘ōhi’a Death and request to address appropriate protocols</td>
</tr>
<tr>
<td>State of Hawai‘i DLNR OCCL</td>
<td>August 23, 2016</td>
<td>Email providing preliminary information regarding the Conservation District subzone and permit requirements</td>
</tr>
<tr>
<td>Hawai‘i Fire Department</td>
<td>August 25, 2016</td>
<td>Letter providing the relevant fire codes</td>
</tr>
<tr>
<td>County of Hawai‘i Planning Department</td>
<td>August 25, 2016</td>
<td>Email providing zoning and land use permit requirements for the proposed project site</td>
</tr>
<tr>
<td>SHPD/Deputy SHPO</td>
<td>September 12, 2016</td>
<td>Letter requesting additional information regarding identification of historic properties and a determination of eligibility for any historic properties within the APE, pursuant to 36 CFR 800 and HAR 13-275</td>
</tr>
<tr>
<td>USFWS</td>
<td>September 12, 2016</td>
<td>Letter providing information on federally listed species that occur in the project area, measures to avoid and minimize impacts to those species, and measures to address Rapid ‘ōhi’a Death</td>
</tr>
<tr>
<td>State of Hawai‘i Department of Transportation</td>
<td>October 3, 2016</td>
<td>Letter indicating that the developer should submit an FAA Form 7460-1 “Notice of Proposed Construction or Alteration.” It is also recommended that a red light be placed on the tower.</td>
</tr>
</tbody>
</table>

A detailed scoping report, including a copy of the scoping letter, comments received, and responses to those comments is contained in Appendix A.

5.2.2 Endangered Species Act Section 7 Consultation

Section 7 of the ESA requires federal agencies to ensure that any agency action is not likely to jeopardize the continued existence of any species listed as threatened or endangered (or any species proposed for listing). NSF, as the lead federal agency for the proposed project, is consulting with USFWS pursuant to the requirements of ESA Section 7; this consultation is ongoing. Although agency consultation is not explicitly required to comply with state laws protecting threatened and endangered species (HRS Chapter 195D), NSF is also seeking input from DOFAW as part of this process.

Table 26 lists the milestones of the Section 7 consultation process for this undertaking. Copies of documents relating to the ESA Section 7 process are contained in Appendix D.
TABLE 26
Endangered Species Act Section 7 Consultation Process

<table>
<thead>
<tr>
<th>Action</th>
<th>Date</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter from USFWS (in response to NEPA/HRS Chapter 343 scoping)</td>
<td>September 12, 2016</td>
<td>Letter offering technical assistance for the proposed NEON project at Puʻu Makaʻala NAR, including list of federally listed species that occur in the project vicinity and measures to avoid and minimize project impacts to those species, and measures to minimize impacts related to Rapid ʻŌhiʻa Death (see Appendix D)</td>
</tr>
<tr>
<td>Email to USFWS and other project stakeholders</td>
<td>October 19, 2016</td>
<td>Email inviting USFWS and other project stakeholders (including scientists and researchers conducting work in Puʻu Makaʻala NAR) to consultation meeting, with detailed information regarding the proposed infrastructure and sampling protocols</td>
</tr>
<tr>
<td>Consultation meeting with USFWS</td>
<td>October 25, 2016</td>
<td>Meeting to discuss the ESA Section 7 consultation process, potential impacts to federally listed species, and measures to avoid and minimize project impacts to those species</td>
</tr>
<tr>
<td>Consultation meeting with USFWS and other project stakeholders</td>
<td>October 26, 2016</td>
<td>Meeting with USFWS and other project stakeholders (including scientists and researchers conducting work in Puʻu Makaʻala NAR) to provide proposed project overview and discuss stakeholder issues to inform ESA compliance</td>
</tr>
<tr>
<td>Email to USFWS and other project stakeholders</td>
<td>January 23, 2017</td>
<td>Email to participants of October 26, 2016 meeting containing meeting minutes, revisions to terrestrial sampling protocols and proposed mitigation measures developed in response to concerns raised at meeting</td>
</tr>
<tr>
<td>Email to USFWS</td>
<td>March 23, 2017</td>
<td>Email transmitting information regarding listed species and preliminary effects analysis</td>
</tr>
<tr>
<td>Coordination with USFWS</td>
<td>April 26, 2017</td>
<td>Conference call to obtain input from USFWS on information regarding listed species and preliminary effects analysis</td>
</tr>
</tbody>
</table>

5.2.3 National Historic Preservation Act Section 106 Consultation Process

This section describes the Section 106 consultation process and identifies the Section 106 Consulting Parties. As stated in 36 CFR 800.1:

“Section 106 of the National Historic Preservation Act requires Federal agencies to take into account the effects of their undertakings on historic properties and afford the Council [Advisory Council on Historic Preservation (ACHP)] a reasonable opportunity to comment on such undertakings. The procedures in this part define how Federal agencies meet these statutory responsibilities. The section 106 process seeks to accommodate historic preservation concerns with the needs of Federal undertakings through consultation among the agency official and other parties with an interest in the effects of the undertaking on historic properties, commencing at the early stages of project planning. The goal of consultation is to identify historic properties potentially affected by the undertaking, assess its effects and seek ways to avoid, minimize or mitigate any adverse effects on historic properties.”

NSF, as the lead federal agency for the proposed undertaking, has invited participation in the consultation process, in compliance with Section 106. The consultation process has also incorporated the state regulatory compliance requirements for historic and cultural properties pursuant to HRS 6E. Table 27 summarizes the consultation milestones for this undertaking. Copies of correspondence relating to the Section 106 and 6E compliance process are provided in Appendix C.
### TABLE 27
NHPA Section 106 Consultation Milestones

<table>
<thead>
<tr>
<th>Action</th>
<th>Date</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter from Deputy SHPO/SHPD (in response to NEPA/HRS Chapter 343 scoping)</td>
<td>September 12, 2016</td>
<td>Letter indicating the additional information needed to determine the potential impacts to historic properties, including information relating to identification and determination of eligibility of historic properties within the APE</td>
</tr>
<tr>
<td>Email to SHPD requesting names of NHOs and other potential Consulting Parties</td>
<td>September 22, 2016</td>
<td>Email to SHPD Cultural Historian for Hawai‘i Island requesting names of NHOs and others that may be interested in consulting on the proposed project</td>
</tr>
<tr>
<td>Response from SHPD with names of NHOs and other potential Consulting Parties</td>
<td>September 29, 2016</td>
<td>Response from SHPD Cultural Historian for Hawai‘i Island with names of NHOs and others that may be interested in consulting on the proposed project</td>
</tr>
<tr>
<td>Letters sent to potential Consulting Parties and SHPD (via email)</td>
<td>October 18, 2016</td>
<td>Letter seeking to identify Consulting Parties to be included in Section 106 process; providing notice of upcoming Section 106 Consulting Party meeting; and requesting input on cultural resources in the proposed project area</td>
</tr>
<tr>
<td>Section 106 Consultation Meeting</td>
<td>October 26, 2016</td>
<td>Meeting to provide proposed project overview and obtain consulting party input on historic properties and cultural practices (three individuals attended the meeting)</td>
</tr>
<tr>
<td>Section 106 Initiation Letter to SHPD/SHPO</td>
<td>December 7, 2016</td>
<td>Letter initiating Section 106 consultation with SHPD/SHPO (copies sent to list of potential Consulting Parties)</td>
</tr>
<tr>
<td>Email to SHPO/SHPD</td>
<td>January 10, 2017</td>
<td>Email following up on the consultation initiation letter sent December 7, 2016</td>
</tr>
<tr>
<td>Email to SHPO/SHPD</td>
<td>March 23, 2017</td>
<td>Email requesting comments related to the consultation initiation letter sent December 7, 2016</td>
</tr>
<tr>
<td>Section 106 Concurrence Letter to SHPO/SHPD</td>
<td>April 24, 2017</td>
<td>Letter transmitting Cultural Resources Assessment of Effects and seeking concurrence with finding of effect (copies sent to list of potential Consulting Parties)</td>
</tr>
</tbody>
</table>

Based on the Native Hawaiian Organization (NHO) Notification List published by the U.S. Department of the Interior Office of Native Hawaiian Relations (2016), NSF identified an initial list of potential Consulting Parties who may be interested in the proposed NEON project at Pu‘u Maka‘ala NAR. As indicated in Table 27, input on other potential Consulting Parties was requested from SHPD staff. The potential Consulting Parties identified through this process, all of whom have been contacted as part of the Section 106 consultation process, are listed in Table 28. Of these, only Historic Hawai‘i Foundation and the Hawai‘i County Cultural Resources Commission have requested to be formally identified as a Consulting Party.

### TABLE 28
Potential Consulting Parties

<table>
<thead>
<tr>
<th>Aha Moku Council</th>
<th>Keoni Kealoha Alvarez</th>
</tr>
</thead>
<tbody>
<tr>
<td>Association of Hawaiian Civic Clubs</td>
<td>Ko‘olau Foundation</td>
</tr>
<tr>
<td>George K. Cypher ‘Ohana</td>
<td>Ku‘a O Ka Lā</td>
</tr>
<tr>
<td>Hawai‘i County Cultural Resources Commission</td>
<td>Maku‘u Farmers Association</td>
</tr>
<tr>
<td>Hawai‘i Island Burial Council</td>
<td>Mauna Kea Watershed Alliance</td>
</tr>
<tr>
<td>Hawai‘i Volcanoes National Park</td>
<td>National Park Service</td>
</tr>
</tbody>
</table>
### TABLE 28
Potential Consulting Parties

<table>
<thead>
<tr>
<th>Hawaiian Civic Club of Hilo</th>
<th>Office of Hawaiian Affairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historic Hawai‘i Foundation</td>
<td>Protect Kaho‘olawe ‘Ohana</td>
</tr>
<tr>
<td>Kāko‘o Ōiwi</td>
<td>Pihonua Hawaiian Homestead Community Association</td>
</tr>
<tr>
<td>Kamehameha Schools</td>
<td></td>
</tr>
</tbody>
</table>
This page is intentionally left blank.
6 Consistency with Applicable Plans and Policies

6.1 Conservation District (HRS 183C)

Land uses within the state Conservation District are under the sole jurisdiction of the state and are governed by HRS Chapter 183C and the implementing rules contained in HAR 13-5. The Conservation District was created to protect important natural resources essential to the preservation of the state's fragile natural ecosystems and the sustainability of the state's water supply. The Conservation District is divided into five subzones: protective, limited, resource, and general, as well as a “special” subzone to accommodate unique projects (HRS 183C-1). The proposed infrastructure would be within the general and resource subzones, and the terrestrial sampling would occur within the resource and protective subzones.

The OCCL is responsible for regulating land uses within the Conservation District. HAR 13-5-22 identifies those land uses which may be permitted within the protective subzone (and HAR 13-5-23 through 25 further permit these land uses in the remaining subzones); these include “data collection, research, education, and resource evaluation that involves permanent facilities or structures larger than 500 square feet or a land use causing significant ground disturbance or impact to a natural resources” (P-1, Data Collection). This land use is permitted with the issuance of a Conservation District Use Permit. The criteria that would be used in evaluating the project are provided in HAR 13-5-30(c). These are listed below, with a discussion of how each criterion is addressed by the proposed project.

1. The proposed land use is consistent with the purpose of the conservation district

The purpose of the Conservation District is to conserve, protect, and preserve the important natural and cultural resources of the state through appropriate management and us to promote their long-term sustainability and the public health, safety, and welfare. The proposed project is one component of a continental-scale ecological observation facility designed to gather and synthesize data needed to study the impacts of climate change, land use change, and invasive species on natural resources and biodiversity. The resulting data and the research that it would support would help to inform management and long-term sustainability of the natural environment within Pu‘u Maka‘ala NAR, as well as throughout Hawai‘i, consistent with the purpose of the Conservation District.

2. The proposed land use is consistent with the objectives of the subzone of the land on which the use will occur

The objective of the protective subzone is to protect valuable natural and cultural resources. The objective of the resource subzone is to ensure, with proper management, the sustainable use of the natural resources. The objective of the general subzone is to designate open space where specific conservation uses may not be defined, but where urban use would be premature. As described above for Criterion 1, the proposed project is designed to provide data to address key issues related to ecological research and management, which are considered critical to long-term resource conservation and protection. Project-related impacts to natural resources would be tightly monitored and are expected to be minimal, as further discussed in response to Criterion 4. As such, the proposed project is considered to be consistent with the subzone objectives.
(3) The proposed land use complies with provisions and guidelines contained in Chapter 205A, HRS, entitled "Coastal Zone Management," where applicable

The discussion in Section 6.3 confirms the consistency of the project with the Coastal Zone Management Act and the objectives outlined in HRS Chapter 205A.

(4) The proposed land use will not cause substantial adverse impact to existing natural resources within the surrounding area, community or region

Avoidance and minimization of impacts to natural resources is fundamental to the long-term success of the proposed project, as it is intended to monitor natural changes in native ecosystems. The infrastructure for the proposed project would have a very small footprint (approximately 0.2 acre), and stringent impact avoidance and minimization measures would be implemented throughout construction and operation of the proposed project. As such, impacts to natural resources are expected to be minimal and would be far outweighed by the long-term benefits related to ecological research and management, consistent with the above-listed criterion.

(5) The proposed land use, including buildings, structures and facilities, shall be compatible with the locality and surrounding areas, appropriate to the physical conditions and capabilities of the specific parcel or parcels

The proposed project would involve installation of research infrastructure and long-term terrestrial sampling. The proposed locations of the project components were identified in coordination with DOFAW and NARS staff, such that they would be located in areas with suitable physical conditions and capabilities. The infrastructure siting process focused on meeting the constructability and scientific requirements for the proposed project, while balancing land use and management goals, and minimizing the potential for impacts to sensitive resources within the NAR. The terrestrial sampling plots were identified through an iterative process, in an effort to avoid areas with particularly sensitive resources and also to account for other research and management activities. Activities associated with the proposed terrestrial sampling are expected to be similar in nature to other research and management efforts conducted in the NAR. As such, the proposed project is considered to be consistent with Criterion 5.

(6) The existing physical and environmental aspects of the land, such as natural beauty and open space characteristics, will be preserved or improved upon, whichever is applicable

The proposed infrastructure would introduce built elements into an otherwise natural environment, but would be designed to have the smallest possible footprint (approximately 0.2 acre) and to blend into the surrounding environment to the degree possible. In general, the infrastructure is not expected to be visible from surrounding areas. The top of the tower would extend approximately 10 meters above the existing forest canopy and may be visible from a few, very limited viewpoints, but is not expected to be a prominent feature that diminishes the aesthetics of the landscape. Therefore, the proposed project is considered to be consistent with Criterion 6.

(7) Subdivision of land will not be used to increase the intensity of land uses in the conservation district

The proposed project does not involve the subdivision of land.

(8) The proposed land use will not be materially detrimental to the public health, safety and welfare

The proposed project would be located in a relatively remote area that is seldom accessed by the general public. Neither construction nor operation of the proposed project would adversely affect public health, safety, or welfare. Overall, project implementation would contribute to public welfare by
providing information that could be used to inform long-term management and sustainability of the natural environment, consistent with the above-listed criterion.

6.2 Natural Area Reserves (HRS Chapter 195)

Recognizing the unique natural resources that are found in Hawai’i and the need to protect and preserve those resources, HRS Chapter 195 established a statewide NAR system to preserve specific areas in perpetuity. Rules that govern the NAR system are provided in HAR 13-209-5. These rules specify that the need for a Special Use Permit for research, education, management, or other activities otherwise prohibited within the NARs. Proposed activities must be consistent with the criteria listed in HAR 13-209-5.5. These criteria are listed below, with a discussion of how the proposed project would be consistent with each criterion.

(1) The proposed special-use cannot be conducted elsewhere

As detailed throughout this document, there are specific requirements for NEON field study sites as needed to meet the overall project objectives. These requirements include (1) a “wildland” area comprised of undeveloped, natural land representing the dominant vegetation and soil type for that domain, (2) contiguous habitat over an area large enough to implement the sampling protocols, (3) areas subject to minimal disturbance (i.e., not pristine, but still high quality habitat), (4) adequate soil depth to implement sampling protocols, (5) site accessibility, and (6) proximity to an existing power supply. A detailed and prolonged site selection process was conducted in close coordination with project stakeholders, including DOFAW and NARS staff and the ecological research community, based upon which, the proposed location within Pu‘u Maka’ala NAR was selected. Other potentially suitable locations considered throughout this process were ultimately dismissed as they either would not meet the NEON requirements or would not be consistent with underlying land management goals, as discussed in Section 2.1.

(2) The proposed special-use is consistent with the purpose and objectives of the natural area reserve system

The Management Policies of the Natural Area Reserves System (NARS Commission, 1997) states that the NARS was established “to preserve and protect, in perpetuity, examples of Hawai‘i’s unique terrestrial and aquatic natural resources, in order that present and future generations may be able to learn about and appreciate these natural assets. In addition, these Reserves were created to provide baselines against which changes to other native ecosystems can be measured.” The proposed project is well-aligned with this purpose, as it is designed to gather and synthesize data needed to study the impacts of climate change, land use change and invasive species on natural resources and biodiversity. The resulting data and the research that it would support would help to inform management and long-term sustainability of the natural environment within Pu‘u Maka’ala NAR and throughout Hawai‘i, as well as at the continental scale.

(3) The proposed special-use is consistent with the management plan developed for the reserve

As specified in the Pu‘u Maka’ala NAR Management Plan (DOFAW, 2013b), the overall management goal is to manage threats to the integrity, diversity and functioning of Pu‘u Maka’ala NAR ecosystems so that the unique natural and cultural resources are protected, maintained, and enhanced. Specific components of the plan address (1) ungulate management, (2) weed management, (3) habitat protection and rare species restoration program, (4) fire prevention and response, (5) monitoring, (6) public access, outreach, and education, (7) enforcement, (8) partnership collaboration, and (9) infrastructure and other actions. The proposed project would not conflict with any of these
management goals, and in some cases would help to achieve the goals. In particular, the proposed project would help to progress specific objectives related to monitoring (“monitoring the current status and trends of natural resources as part of a long-term monitoring program”) and partnership collaboration (“working with other groups collaboratively to address joint management needs [e.g., invasive species management, rare plant management, education, monitoring and research]”). As such, the proposed project is considered to be consistent with this criterion.

(4) The proposed special-use provides a benefit (direct or indirect) to the natural area reserve system or to the individual reserve(s) or both

As described above, the proposed project would align with the management objectives related to long-term monitoring and partnership collaboration. Specifically, the NEON project would collect long-term monitoring data needed to study the impacts of climate change, land use change and invasive species on natural resources and biodiversity. These data would be made available to DOFAW and NARS staff (as well as others in the research community and general public), helping to inform management and long-term sustainability of the natural environment within Pu‘u Maka‘ala NAR, as well as throughout Hawai‘i.

(5) The proposed special-use will not damage or threaten to damage the integrity or condition of the natural, geological, or cultural resources in the natural area reserve and adjacent area or region

As detailed in this document, the proposed project is not expected to significantly affect any geological or cultural resources. Construction and operation of the proposed project would result in some minor impacts to natural resources; however, avoidance and minimization of these impacts is fundamental to the long-term success of the proposed project, as it is intended to monitor natural changes in native ecosystems. The infrastructure for the project would have a very small footprint (approximately 0.2 acre) and stringent impact avoidance and minimization measures would be implemented throughout construction and operation of the proposed project. As impacts to natural resources are expected to be minimal and would be far outweighed by the long-term benefits related to ecological research and management, the proposed project is considered to be consistent with this criterion.

(6) The proposed special-use complies with provisions and guidelines contained in Chapter 205A, Hawaii Revised Statutes, entitled “Coastal Zone Management”, where applicable

The discussion in Section 6.3 confirms the consistency of the project with the Coastal Zone Management Act and the objectives outlined in HRS Chapter 205A.

(7) The applicant shall have complied with, or be in compliance with, the conditions of any previously approved permit

A NARS Special Use Permit was previously issued for the proposed project’s geotechnical study. Battelle complied with all terms of this permit and formally reported and closed the permit.

6.3 Coastal Zone Management (HRS Chapter 205A)

Under the authority of the federal Coastal Zone Management Act (16 U.S.C. 1451-1456), Hawai‘i’s Coastal Zone Management (CZM) program was enacted as HRS Chapter 205A in 1977, and is administered by the State of Hawai‘i Department of Business, Economic Development and Tourism (DBEDT) Office of Planning. The CZM area encompasses the entire state, including all marine waters seaward to the extent of the State’s police power and management authority, including the 12-mile U.S. territorial sea and all archipelagic waters. The Hawai‘i CZM program integrates decisions made by state and county agencies such as the Land Use Commission, DLNR, HDOH, HDOT, and State of Hawaii Department of Agriculture to provide greater coordination and compliance with existing laws and rules.
The policy objectives of the program are listed below, with a brief statement on project consistency with each objective.

- **Recreational Resources.** To provide coastal recreational opportunities accessible to the public and protect coastal resources uniquely suited for recreational activities that cannot be provided elsewhere.
  - The proposed project area does not contain coastal recreation resources nor would it affect access to coastal recreation opportunities.

- **Historic Resources.** To protect, preserve, and where desirable, restore those natural and manmade historic and prehistoric resources in the coastal zone management area that are significant in Hawaiian and American history and culture.
  - The proposed project would not affect any historic or prehistoric resources.

- **Scenic and Open Space Resources.** To protect, preserve, and where desirable, restore or improve the quality of coastal scenic and open space resources.
  - The proposed project would not affect any coastal scenic views. It would involve work in forested open space lands; however, the project-related infrastructure would have a minimal footprint and is not expected to diminish the overall visual quality of this open space.

- **Coastal Ecosystems.** To protect valuable coastal ecosystems, including reefs, from disruption and to minimize adverse impacts on all coastal ecosystems.
  - The proposed project is located inland and would not affect coastal ecosystems.

- **Economic Uses.** To provide public or private facilities and improvements important to the state’s economy in suitable locations; and ensure that coastal dependent development such as harbors and ports, energy facilities, and visitor facilities, are located, designed, and constructed to minimize adverse impacts in the coastal zone area.
  - The proposed project is not a coastal-dependent development.

- **Coastal Hazards.** To reduce hazard to life and property from tsunami, storm waves, stream flooding, erosion, subsidence, and pollution.
  - The proposed project is not located in a tsunami or floodplain zone, and is not subject to coastal hazards.

- **Managing Development.** To improve the development review process, communication, and public participation in the management of coastal resources and hazards.
  - As detailed in Section 1.5, there have been ongoing communication and opportunities for participation by project stakeholders. There will be additional opportunities for the public to review and comment on the project through the HRS Chapter 343 EA and permitting process.

- **Public Participation.** To stimulate public awareness, education, and participation in coastal management; and maintain a public advisory body to identify coastal management problems and provide policy advice and assistance to the CZM program.
  - The proposed project does not contain a public participation component for programmatic coastal management issues. Project-specific input would be elicited through the HRS Chapter 343 EA and permitting process.
• **Beach Protection.** To protect beaches for public use and recreation and locate new structures inland from the shoreline setback to conserve open space and to minimize loss of improvements because of erosion.
  – The proposed project is located inland and does not affect Hawai‘i beaches.

• **Marine Resources.** To implement the state’s ocean resources management plan.
  – The proposed project would not directly or indirectly affect resources addressed in the ocean resources management plan.

Key components of the CZM program include (1) regulation of development within the SMA, a designated area extending inland from the shoreline, (2) a Shoreline Setback Area, which serves as a buffer against coastal hazards and erosion, and protects viewplanes, and (3) a Federal Consistency provision, which requires that federal activities, permits, and financial assistance be consistent, to the maximum extent practicable with the enforceable policies of the Hawai‘i CZM program. The proposed project site is not located within either the SMA or the Shoreline Setback Area. As discussed throughout this document and summarized above, the proposed project would not significantly affect the resources addressed under CZM policy, and as such, is considered to be consistent with the CZM program. Pursuant to the Federal Consistency provision, this determination will be submitted to the Office of Planning for their concurrence.

### 6.4 Hawai‘i State Environmental Policy (HRS Chapter 344)

The purpose of HRS Chapter 344 is to “establish a State policy which will encourage productive and enjoyable harmony between people and their environment, promote efforts which will prevent or eliminate damage to the environment and biosphere and stimulate the health and welfare of humanity, and enrich the understanding of the ecological systems and natural resources important to the people of Hawai‘i.” It specifies that the programs, authorities, and resources of the state be used to conserve natural resources and improve the quality of life. Guidelines that relate to the project specify management practices that conserve and fully use all natural resources. As presented throughout this document, the NEON project is designed to gather and synthesize data needed to study the impacts of climate change, land use change and invasive species on natural resources and biodiversity. The resulting data and the research that it would support would help to inform management and long-term sustainability of the natural environment.

### 6.5 Hawai‘i County General Plan

The Hawai‘i General Plan (Hawai‘i County, 2005) is a policy document for the long-range comprehensive development of the Island of Hawai‘i and provides direction for future growth of the County. The current Hawai‘i General Plan was approved by the County Council and became effective on February 9, 2005, repealing the previous plan adopted on November 14, 1989.

The 2005 Hawai‘i General Plan includes a total of 21 study elements, each of which were analyzed and evaluated relative to all other elements, County and district goals, and land use patterns. Study elements that relate to the proposed project include Environmental Quality, and Natural Resources and Shoreline. The proposed project does not conflict with any of the objectives or policies of the Hawai‘i General Plan, and in particular, supports the following policies related to the above-mentioned study elements:

• **Environmental Quality, Policy 4.3(a):** Take positive action to further maintain the quality of the environment.
• Natural Resources and Shoreline, Policy 8.3(a): Require users of natural resources to conduct their activities in a manner that avoids or minimizes adverse effects on the environment.

• Natural Resources and Shoreline, Policy 8.3(b): Encourage a program of collection and dissemination of basic data concerning natural resources.

6.6 Community Development Plan

Chapter 15.1 of the General Plan outlines the process for adopting Community Development Plans. Community Development Plans are enabled by Hawai‘i County Code Section 16-2 and administered by the Planning Department. The intent of these plans is to translate the broad General Plan statements into actions for a specific geographical area. They serve as the forum for community input into establishing County policy at the regional level and coordinating the delivery of County services to the community. However, it is not mandatory that a Community Development Plan be developed for each region, with the need generally based on the extent of the region’s growth or changes in zoning and land use.

The proposed project is located in the Hilo district. A Community Development Plan process has not been undertaken for this district. Some resource documents are provided by the Planning Department for the Hilo district (Hawai‘i County, 2016b), including information on EnVision Downtown Hilo, Bayfront Trails, and Hawai‘i County Complete Streets; none of these resources relate to the proposed project.

6.7 Hawai‘i County Code

Section 25-2-71 of the Hawai‘i County Code requires plan approval before the construction or installation of any new structure or development or any addition to an existing structure or development in all districts except in the single-family residential (RS), residential and agricultural (RA), family agricultural (FA), agricultural (A) and intensive agricultural (IA) districts, and except for the construction of one single-family dwelling and any accessory buildings per lot. As confirmed by the County of Hawai‘i Planning Department, plan approval will be required for this proposed project.

6.8 Anticipated Permit Requirements

Table 29 presents the permits that are expected to be required for the NEON field study at Pu‘u Maka‘ala NAR, along with the current status of each permitting process.

<table>
<thead>
<tr>
<th>Permit/Approval</th>
<th>Agency/Entity</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEPA Compliance</td>
<td>NSF</td>
<td>In progress; Draft EA published for public review</td>
</tr>
<tr>
<td>Endangered Species Act, Section 7 Compliance</td>
<td>USFWS</td>
<td>In progress (see Section 5.2.2)</td>
</tr>
<tr>
<td>NHPA Section 106 Compliance</td>
<td>SHPO</td>
<td>In progress (see Section 5.2.3)</td>
</tr>
<tr>
<td>Conservation District Use Permit</td>
<td>OCCL, BLNR</td>
<td>Application submitted; in progress</td>
</tr>
<tr>
<td>NARS Special Use Permit*</td>
<td>NARS Commission, BLNR</td>
<td>To be obtained; application to be submitted after completion of EA process</td>
</tr>
<tr>
<td>Coastal Zone Management Act Federal Consistency Determination</td>
<td>DBEDT, Office of Planning</td>
<td>To be obtained</td>
</tr>
</tbody>
</table>
### TABLE 29
Anticipated Permits and Approvals

<table>
<thead>
<tr>
<th>Permit/Approval</th>
<th>Authority</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>State of Hawai‘i Chapter 343 Compliance</td>
<td>DLNR (accepting authority)</td>
<td>In progress; Draft EA published for public review</td>
</tr>
<tr>
<td>HRS Chapter 195D Compliance</td>
<td>DLNR, DOFAW</td>
<td>In progress (based on ESA Section 7 compliance)</td>
</tr>
<tr>
<td>HRS Chapter 6E Compliance (SHPD Notification and Review)</td>
<td>SHPD</td>
<td>In progress (concurrent with NHPA Section 106 process)</td>
</tr>
<tr>
<td>Community Noise Permit</td>
<td>HDOH</td>
<td>To be obtained, as needed</td>
</tr>
<tr>
<td>Plan Approval</td>
<td>County of Hawai‘i, Planning Department</td>
<td>To be obtained</td>
</tr>
<tr>
<td>Construction Permit&lt;sup&gt;a&lt;/sup&gt;</td>
<td>County of Hawai‘i, Public Works</td>
<td>To be obtained, as needed</td>
</tr>
</tbody>
</table>

Notes:

<sup>a</sup> For the purposes of HRS Chapter 343, the NARS Special Use Permit is considered an approval for use of state land, which is a trigger requiring compliance with HRS Chapter 343.

<sup>b</sup> The County of Hawai‘i issues a variety of construction permits, including (but not limited to) building, grading, and grubbing permits. It is possible that a grading permit will be required; the need for any other construction permits will be verified and obtained as needed.
7 Summary of Impacts and Anticipated Determination

7.1 Summary of Impacts

Based on the analysis contained in this document, Table 30 summarizes the potential impacts associated with the proposed project and the measures that would be implemented to avoid or minimize those impacts.

7.2 Anticipated Determination

The proposed project involves construction and operation of a core field study site for NEON’s Pacific Tropical domain (Domain 20), and would be the only site representing this domain for the continental-wide network. Over the 30-year operational period, biological, biophysical, biogeochemical, and land use data from the site would be made available to the scientific community and general public for use in analyzing ecological conditions in the Hawaiian Islands and would be comparable to data collected across the continental United States, Puerto Rico, and Alaska. Based upon the preliminary analysis and findings presented in this document, implementation of the proposed project is not expected to result in a significant adverse direct, indirect or cumulative impact on the quality of the environment.

As the lead agency under NEPA, NSF expects that the proposed project would not constitute a major federal action affecting the quality of human health or the environment, and anticipates rendering a FONSI for the proposed project.

Similarly, a negative declaration determination is also anticipated in accordance with HRS Chapter 343. This assessment is based on an evaluation of the project impacts in relation to the significance criteria specified in HAR 11-200-12(b), as summarized in Table 31.

The anticipated NEPA and HRS Chapter 343 determinations are based on the preliminary analysis and findings of the environmental review process to date, as presented herein. Additional information and input obtained through the Draft EA public review process will be considered in finalizing the determinations. If a FONSI is warranted, NSF will proceed with obtaining the required permits, then implementing the proposed project. If it is determined that implementation of the proposed project would result in significant impacts, NSF would publish an NOI to prepare an EIS in the Federal Register and an EISPN in the OEQC Environmental Notice, or would not undertake the proposed project.
### TABLE 30
Summary of Potential Impacts and Proposed Mitigation Measures

<table>
<thead>
<tr>
<th>Resource Category</th>
<th>Impacts</th>
<th>Mitigation Measures to Avoid or Minimize Impact</th>
</tr>
</thead>
</table>
| General           | N/A     | A Project Work Plan detailing the SOPs would be developed and executed. The Plan would be subject to DOFAW/NARS approval before project implementation, and would continue to be refined over the lifetime of the project. SOPs would include (but not be limited to) the following (as summarized in Section 2.2.2):  
  - Communication Procedures  
  - Staff Training  
  - Decontamination Procedures  
  - Site Access and Route Planning  
  - Ongoing Impact Assessment and Adaptive Mitigation  
  - Vegetation Trimming  
  - Stakeholder and Community Engagement |
| Climate           | Construction: Negligible, short-term impact  
                  Operation: Negligible, long-term impact | The proposed project would be expected to have a negligible impact relative to climate; no avoidance or minimization measures are proposed. |
| Land Use and Recreation | Construction: Negligible, short-term impact  
                        Operation: Negligible, long-term impact | The proposed project would be expected to have a negligible impact relative to land use and recreation; no avoidance or minimization measures are proposed. |
| Geology and Soils | Construction: Minor, short-term impact  
                    Operation: Minor, short-term impact (decommissioning) | Measures to avoid and minimize potential impacts related to soil erosion include the following:  
  - The extent of ground disturbance would be minimized to the extent practicable.  
  - Temporarily disturbed areas would be stabilized and revegetated as quickly as possible. |
| Water Resources   | Construction: Negligible, short-term impact  
                    Operation: Negligible, short-term impact (decommissioning) | Measures to minimize the potential for water quality impacts to receiving waters would be implemented during construction and operation (particularly decommissioning), and are expected to include the following:  
  - Erosion and sediment control measures (such as silt fences) would be installed before earth-moving activities are initiated, and would be inspected and properly maintained throughout the construction period.  
  - Disturbance of soil would be minimized during periods of heavy rain.  
  - Vehicles and equipment would be inspected for leaks or contamination on a daily basis.  
  - In the event of a spill/leak of fuel or lubricants from onsite equipment, the materials would be cleaned in a timely manner and disposed at an approved site. |
### TABLE 30
Summary of Potential Impacts and Proposed Mitigation Measures

<table>
<thead>
<tr>
<th>Resource Category</th>
<th>Impacts</th>
<th>Mitigation Measures to Avoid or Minimize Impact</th>
</tr>
</thead>
</table>
| Biological Resources (Vegetation) | Construction: Minor, short-term impact  
Operation: Minor, long-term impact | Measures to avoid and minimize potential impacts on vegetation include:  
- Any vegetation removal required during construction or operation would be conducted in accordance with the SOPs for the project (see Section 2.2.2), including prior approval by the NEON science team, permitting team and site host. A qualified arborist with specific knowledge of the target species and site conditions would be engaged, as needed.  
- Terrestrial sampling activities would be conducted in accordance with the SOPs for the proposed project, particularly those related to site access, route planning, and ongoing impact assessment and mitigation.  
- In sampling plots where tree tagging is needed, coiled wire would be wrapped around the tree (instead of using standard tree tags) to avoid physical impact to the tree.  
- Areas temporarily disturbed during construction or decommissioning would be revegetated. Revegetation efforts would utilize species (or propagules of such species) that are native to the area and appropriate for the specific disturbed area. Revegetation efforts would be coordinated with DOFAW/NAR. |
| Biological Resources (Wildlife) | Construction: Minor, short-term impact  
Operation: Minor, long-term impact | Measures to avoid and minimize potential impacts on wildlife include those listed as part of the SOPs (see Section 2.2.2), including site access and route planning efforts designed to limit potential disturbance, and ongoing impact assessment and mitigation. |
| Biological Resources (Critical Habitat) | Construction: Negligible, short-term impact  
Operation: Negligible, long-term impact | The proposed project would be expected to have a negligible impact on critical habitat; no avoidance or minimization measures are proposed. |
| Biological Resources (Threatened and Endangered Species) | Construction: Minor, short-term impact  
Operation: Minor, long-term impact | Measures to avoid and minimize potential impacts to threatened and endangered species include:  
**Plant Species**  
- Preconstruction surveys would be conducted throughout the construction limits. In the event that a protected plant species is identified, the NEON project team would work directly with DOFAW and NARS staff to adjust the construction limits or implement design modifications to avoid potential impacts.  
- Temporary protective fencing would be erected around any protected plant species located in close proximity to the access road or construction limits.  
**Nēnē**  
- A biologist familiar with the nesting behavior of the nēnē would survey suitable habitat within the construction area before the initiation of any construction activities, or after any subsequent delay in work of 3 or more days (during which time, the birds could attempt nesting). If a nest were discovered, USFWS would be contacted.  
- All NEON staff would be trained to identify nēnē and know the appropriate steps to take if nēnē are present within the project area or encountered in transit to sampling locations.  
- If a nēnē is encountered within the project area, the bird would not be approached, and all activities within 100 feet of the bird would cease until the bird leaves the area of its own volition. |
TABLE 30
Summary of Potential Impacts and Proposed Mitigation Measures

<table>
<thead>
<tr>
<th>Resource Category</th>
<th>Mitigation Measures to Avoid or Minimize Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>If a ʻānē is encountered while in transit to a sampling location, the researcher(s) would stop and remain in place until the bird moved more than 100 feet from the travel route of its own volition or slowly retreat and return for sampling at a later time.</td>
</tr>
<tr>
<td></td>
<td>A maximum speed limit of 15 mph would be enforced for all project vehicles traveling within the project site to minimize potential collisions with ʻānē.</td>
</tr>
<tr>
<td>Hawaiian Hawk</td>
<td>Vegetation clearing or construction would not be conducted during the Hawaiian hawk breeding season (March through September). If it is not possible to avoid vegetation clearing or construction during these months, a nest survey would first be conducted by a qualified biologist. The survey would be conducted no more than 14 days before the start of vegetation clearing or construction, and would include all areas within 1,600 feet of the construction area. Appropriate survey methodology (including avoidance and minimization measures in the event a nest is found) would be coordinated with USFWS.</td>
</tr>
<tr>
<td></td>
<td>If determined to be needed, nesting deterrents would be placed on the tower. Any deterrent used would first be approved by USFWS and DOFAW.</td>
</tr>
<tr>
<td></td>
<td>NEON staff would be trained to recognize the Hawaiian hawk and their nests. In the event that a Hawaiian hawk nest is identified within or directly adjacent to a terrestrial sampling plot, sampling activities would be temporarily halted until the nest is no longer occupied. If a nest were identified along the pedestrian route to a sampling plot, an alternate route that is at least 1,600 feet from the nest would be used until the nest were no longer occupied.</td>
</tr>
<tr>
<td>Honeycreepers (ʻākiapōlāʻau, Hawaiʻiʻēkepa, alawi, and ʻiwi)</td>
<td>If vegetation clearing or construction occurs during the honeycreepers breeding season (February through July), a nest survey would first be conducted by a qualified biologist. The survey would be conducted no more than 14 days before the start of vegetation clearing or construction, and would include all areas within 500 feet of the construction area. Appropriate survey methodology (including avoidance and minimization measures in the event a nest occurs) would be coordinated with USFWS.</td>
</tr>
<tr>
<td></td>
<td>The guy wires for the research tower would be fitted with bird flight diverters to increase their visibility to birds.</td>
</tr>
<tr>
<td>ʻAlalā</td>
<td>If vegetation clearing or construction occurs during the ʻalalā breeding season (February through July), a nest survey would first be conducted by a qualified biologist. The survey would be conducted no more than 14 days before the start of vegetation clearing or construction, and would include all areas within 1,600 feet of the construction area. Appropriate survey methodology (including avoidance and minimization measures in the event a nest occurs) would be coordinated with USFWS.</td>
</tr>
<tr>
<td></td>
<td>The use of shiny materials would be minimized and shiny surfaces would be masked to decrease their attractiveness to ʻalalā. Specifically, the tower would be constructed of materials that are a dull, galvanized gray. An exterior treatment involving dark or dull colors would be added to any shiny surfaces, such as power boxes and communication equipment.</td>
</tr>
<tr>
<td></td>
<td>All trash would be placed into appropriate containers and promptly removed from the project site, to avoid inadvertent discarding of shiny materials or other items that may be of interest to ʻalalā.</td>
</tr>
<tr>
<td></td>
<td>The guy wires for the research tower would be fitted with bird flight diverters to increase their visibility to birds.</td>
</tr>
<tr>
<td></td>
<td>The beetle traps would be fitted or retrofitted, depending on timing of ʻalalā releases, with chicken wire to limit the extent to which ʻalalā could access the traps. Any preservatives used in the beetle traps would be verified to be non-toxic to birds.</td>
</tr>
</tbody>
</table>
|                   | NEON staff would be trained to recognize ʻalalā and their nests. In the event that an ʻalalā nest is identified within or directly adjacent to a terrestrial sampling plot, sampling activities would be temporarily halted until the nest is no longer occupied. If a nest
<table>
<thead>
<tr>
<th>Resource Category</th>
<th>Impacts</th>
<th>Mitigation Measures to Avoid or Minimize Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>is identified along the pedestrian route to a sampling plot, an alternate route that is at least 1,600 feet from the nest would be used until the nest were no longer occupied.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Seabirds</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Construction activities would be restricted to daylight hours to avoid the use of nighttime lighting that could attract seabirds.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Installation of outside lighting would be avoided, to the extent possible. If outside lights were required for safety or security purposes, directional lighting or shielded lighting would be used to prevent upward radiation. The shields would be completely opaque, sufficiently large, and positioned so that the bulb is only visible from below. Outside lights that are not needed for security and safety would be turned off from dusk through dawn during the seabird fledging season (September 15 to December 15).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The guy wires for the research tower would not extend above the top of the tree canopy to minimize the potential for bird strikes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Hawaiian Hoary Bat</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• In general, no trees taller than 15 feet would be trimmed or removed as a result of this project between June 1 and September 15, when juvenile bats that are not yet capable of flying may be roosting in the trees. However, if a limited number of trees need to be trimmed or removed during that time period, a qualified biologist would use appropriate protocols to ensure no juvenile bats are in the affected trees before trimming or cutting.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• No fences are proposed to be installed as part of the proposed project. In the event a fence is needed, it would have barbless top-strand wire to prevent entanglement of Hawaiian hoary bats on barbed wire.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Picture-Wing Fly</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• No <em>lolu</em> or wet montane forest habitat would be cleared or trimmed, nor would vegetation biomass be harvested as part of sampling within areas that are designated critical habitat for <em>Drosophila mulli</em>. If <em>lolu</em> is to be cleared, trimmed or harvested in portions of the project area that are not within designated critical habitat, they would first be inspected for <em>Drosophila mulli</em> by a qualified biologist. If <em>Drosophila mulli</em> are found, the NEON project team would work directly with DOFAW and NARS staff to adjust the construction limits or implement design modifications to avoid impacts to the occupied <em>lolu</em>. Temporary protective fencing would be installed around the occupied <em>lolu</em>, as appropriate.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Mosquito traps would not be installed within 1,000 feet of critical habitat for <em>Drosophila mulli</em> or any location where the species was previously documented within Pu‘u Maka‘ala NAR.</td>
</tr>
<tr>
<td>Biological Resources (Invasive Species)</td>
<td>Construction: Minor, short-term impact</td>
<td>To avoid and minimize the potential for introduction and spread of invasive species, the sanitation procedures utilized by DOFAW/NARS staff will be implemented over the lifetime of the project. The current procedures are listed below; any future modifications or additions made by DOFAW/NARS will be incorporated, as appropriate.</td>
</tr>
<tr>
<td></td>
<td>Operation: Minor, long-term impact</td>
<td>• All vehicles, tools, equipment and building materials, and packaging and shipping containers will be cleaned and fumigated before being shipped to Hawai‘i and again once they arrive. The same protocol will be followed before leaving the local port.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• All vehicles, equipment, and materials will be stored offsite at a clean staging area and will be subject to sanitation protocols daily before they are returned to the site. This measure will be randomly inspected for compliance and enforced.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• All other materials (including personal equipment and boots) will be inspected for foreign matter (including dirt, seeds, eggs, larvae, or other propagules) and cleaned before entering the site.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• All workers would be instructed on specific procedures to prevent the introduction and spread of invasive species in the project area.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• All trash, including food waste, would be placed into appropriate containers, removed from the project site, and properly disposed of.</td>
</tr>
</tbody>
</table>
**TABLE 30**  
Summary of Potential Impacts and Proposed Mitigation Measures

<table>
<thead>
<tr>
<th>Resource Category</th>
<th>Impacts</th>
<th>Mitigation Measures to Avoid or Minimize Impact</th>
</tr>
</thead>
</table>
| NEON domain staff would conduct regular monitoring for invasive species within the project area throughout the operational period. If invasive species were detected, removal and control would be coordinated with the NARS site manager. To avoid and minimize the potential for Rapid ʻOhiʻa Death to spread to the proposed project area, the sanitation procedures set forth by the Rapid ʻOhiʻa Death multi-agency working group would be implemented throughout construction and operations of the NEON site. The current procedures are listed below; any future modifications or additions to these procedures will be adopted for the proposed project, as appropriate.  
- A survey of the proposed project site would be conducted no more than two weeks before any tree cutting to determine if there are any infected ʻōhiʻa trees. If infected ʻōhiʻa are suspected at the site, the appropriate agencies would be contacted for further guidance (including USFWS, University of Hawaiʻi Cooperative Extension Service, USDA Forest Service and USDA Agriculture Research Service).  
- Tools used to cut ʻōhiʻa would be cleaned with a 70 percent rubbing alcohol solution or a freshly prepared 10 percent chlorine bleach solution. If a bleach solution is used, tools would be oiled afterwards to prevent corrosion. Chainsaw blades would be brushed clean, sprayed with the cleaning solution, and run briefly to lubricate the chain.  
- Personal gear, including shoes and clothes, would be cleaned before and after entering the forest. Shoes would be brushed to remove soil, then sprayed with a 70 percent rubbing alcohol solution or a freshly prepared 10 percent chlorine bleach solution. Other personal gear would also be sprayed with the cleaning solution. Clothing would be washed with hot water and detergent.  
- Vehicles used off-road in infected forest areas would be thoroughly cleaned using a pressure-washer and detergent. All soil would be removed from the tires and vehicle undercarriage.  
- If clearing or trimming of ʻōhiʻa is required for the proposed project, the cut wood would be left onsite and would not be transported. |

**Archaeological, Architectural, and Cultural Resources**  
Construction: Negligible, short-term impact  
Operation: Negligible, long-term impact  
The following measures would be implemented to avoid and minimize potential impacts to archaeological resources, should they be discovered:  
- If previously unidentified archaeological resources were discovered during project activities, ground disturbing activities would be halted in the vicinity of the find and NSF would consult with the SHPD and other consulting parties, as appropriate, regarding eligibility for listing in the NRHP, project effects, necessary mitigation, or other treatment measures.  
- An unanticipated discovery plan would be developed before construction activities to address archaeological and cultural resources that might be discovered.  

**Visual Resources**  
Construction: Minor, short-term impact  
Operation: Minor, long-term impact  
Measures to avoid and minimize the potential for impacts to visual resources include the following:  
- To minimize the potential obtrusiveness of the proposed infrastructure, the tower and ancillary components would be designed to blend into the surrounding environment to the degree possible. The tower would be constructed of galvanized steel, which blends well with forest vegetation. Cloaking methodologies would be applied to decrease the visibility of specific objects, including the auxiliary portal and electrical lines. |

**Hazardous Materials**  
Construction: Negligible, short-term impact  
Measures to avoid and minimize the potential for impacts related to hazardous materials include the following:  
- Use of proper handling and storage procedures for construction equipment fuel and lubricants  
- Routine inspection of vehicles and equipment for leaks |
### TABLE 30
Summary of Potential Impacts and Proposed Mitigation Measures

<table>
<thead>
<tr>
<th>Resource Category</th>
<th>Impacts</th>
<th>Mitigation Measures to Avoid or Minimize Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Operation: Negligible, long-term impact</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Air Quality</strong></td>
<td>Construction: Minor, short-term impact</td>
<td>Measures to avoid and minimize potential impacts on air quality include the following:</td>
</tr>
<tr>
<td></td>
<td>Operation: Negligible, long-term impact</td>
<td>• All construction vehicles and equipment would be maintained in proper tune according to manufacturer’s specifications.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of vehicles accessing and moving within the project area would be limited to the extent possible. Vehicles speed on unpaved roads within the project area would be limited to 15 miles per hour or less.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Vehicles and equipment would not be allowed to idle for extended periods of time (i.e., greater than 20 minutes).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The extent of ground disturbance would be minimized where possible. Temporarily disturbed areas would be stabilized and revegetated as quickly as possible.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• All trucks hauling soil or other loose materials would be covered.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The entrance to the project site would be stabilized to avoid offsite tracking of sediment.</td>
</tr>
<tr>
<td><strong>Noise</strong></td>
<td>Construction: Minor, short-term impact</td>
<td>Pursuant to HAR 11-46-7, a permit would be obtained from HDOH to allow the operation of construction-related equipment, as needed. It is expected that the permit would restrict the times of day when construction activities may emit noise in excess of the maximum permissible sound levels. The HDOH may also require the incorporation of noise mitigation into the construction plan. BMPs that would be implemented to reduce noise levels during construction are expected to include the following:</td>
</tr>
<tr>
<td></td>
<td>Operation: Minor, long-term impact</td>
<td>• Proper tuning and balancing of construction equipment, and maintenance in accordance with the manufacturer’s specifications</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use of noise barriers or mufflers on diesel and gasoline engines</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Restriction of construction activities to typical working days/hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Keeping unnecessary noise to a minimum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Measures to avoid and minimize potential impacts during project operations include the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If needed, engineered mufflers may be added to the pumps to reduce noise levels during operations.</td>
</tr>
<tr>
<td><strong>Transportation and Traffic</strong></td>
<td>Construction: Minor, short-term impact</td>
<td>Measures to avoid and minimize potential traffic-related impacts include the following:</td>
</tr>
<tr>
<td></td>
<td>Operation: Minor, long-term impact</td>
<td>• Large vehicle deliveries along Stainback Highway would be timed to avoid typical commute hours to minimize the potential impacts to other motorists, particularly residents traveling to and from Mountain View via North Kula Road, to the extent possible.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The timing of large vehicle deliveries would also be coordinated with Kula Correctional Facility, as appropriate.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Traffic controls (including signage, flagging, or other similar methods) would be implemented as needed, to further minimize impacts to other vehicles travelling on Stainback Highway.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Vehicular traffic within Pu‘u Maka‘ala NAR would be minimized to the extent practicable, so as to decrease potential roadway impacts. This effort will include (1) coordination of deliveries to minimize the total number of trips needed and (2) carpooling requirements for construction and operations staff.</td>
</tr>
<tr>
<td><strong>Human Health and Safety</strong></td>
<td>Construction: Negligible, short-term impact</td>
<td>Measures to avoid and minimize potential human health and safety impacts include the following:</td>
</tr>
<tr>
<td></td>
<td>Operation: Negligible, long-term impact</td>
<td>• All personnel and contractors working at the site would comply with applicable OSHA regulations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The construction contractor would develop and implement a Health and Safety Plan to minimize risks associated with potential hazards.</td>
</tr>
<tr>
<td>Resource Category</td>
<td>Impacts</td>
<td>Mitigation Measures to Avoid or Minimize Impact</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------------------------</td>
<td>-----------------------------------------------</td>
</tr>
</tbody>
</table>
| Public Services and Utilities | Construction: Negligible, short-term impact  
Operation: No impact | The proposed project would be expected to have a negligible impact relative to public services and utilities; no avoidance or minimization measures are proposed. |
| Socioeconomics   | Construction: Negligible, short-term impact  
Operation: Negligible, long-term impact | The proposed project would be expected to have a negligible impact on socioeconomics; no avoidance or minimization measures are proposed. |
<table>
<thead>
<tr>
<th>Significance Criteria</th>
<th>Project Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Involves an irrevocable commitment to loss or destruction of any natural or cultural resource</td>
<td>The proposed project would involve installation of research infrastructure and long-term terrestrial sampling. It would not result in an irrevocable commitment to loss or destruction of important natural or cultural resources. A variety of threatened or endangered species occur (or could occur) in the project area; however, avoidance and minimization measures would be implemented such that these species would not be adversely affected. The project is not expected to affect any archaeological, historic or cultural resources.</td>
</tr>
<tr>
<td>Curtails the range of beneficial uses of the environment</td>
<td>Implementation of the proposed project is designed to provide long-term monitoring of natural environment, and as such would not curtail the range of beneficial uses of the environment.</td>
</tr>
<tr>
<td>Conflicts with the State’s long-term environmental policies or goals and guidelines as expressed in Chapter 344, HRS, and any revisions thereof and amendments thereto, court decisions, or executive orders</td>
<td>The proposed project is consistent with the environmental goals and objectives of the State of Hawai‘i, particularly as it would provide data needed to study changes in the natural environment while safeguarding unique resources in a manner that balances human welfare and nature.</td>
</tr>
<tr>
<td>Substantially affects the economic welfare, social welfare, and cultural practices of the community or state</td>
<td>The proposed project would have a positive impact on the economic and social welfare of the community by providing local employment opportunities and by contributing to the collective body of knowledge regarding the local ecosystem.</td>
</tr>
<tr>
<td>Substantially affects public health</td>
<td>The proposed project would not adversely affect public health.</td>
</tr>
<tr>
<td>Involves substantial secondary impacts, such as population changes or effects on public facilities</td>
<td>The proposed project is not expected to induce changes in land use, population size or public facilities, such that secondary impacts would not occur.</td>
</tr>
<tr>
<td>Involves a substantial degradation of environmental quality</td>
<td>Avoidance and minimization of impacts to natural resources is fundamental to the long-term success of the proposed project, as it is intended to monitor natural changes in the natural environment. The infrastructure for the project would have a very small footprint (approximately 0.2 acre) and stringent impact avoidance and minimization measures would be implemented throughout construction and operation of the proposed project. Therefore, the proposed project is not expected to substantially degrade environmental quality.</td>
</tr>
<tr>
<td>Is individually limited but cumulatively has considerable effect upon the environment or involves a commitment for larger actions</td>
<td>Other actions that could affect the resources within Pu‘u Maka‘ala NAR within a similar timeframe include ongoing DOFAW management activities, the ‘Alalā Release Project, and re-opening of the Kūlani Correctional Facility. However, mitigation measures would be implemented to avoid and minimize potential impacts, such that there is little to no potential for cumulative effects to environmental resources.</td>
</tr>
<tr>
<td>Substantially affects a rare, threatened, or endangered species, or its habitat</td>
<td>A total of 30 listed threatened and endangered species are known to occur (or may occur) in the project area. These include a variety of vascular plant and ferns, birds, mammals and invertebrate species. Critical habitat has been designated within the project area for 9 of these species, including 8 plant species and 1 invertebrate species. Implementation of seasonal restrictions on construction activities and other measures are designed to avoid impacts to these species. Similarly, project implementation is not expected to adversely affect designated critical habitat.</td>
</tr>
</tbody>
</table>
### TABLE 31
Evaluation of Significance Criteria (per HAR 11-200-12)

<table>
<thead>
<tr>
<th>Significance Criteria</th>
<th>Project Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detrimentally affects air or water quality or ambient noise levels</td>
<td>There would be minimal short-term impacts on air quality and noise levels during the construction period. Mitigation measures would be implemented to minimize these construction-related impacts. Over the long term, there would be no adverse impacts on air and water quality, and noise impacts would be minor.</td>
</tr>
<tr>
<td>Affects or is likely to suffer damage by being located in an environmentally sensitive area such as a flood plain, tsunami zone, beach, erosion-prone area, geologically hazardous land, estuary, fresh water, or coastal waters</td>
<td>The proposed project would not be located in a floodplain, tsunami zone, or coastal zone. It would be in a region that is volcanically active and is prone to seismic activity. However, implementation of the proposed project would not increase any risks associated with seismic activity, nor would these events increase any risks associated with operation of the NEON field study site.</td>
</tr>
<tr>
<td>Substantially affects scenic vistas and viewplanes identified in county or state plans or studies</td>
<td>There are no designated viewplanes in the project vicinity. The top of the tower would extend approximately 10 meters above the existing forest canopy and may be visible from a few, very limited viewpoints, but is not expected to be a prominent feature that diminishes landscape views.</td>
</tr>
<tr>
<td>Requires substantial energy consumption</td>
<td>The proposed project would not require substantial energy consumption. While there would be short-term construction-phase energy consumption, over the long-term, the proposed project would require relatively low levels of energy (primarily associated with operation of the research equipment).</td>
</tr>
</tbody>
</table>
8 List of Preparers

The primary persons responsible for contributing to, preparing and reviewing this report are listed in Table 32.

**TABLE 32**
List of Preparers and Reviewers

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>Experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michelle Rau</td>
<td>Project Manager, NEPA Lead, and Socioeconomics and Environmental Justice Author</td>
<td>M.S. Business Administration, B.S. Ecology and Evolutionary Biology; 19 years of experience</td>
</tr>
<tr>
<td>Lisa Kettley</td>
<td>Lead Technical Author</td>
<td>M.S. Biological Sciences, B.S. Environmental Studies; 19 years of experience</td>
</tr>
<tr>
<td>Lori Price</td>
<td>Cultural Resources and NHPA Section 106 Lead</td>
<td>M.F.A. Historic Preservation and Architectural History; 21 years of experience</td>
</tr>
<tr>
<td>Paul Luersen</td>
<td>Senior Technical Reviewer</td>
<td>M.C.R.P., City and Regional Planning; 39 years of experience</td>
</tr>
<tr>
<td>Richard Reaves</td>
<td>Senior Technical Reviewer, Biological Resources and Section 7</td>
<td>Ph.D. Wetland and Wildlife Ecology, B.S. Wildlife Ecology and Resource Management; 23 years of experience</td>
</tr>
</tbody>
</table>
This page is intentionally left blank.
9 References


DOFAW (State of Hawaiʻi Department of Land and Natural Resources Division of Forestry and Wildlife). 2013a. Final Environmental Assessment for the Pu‘u Maka‘ala Natural Area Reserve Management
Plan. Puna and South Hilo Districts, Island of Hawai‘i. Prepared by the Natural Area Reserves System, Hawai‘i Branch. October.

DOFAW (State of Hawai‘i Department of Land and Natural Resources Division of Forestry and Wildlife). 2013b. Pu‘u Maka‘ala Natural Area Reserve Management Plan. Puna and South Hilo Districts, Island of Hawai‘i. September.


Fletcher, C.H. 2010. “Hawai‘i’s Changing Climate. A Briefing Sheet.” University of Hawai‘i at Mānoa, School of Ocean and Earth Science and Technology, Sea Grant Program, Center for Island Climate Adaptation and Policy, 8p.


Hawai‘i County (Hawai‘i County Department of Planning). 2016a. Community Development Plans. Available online at: http://www.hawaiicountycdp.info/hilo.


REFERENCES


USFWS (U.S. Fish and Wildlife Service). 2012g. 5-Year Review for Phyllostegia velutina (No common name). August 28. Available online at: https://ecos.fws.gov/docs/five_year_review/doc4066.pdf


This page is intentionally left blank.
10 Acronyms, Abbreviations, and Terminology Index

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACHP</td>
<td>Advisory Council on Historic Preservation</td>
</tr>
<tr>
<td>AIBS</td>
<td>American Institute of Biological Sciences</td>
</tr>
<tr>
<td>APE</td>
<td>Area of Potential Effects</td>
</tr>
<tr>
<td>ATBC</td>
<td>Association for Tropical Biology and Conservation</td>
</tr>
<tr>
<td>BLNR</td>
<td>Board of Land and Natural Resources</td>
</tr>
<tr>
<td>BMP</td>
<td>best management practice</td>
</tr>
<tr>
<td>CEQ</td>
<td>Council on Environmental Quality</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>CO</td>
<td>carbon monoxide</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>CH₄</td>
<td>methane</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter</td>
</tr>
<tr>
<td>CTAHR</td>
<td>[University of Hawaiʻi] College of Tropical Agriculture and Human Resources</td>
</tr>
<tr>
<td>CWRM</td>
<td>Commission on Water Resource Management</td>
</tr>
<tr>
<td>CZM</td>
<td>Coastal Zone Management</td>
</tr>
<tr>
<td>DADS</td>
<td>Department of Accounting and General Services</td>
</tr>
<tr>
<td>dB</td>
<td>decibel</td>
</tr>
<tr>
<td>dBA</td>
<td>A-weighted decibel</td>
</tr>
<tr>
<td>DBEDT</td>
<td>Department of Business, Economic Development and Tourism</td>
</tr>
<tr>
<td>DFIR</td>
<td>double-fenced intercomparison reference</td>
</tr>
<tr>
<td>DLNR</td>
<td>Department of Land and Natural Resources</td>
</tr>
<tr>
<td>DOFAW</td>
<td>Division of Forestry and Wildlife</td>
</tr>
<tr>
<td>DPS</td>
<td>Department of Public Safety</td>
</tr>
<tr>
<td>E.O.</td>
<td>Executive Order</td>
</tr>
<tr>
<td>EA</td>
<td>Environmental Assessment</td>
</tr>
<tr>
<td>EIS</td>
<td>Environmental Impact Statement</td>
</tr>
<tr>
<td>EISPN</td>
<td>EIS Preparation Notice</td>
</tr>
<tr>
<td>ESA</td>
<td>Endangered Species Act</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>FONSI</td>
<td>Finding of No Significant Impact</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>HAAQS</td>
<td>Hawaiʻi ambient air quality standards</td>
</tr>
<tr>
<td>HAR</td>
<td>Hawaii Administrative Rules</td>
</tr>
<tr>
<td>HDOH</td>
<td>State of Hawaiʻi Department of Health</td>
</tr>
<tr>
<td>HDOT</td>
<td>State of Hawaiʻi Department of Transportation</td>
</tr>
<tr>
<td>HRS</td>
<td>Hawaii Revised Statutes</td>
</tr>
<tr>
<td>HVAC</td>
<td>heating, ventilation, and air conditioning</td>
</tr>
<tr>
<td>Leq</td>
<td>equivalent sound pressure level</td>
</tr>
<tr>
<td>LiDAR</td>
<td>Light Detection and Ranging</td>
</tr>
<tr>
<td>LTER</td>
<td>Long Term Ecological Research</td>
</tr>
<tr>
<td>m</td>
<td>meter</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>m²</td>
<td>square meter</td>
</tr>
<tr>
<td>MBTA</td>
<td>Migratory Bird Treaty Act</td>
</tr>
<tr>
<td>MOA</td>
<td>Memorandum of Agreement</td>
</tr>
<tr>
<td>N/A</td>
<td>not applicable</td>
</tr>
<tr>
<td>N₂O</td>
<td>nitrous oxide</td>
</tr>
<tr>
<td>NAAQS</td>
<td>National Ambient Air Quality Standards</td>
</tr>
<tr>
<td>NAR</td>
<td>Natural Area Reserve</td>
</tr>
<tr>
<td>NARS</td>
<td>Natural Area Reserves System</td>
</tr>
<tr>
<td>NEON</td>
<td>National Ecological Observatory Network</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Protection Act</td>
</tr>
<tr>
<td>NFIP</td>
<td>National Flood Insurance Program</td>
</tr>
<tr>
<td>NHO</td>
<td>Native Hawaiian organization</td>
</tr>
<tr>
<td>NHPA</td>
<td>National Historic Preservation Act</td>
</tr>
<tr>
<td>NO₂</td>
<td>nitrogen dioxide</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NOI</td>
<td>Notice of Intent</td>
</tr>
<tr>
<td>NPS</td>
<td>National Park Service</td>
</tr>
<tr>
<td>NRC</td>
<td>National Research Council</td>
</tr>
<tr>
<td>NRCS</td>
<td>Natural Resources Conservation Service</td>
</tr>
<tr>
<td>NRHP</td>
<td>National Register of Historic Places</td>
</tr>
<tr>
<td>NSF</td>
<td>National Science Foundation</td>
</tr>
<tr>
<td>OCCL</td>
<td>Office of Conservation and Coastal Lands</td>
</tr>
<tr>
<td>OEQC</td>
<td>Office of Environmental Quality Control</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Administration</td>
</tr>
<tr>
<td>PICCC</td>
<td>Pacific Islands Climate Change Cooperative</td>
</tr>
<tr>
<td>PM₁₂·₅₀</td>
<td>particulate matter less than or equal to 2.5 micrometers in diameter</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>particulate matter less than or equal to 10 micrometers in diameter</td>
</tr>
<tr>
<td>PVC</td>
<td>polyvinyl chloride</td>
</tr>
<tr>
<td>RFI</td>
<td>request for information</td>
</tr>
<tr>
<td>ROI</td>
<td>Region of Influence</td>
</tr>
<tr>
<td>SHPD</td>
<td>State Historic Preservation Division</td>
</tr>
<tr>
<td>SHPO</td>
<td>State Historic Preservation Office</td>
</tr>
<tr>
<td>SMA</td>
<td>Special Management Area</td>
</tr>
<tr>
<td>SO₂</td>
<td>sulfur dioxide</td>
</tr>
<tr>
<td>SOP</td>
<td>standard operating procedure</td>
</tr>
<tr>
<td>TCP</td>
<td>traditional cultural property</td>
</tr>
<tr>
<td>TMK</td>
<td>tax map key</td>
</tr>
<tr>
<td>USDA</td>
<td>U.S. Department of Agriculture</td>
</tr>
<tr>
<td>USEIA</td>
<td>U.S. Energy Information Administration</td>
</tr>
<tr>
<td>USEPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>USFS</td>
<td>U.S. Forest Service</td>
</tr>
<tr>
<td>USFWS</td>
<td>U.S. Fish and Wildlife Service</td>
</tr>
<tr>
<td>USGS</td>
<td>U.S. Geologic Survey</td>
</tr>
</tbody>
</table>
Appendix A
Scoping Report
This page is intentionally left blank.
National Science Foundation
National Ecological Observatory Network
Domain 20 Core Tower and
Sampling Site Environmental Assessment

Scoping Report

Introduction

This Scoping Report provides the public and agency scoping comments received during the 30-day public comment period for the National Science Foundation (NSF) National Ecological Observatory Network Domain 20 Core Tower and Sampling Site Environmental Assessment (EA). Members of the public and government agencies were invited to comment on the EA during an official comment period from July 23 to August 22, 2016; however, comments that were received after this period were also considered and are captured below. The scoping letter including the proposed agency and stakeholder distribution list is included in Attachment 1. All comments received along with responses are included in Attachment 2.

The following individuals/agencies provided comments:

- Alec Wong, State of Hawai‘i Department of Health Clean Water Branch
- Cynthia L. Orlando, National Park Service
- Munekata Micah, Hawai‘i Department of Agriculture
- Russell Tsuji, State of Hawai‘i, Department of Land and Natural Resources
- Kimberly T. Mills, State of Hawai‘i, Department of Land and Natural Resources
- Darren J. Rosario, County of Hawai‘i, Hawai‘i Fire Department
- Shancy Watanabe, County of Hawai‘i-Planning Department
- Michelle Bogardus, Fish and Wildlife Service
- Alan S. Downer, PhD, State Historic Preservation Office
- Ford N. Fuchigami, State of Hawaii Department of Transportation

In addition to these comments, the following requests were also received: (1) one recipient asked for a hard copy of the Draft EA, when available, and (2) one recipient asked to be removed from the mailing list. Both requests will be fulfilled.
This page is intentionally left blank.
Attachment 1
Scoping Letter
This page is intentionally left blank.
March 8, 2016

SUBJECT: Scoping Notification for the National Science Foundation-Funded Proposed National Ecological Observatory Network Domain 20 Core Tower and Sampling Site at Upper Waiakea Forest Reserve and Puu Maka’ala Natural Area Reserve, Hawai’i Island

Dear Participant,

The National Ecological Observatory Network (NEON), a continental-scale research network funded by the National Science Foundation (NSF) and operated by awardee NEON, Inc., proposes to establish a research site within the Upper Waiakea Forest Reserve (with likely overlap into the Puu Maka’ala Natural Area Reserve), Hawai’i Island. The site is needed in order to provide ecological data on NEON’s Domain 20, “Pacific Neotropical in Hawai’i,” and would be the only site representing this domain in the United States. Site components include a tower, instrument hut, soil sensor array, precipitation gauge with double fencing, and related infrastructure (no new roads are anticipated), and operations will support terrestrial sampling activities; see the attached project information summary and overview for further details.

Pursuant to the National Environmental Policy Act (NEPA), NSF completed an Environmental Assessment evaluating the nation-wide NEON program, including a site in the Hawai’i Experimental Tropical Forest, in 2009. NSF found that NEON would have no significant impact on the environment, contingent on some site-specific agency consultation and avoidance measures. However, since then, the previously analyzed site in Hawai’i (Laupahoehoe) has been determined to be unsuitable due to challenges implementing the design. In addition, certain components (relocatable sampling sites) have been removed from the scope due to: (1) a reduction in the overall scope of NEON to combat construction delays and potential cost overruns; and (2) changes to the plant community that altered the ability to answer intended scientific questions. The Upper Waiakea Forest Reserve/Puu Maka’ala Natural Area Reserve has been identified as a suitable replacement because the site represents a wildland lacking in long-term observations, and NSF is currently conducting supplemental NEPA review to identify and assess any potential environmental effects of
establishing a NEON site at the proposed location. This federal NEPA process is being conducted in coordination with a state-level review under Chapter 343, Hawai‘i Revised Statutes, carried-out in support of permitting activities by the Hawai‘i Department of Land and Natural Resources. The attached project information is meant to meet the needs for Pre-Assessment Consultation under Chapter 343, as well as scoping under NEPA.

NSF respectfully requests your review and comments on this proposal. It is anticipated that an Environmental Assessment will be jointly prepared by NSF and the State of Hawai‘i’s Division of Forestry and Wildlife, in coordination with NEON, Inc. NSF will make this document publically available for your review and comment. Concurrent with the NEPA review, NSF will be assessing impacts to cultural resources and consulting with the State Historic Preservation Office and other consulting parties per Section 106 of the National Historic Preservation Act. If you are interested in being a consulting party under Section 106, please identify this in your response. NSF will also be carrying out its compliance with Section 7 of the Endangered Species Act through the NEPA process; compliance with the State of Hawai‘i’s endangered species law and relevant conservation requirements will be conducted concurrent to this process, as appropriate.

Please submit comments via electronic mail by the end of the day on April 7, 2016, to: NEON-EA-comments@nsf.gov. If you do not have web access or would prefer to send your comments via regular, United States first-class mail, please mail your comments to:

Kristen Hamilton, RE: NEON Domain 20 Site
National Science Foundation
4201 Wilson Boulevard
Suite 1265
Arlington, Virginia 22230

Please note that to promote efficiency and to save resources, future notifications and links to environmental review documents for this proposed project will be sent by electronic mail. If you do not have web access or would prefer to receive hard copies of notifications and/or environmental review documents, please notify Ms. Kristen Hamilton at the address above.

If you would like to continue participating in the federal/state environmental review process for the proposed NEON site described in this notice and you are able to receive email notifications, please send your email address to: NEON-EA-comments@nsf.gov. If you do not wish to continue participating in this process and would like to be removed from our list of participants, please provide notification to us either via email at NEON-EA-comments@nsf.gov or via regular mail at the mailing address indicated above.
If you have questions or concerns about the scoping process, please call Ms. Hamilton at (703) 292-4820.

Sincerely,

Steven Ellis, Program Director
Division of Biological Infrastructure
Biology Directorate
National Science Foundation

David Smith, Administrator
Division of Forestry and Wildlife
Department of Land and Natural Resources
State of Hawai‘i

Enclosed: Scoping/Pre-Assessment Consultation Package with Stakeholder List
# PROJECT INFORMATION SUMMARY

**Project Name:** National Ecological Observatory Network Domain 20 Core Tower and Sampling Site  
**Funding Agency:** National Science Foundation  
4201 Wilson Boulevard  
Arlington, VA 22230  
**Applicant:** National Ecological Observatory Network (NEON)  
1685 38th St. Suite 100  
Boulder, CO 80301  
**Approving Agency**  
State of Hawai‘i, DLNR  
Ch. 343, HRS: 1151 Punchbowl Street  
Honolulu, HI 96813  
**Class of Action:** Long Term Direct Lease and Permit Use of State Land, as per Section 171-43.1. HRS, as amended  
**Project Location:** Upper Waiakea Forest Reserve and Puu Maka’ala Natural Area Reserve, Hawai‘i Island  
**Hawai‘i Tax Map Key (TMK):** TMK# (3) 2-4-008:001  
**Landowner:** State of Hawai‘i  
**Proposed Project Area:** A 1,000-2,000-acre project area; a direct lease area of 12.34 acres would include a tower, instrument hut, Double Fence Intercomparison Reference (DFIR) precipitation gauge (with required vegetation clearance area), associated foundations, and any associated power trench or conduit run, and terrestrial sampling would occur within the greater permitted area.  
**State Land Use District:** Conservation District - Protective Subzone  
**County of Hawai‘i Zoning:** Conservation District - Protective Subzone  
**County Land Use Plan Allocation Guide Map:** Conservation District  
**Flood Zone:** Zone X
PROJECT SITE

The National Ecological Observatory Network (NEON), solely funded by the National Science Foundation (NSF), is proposing an ecological research tower, instrument hut, sensor system, double fenced precipitation gauge, supporting infrastructure, terrestrial ground sampling, and an annual flyover in the Upper Waiakea Forest Reserve/Puu Maka’ala Natural Area Reserve in North Hilo on Hawai’i Island. The proposed project area encompasses TMK# (3) 2-4-008:001 and would be leased and permitted by the State of Hawai’i, via a 12.34-acre direct lease (includes tower, instrument hut, DFIR), and a 1,000-2,000-acre permit to use State land to conduct terrestrial sampling (this will be further refined via consultation with the State).

OVERVIEW OF PLANNED PROJECT

The NEON is a non-profit, continental-scale research network created for discovering, understanding and forecasting the impacts of climate change, land use change and invasive species on continental scale ecology by providing infrastructure to support research, education and environmental management. The NEON approach will standardize scientific ecological efforts and will enable integrated observatory operations at a continental scale.

The NEON partitioned the continental United States, including Alaska, Hawai’i and Puerto Rico, into 20 eco-climatic domains. Each domain represents a different region of vegetation, landforms, climate, and ecosystem performance. Within each of these domains a fully instrumented core site will be established, hosting a tower (21-30 meters tall, approximately 10 meters above the surrounding canopy), infrastructure, sensor systems, terrestrial sampling protocols and annual aerial observation flights. Each site will collect data on climate and atmosphere, soils, vegetation and a variety of organisms. Core sites must be located in minimally managed “wildland” areas and are slated to operate for the 30-year lifetime of NEON.

The proposed NEON Upper Waiakea Forest Reserve/Puu Maka’ala Natural Area Reserve ecological research tower, instrument hut, soil sensor array and supporting infrastructure and foundations would be located approximately at GPS coordinates: 19.55765, -155.27109. Terrestrial sampling would be distributed among sampling plots in the surrounding area of the Puu Maka’ala Natural Area Reserve. Terrestrial plot sampling and associated plot sizes include the following:

- 20 Tower Plots– 20X20 meters
- 30 Base Plots– 40X40 meters
- 6 Tick Plots– 40X40 meters
- 6 Mammal Grids– 90X90 meters
- 5 Bird Grids– 500X500 meters
- 2 Phenology Plots– 200X20 meters
- 10 Mosquito Points– 5X5 meters

No additional roads would be constructed, and strict construction limits would be implemented during the tower construction phase.
Proposed NEON tower location and sampling boundary- note that infrastructure and sampling plot boundaries are currently being refined in consultation with the Division of Forestry and Wildlife

No significant adverse impacts to the existing environmental conditions at the proposed site are anticipated. NEON is currently working with the State of Hawai‘i to coordinate a direct lease agreement (12.34 acres), via Section 171-43.1, HRS, as amended, that would encompass the tower, instrument hut, DFIR, and soil sensor array area, as well as a permit to encompass the entire NEON terrestrial sampling area.

PURPOSE OF ENVIRONMENTAL REVIEW

The NSF is conducting an environmental review of the proposed site pursuant to the National Environmental Policy Act (NEPA), which requires that federally funded projects be evaluated for potential environmental effects. Based on the results of public scoping and agency consultation, as well as any needed site surveys, NSF will determine if an Environmental Assessment is required under federal law. Concurrent to this federal review, an Environmental Assessment is being prepared pursuant to the laws of the State of Hawai‘i, in compliance with Hawai‘i’s
Environmental Review Process, Hawai‘i Revised Statutes (HRS) and Chapter 343. State law requires that a program or project that proposes the use of State lands or funds must undergo an environmental review. Any Environmental Assessment prepared under the federal and/or state review will examine the potential environmental impacts of the project and seek agency and public comment on the proposed use of the site. Concurrent with the NEPA review, NSF will be assessing impacts to cultural resources and consulting with the State Historic Preservation Office and other consulting parties per Section 106 of the National Historic Preservation Act. The NSF will also be carrying out its compliance with Section 7 of the Endangered Species Act through the NEPA process; compliance with the State of Hawai‘i’s endangered species law and relevant conservation requirements will be conducted concurrent to this process, as appropriate.

Proposed Agency and Stakeholder Review List

**DLNR Agencies**
- Division of Conservation and Resources Enforcement
- Natural Area Reserves Commission
- Land Division
- Office of Conservation and Coastal Lands
- State Historic Preservation Division
- Division of Aquatic Resources

**Neighboring Landowners and Stakeholders**
- Gene Alan Rynkewicz /et al.
- Christopher J Linden /et al.
- James Cobb
- Benjamin K S Sr/Ramona Hu Trst Glenda M White
- Palmer Kim /et al.
- Russell Kaneko
- Attn: James Chow Trs
- Tadashi Higaki Tr /et al.
- Thomas Jerome Canny
- W.H. Shipman Ltd.
- Wilbert Castro Jr Trust /et al.
- Eleanor R Chow Trst
- Dorian Marvin
- Keith Eric Hompstead /et al.
- Lau Family Tr
- Jeffrey Robert Noguchi Vincent Git
- Kin Chun /et al.
- Lance J Wilson Trst /et al.
- Delbert T Cambra /et al.
NATIONAL ECOLOGICAL OBSERVATORY NETWORK
Scoping Information for use in Federal National Environmental Policy Act Review and
Pre-Assessment Consultation for Environmental Assessment (Hawai‘i Revised Statutes Chapter 343)

Kathleen Michelle Demello Trst Grice, Daniel R
B/Christensen, Kathleen A Wendell G Causey
/et al.
Dick Reason /et al.
Brigham Nephi Clifton
Sarah Helena Linfoot
Marshall A Luke Tr
Milton Kaneko David
Harold Ung
Troy Burton Hill /et al. Bruce
James Morgan
Monte Roldan /et al.
Michel Dean Daak Dennis
Delfin Sr /et al. Clifford
Muragin Robin Leinaala
Amador Cory Harden Tr
Michael J Donald James T
Hiyane /et al. Wendell G
Causey /et al.
Arapaki,Charles And Arapaki,Eleanor S
Katrina A Ka'auomoana
Maria Elena Calso Andaya /et al. Glenn Y
Toyama
Gary L Sisneros /et al.
Kaipo Saiki
Priest (Monk) Of Bang San Ho Temple Casimir K
Ah Yo /et al.
Lenore M Vincent /et al.
Thomas Rapoza

Cultural Contacts
Office of Hawaiian Affairs
Historic Hawaii Foundation
Sam Kaleleiki
Ku'ulei Kiliona
Department of Land and Natural Resources
DLNR State Historic Preservation
The Nature Conservancy, Hawaiian Islands

Additional Agencies and Contacts
Volcanos - Rhonda Loh
US Forest Service – Jodi Chew
NATIONAL ECOLOGICAL OBSERVATORY NETWORK
Scoping Information for use in Federal National Environmental Policy Act Review and
Pre-Assessment Consultation for Environmental Assessment (Hawai’i Revised Statutes Chapter 343)

William Stormont
Springer Kaye – Big Island Invasive Species Committee
Susan Hicks
Wayne Blyth
Dr. Travis Idol
Patty Moriyasu
Deborah Chang
Rob Pacheco
Dr. J.B. Friday
Pat Conant
Dr. Sheila Conant
Richard Hoeflinger
Steven Araujo
Thomas Medeiros
Dr. David Duffy
Sierra McDaniel
Martha Lockwood
Zach Judd
Ronald Fujiyoshi
Steven Hess
Edwin Ung
Danny Li
George DeCosta
Steve Montgomery
Tracy Johnson, US Forest Service Hilo
Ron Terry
Christine Ogura, US FWS
Don Drake
Dr. Fred Stone
Debbie Ward
Dr. Jon Price
Dr. Becky Ostertag
Dr. Pat Hart
Dr. Jim Juvik
Jack Jeffrey
Kevin Chang
Attachment 2
Comments & Responses
This page is intentionally left blank.
Ms. Montona Futrell-Griggs
National Science Foundation
4201 Wilson Boulevard, Suite 615N
Arlington, Virginia 22230

Dear Ms. Futrell-Griggs:

SUBJECT: Comments on the Scoping Notification for the National Science Foundation-Funded Proposed National Ecological Observatory Network Domain 20 Core Tower and Sampling Site at Puu Makaala Natural Area Reserve, Hawaii Island

The Department of Health (DOH), Clean Water Branch (CWB), acknowledges receipt of your letter, dated July 23, 2016, requesting comments on the subject project. The DOH-CWB has reviewed the document and offers these comments. Please note that our review is based solely on the information provided in the subject document and its compliance with the Hawaii Administrative Rules (HAR), Chapters 11-54 and 11-55. The National Science Foundation may be responsible for fulfilling additional requirements related to our program. We recommend that they also read our standard comments on our website at: http://health.hawaii.gov/epo/files/2013/05/Clean-Water-Branch-Std-Comments.pdf.

1. Any project and its potential impacts to State waters must meet the following criteria:

   a. Antidegradation policy (HAR, Section 11-54-1.1), which requires that the existing uses and the level of water quality necessary to protect the existing uses of the receiving State water be maintained and protected.

   b. Designated uses (HAR, Section 11-54-3), as determined by the classification of the receiving State waters.

   c. Water quality criteria (HAR, Sections 11-54-4 through 11-54-8).

2. The National Science Foundation may be required to obtain National Pollutant Discharge Elimination System (NPDES) permit coverage for discharges of wastewater, including storm water runoff, into State surface waters (HAR, Chapter 11-55).

For NPDES general permit coverage, a Notice of Intent (NOI) form must be submitted at least 30 calendar days before the commencement of the discharge. An application
for an NPDES individual permit must be submitted at least 180 calendar days before the commencement of the discharge. To request NPDES permit coverage, the National Science Foundation must submit the applicable form ("CWB Individual NPDES Form" or "CWB NOI Form") through the e-Permitting Portal and the hard copy certification statement with the respective filing fee ($1,000 for an individual NPDES permit or $500 for a Notice of General Permit Coverage). The National Science Foundation can open the e-Permitting Portal website located at: https://eha-cloud.doh.hawaii.gov/epermit/. They will be asked to do a one-time registration to obtain your login and password. After they register, they can click on the Application Finder tool and locate the appropriate form. They can then follow the instructions to complete and submit the form.

3. If the National Science Foundation’s project involves work in, over, or under waters of the United States, it is highly recommended that they contact the Army Corp of Engineers, Regulatory Branch (Tel: 835-4303) regarding their permitting requirements.

Pursuant to Federal Water Pollution Control Act [commonly known as the “Clean Water Act” (CWA)], Paragraph 401(a)(1), a Section 401 Water Quality Certification (WQC) is required for “[a]ny applicant for Federal license or permit to conduct any activity including, but not limited to, the construction or operation of facilities, which may result in any discharge into the navigable waters...” (emphasis added). The term “discharge” is defined in CWA, Subsections 502(16), 502(12), and 502(6); Title 40 of the Code of Federal Regulations, Section 122.2; and HAR, Chapter 11-54.

4. Please note that all discharges related to the project construction or operation activities, whether or not NPDES permit coverage and/or Section 401 WQC are required, must comply with the State’s Water Quality Standards. Noncompliance with water quality requirements contained in HAR, Chapter 11-54, and/or permitting requirements, specified in HAR, Chapter 11-55, may be subject to penalties of $25,000 per day per violation.

5. It is the State’s position that all projects must reduce, reuse, and recycle to protect, restore, and sustain water quality and beneficial uses of State waters. Project planning should:

a. Treat storm water as a resource to be protected by integrating it into project planning and permitting. Storm water has long been recognized as a source of irrigation that will not deplete potable water resources. What is often overlooked is that storm water recharges ground water supplies and feeds streams and estuaries; to ensure that these water cycles are not disrupted, storm water cannot be relegated as a waste product of impervious surfaces. Any project
planning must recognize storm water as an asset that sustains and protects natural ecosystems and traditional beneficial uses of State waters, like community beautification, beach going, swimming, and fishing. The approaches necessary to do so, including low impact development methods or ecological bio-engineering of drainage ways must be identified in the planning stages to allow designers opportunity to include those approaches up front, prior to seeking zoning, construction, or building permits.

b. Clearly articulate the State’s position on water quality and the beneficial uses of State waters. The plan should include statements regarding the implementation of methods to conserve natural resources (e.g., minimizing potable water for irrigation, gray water re-use options, energy conservation through smart design) and improve water quality.

c. Consider storm water Best Management Practice (BMP) approaches that minimize the use of potable water for irrigation through storm water storage and reuse, percolate storm water to recharge groundwater to revitalize natural hydrology, and treat storm water which is to be discharged.

d. Consider the use of green building practices, such as pervious pavement and landscaping with native vegetation, to improve water quality by reducing excessive runoff and the need for excessive fertilization, respectively.

e. Identify opportunities for retrofitting or bio-engineering existing storm water infrastructure to restore ecological function while maintaining, or even enhancing, hydraulic capacity. Particular consideration should be given to areas prone to flooding, or where the infrastructure is aged and will need to be rehabilitated.

If you have any questions, please visit our website at: http://health.hawaii.gov/cwb, or contact the Engineering Section, CWB, at (808) 586-4309.

Sincerely,

Alec Wong

ALEC WONG, P.E., CHIEF
Clean Water Branch

MHK

c: National Science Foundation [via e-mail NEON-EA-comments@nsf.gov]
DOH-EPO [via e-mail Noella.Narimatsu@doh.hawaii.gov only]
Alec Wong  
Chief, Clean Water Branch  
State of Hawai‘i  
Department of Health  
P.O. Box 3378  
Honolulu, HI 96801-3378  

April 26, 2017  

RE: 08031PMHK.16; Comments on the Scoping Notification for the National Science Foundation-Funded Proposed National Ecological Observatory Network Domain 20 Core Tower and Sampling Site at Pu‘u Maka’ala Natural Area Reserve  

Dear Alec,  

I apologize for the delayed response to the letter from the State of Hawai‘i Department of Health.  

Thank you for the response to the scoping notice for an Environmental Assessment (EA) of potential impacts of the proposed installation of the National Ecological Observatory Network Domain 20 core tower and sampling site at Pu‘u Maka’ala Natural Area Reserve, Hawai‘i Island published in the OEQC Environmental Notice on July 23, 2016.  

The information provided was evaluated and, as appropriate, incorporated into the EA and Biological Evaluation being developed to evaluate the potential impacts of the proposed project on the Hawaiian cultural resources as well as environmental conditions in the area of potential effect in the Pu‘u Maka’ala Natural Area Reserve. The information provided will also be used to update proposed management practices and construction plans for the site.  

The National Science Foundation anticipates the EA will be published in May 2017. Copies of your comment and this response will be attached in an appendix.  

Please contact me (phone: 703-292-7162, email: mfu@nsf.gov) if you have any questions.  

Best,  
Montona Futrell-Griggs  
NEON Program  
DBI/BIO  
National Science Foundation
August 18, 2016

Ms. Montona Futrell-Griggs
National Science Foundation
4201 Wilson Blvd, Suite 615N
Arlington, VA 22230

RE: NEON Pu‘u Maka‘ala Natural Area Reserve

Dear Ms. Futrell-Griggs,

Thank you for the scoping notice sent to the Rhonda Loh at Hawai‘i Volcanoes National Park regarding the proposed NEON tower and sampling site at Pu‘u Maka‘ala Natural Area Reserve.

We recommend that best management practices be included in the project specifications to minimize the potential for introduction and spread of invasive species. We recommend that the best management practices include sanitation procedures for ensuring vehicles, equipment, and materials are free of invasive species, including invasive ants (such as, little fire ants and others), coqui frogs, fungus, and invasive plants. We are including standard operating procedures that we use at the park, for your information.

If any lights are needed for night work, we recommend that dark sky lighting protocols be followed. This will protect threatened and endangered nocturnal seabirds that may be transiting the area, such as the endangered Hawaiian petrel, the threatened Newell’s shearwater, and the band-rumped storm-petrel (candidate for listing). While these species may not occur on the project site, they do fly to and from nesting colonies after dark and could be disoriented by artificial lights that are not properly shielded. In order to protect night skies and night-flying birds, it is recommended that only full cut-off, amber (560 nm or longer wavelength), downward directional lighting be considered for this project if lighting is necessary.

An excellent resource for seabird friendly lighting can be found at the following website:
http://www.kauai-seabirdhcp.info/lighting-homes-businesses/
We look forward to working with you in the future on jointly shared resources of concern.

The scoping notice indicates that helicopters may be used for an annual aerial flight. While the proposed location for the tower is not adjacent to the park, Pu‘u Maka‘ala Natural Area Reserve is adjacent to three sides of an area of the park that is designated wilderness (‘Ōla‘a). We request that you consider overflight impacts to wilderness character and include mitigations that flights over the nearby wilderness area will be at least 1,500 feet above ground level (if feasible) and the
park will be notified prior to flights. Notifying the park in advance of flights will also ensure there are no airspace conflicts with the occasional flights the park conducts for resource management work in remote areas.

Please include the park as a consulting party on your Section 106 Consultation list. Jadelyn Moniz-Nakamura is the park’s Section 106 Coordinator. Her contact information is (808) 985-6136 or jadelyn_moniz-nakamura@nps.gov.

If you have questions on our comments, please contact Danielle Foster, Environmental Protection Specialist, at (808) 985-6073 or danielle_foster@nps.gov. Please include the park on the mailing list for future notifications regarding this project.

Sincerely,

Cynthia L. Orlando
Superintendent

Enclosures
April 26, 2017

RE: HAV0 1.D. (L7621); NEON Pu’u Maka’ala Natural Area Reserve

Dear Danielle,

I apologize for the delayed response to the letter from the NPS Hawai’i Volcanoes National Park.

Thank you for the response to the scoping notice for an Environmental Assessment (EA) of potential impacts of the proposed installation of the National Ecological Observatory Network Domain 20 core tower and sampling site at Pu’u Maka’ala Natural Area Reserve, Hawai’i Island published in the OEQC Environmental Notice on July 23, 2016.

The information provided was evaluated and, as appropriate, incorporated into the EA and Biological Evaluation being developed to evaluate the potential impacts of the proposed project on the Hawaiian cultural resources as well as environmental conditions in the area of potential effect in the Pu’u Maka’ala Natural Area Reserve. The information provided will also be used to update proposed management practices and construction plans for the site. Please note, the annual flyover for data collection in a Twin Otter aircraft is being evaluated and may be reduced.

The National Science Foundation anticipates the EA will be published in May 2017. Copies of your comment and this response will be attached in an appendix.

Please contact me (phone: 703-292-7162, email: mfutrell@nsf.gov) if you have any questions.

Best,

Montona Futrell-Griggs
NEON Program
Division of Biological Infrastructure
Directorate for Biological Sciences
National Science Foundation
August 22, 2016

RE: Scoping Notification for the National Science Foundation-Funded Proposed National Ecological Observatory Network Domain 20 Core Tower and Sampling Site at Pu‘u Maka‘ala Natural Area Reserve, Hawaii Island.

Aloha Ms. Montona Futrell-Griggs and the National Science Foundation:

Thank for the opportunity to comment on this proposal. The Hawaii Department of Agriculture (HDOA) has an overall concern for the potential spread of Rapid Ohia Death (ROD) in regards to this project. As construction begins for this project on Hawaii Island, HDOA would like to know if the National Science Foundation has taken into consideration any sort of decontamination protocols for entering and exiting areas with ROD and if there are any protocols for soil sampling disposal. One of the major vectors of concern for this devastating disease is the use of construction equipment without any decontamination requirements.

HDOA asks the National Science Foundation to provide an explanation of guidelines and protocols to address ROD as it relates to this project’s construction equipment movement into and out of the proposed site.

Mahalo for your consideration of HDOA’s comments and concerns. Should you have any questions, please feel free to contact the HDOA Deputy Phyllis Shimabukuro-Geiser at Phyllis.Shimabukuro-Geiser@hawaii.gov or 973-9550.
Phyllis Shimabukuro-Geiser
HDOA Deputy
State of Hawai‘i
Department of Agriculture
1428 South King Street
Honolulu, HI 96814-2512

April 26, 2017

RE: 08031PMHK.16; Comments on the Scoping Notification for the National Science
Foundation-Funded Proposed National Ecological Observatory Network Domain 20 Core
Tower and Sampling Site at Pu‘u Maka‘ala Natural Area Reserve

Dear Phyllis,

I apologize for the delayed response to the letter from the State of Hawai‘i Department of Agriculture.

Thank you for the response to the scoping notice for an Environmental Assessment (EA) of potential impacts of the proposed installation of the National Ecological Observatory Network Domain 20 core tower and sampling site at Pu‘u Maka‘ala Natural Area Reserve, Hawai‘i Island published in the OEQC Environmental Notice on July 23, 2016.

The National Science Foundation (NSF) and the awardee, Battelle Memorial Institute, appreciate of the concerns related to the Rapid ‘Ōhi‘a Death and are aware of the dangers of its and other invasive species spread into the Pu‘u Maka‘ala Natural Area Reserve. Decontamination procedures, consistent with those recommended by the resource agencies and used by DOFAW and NARS staff, would be implemented throughout the construction and operation phase of the NEON project. These include avoiding movement or transport of ‘ōhi‘a wood, cleaning tools used to cut ‘ōhi‘a, cleaning gear and clothing/shoes before and after entering the forest, and washing vehicles that are taken off-road.

The decontamination procedures are listed below; any future modifications or additions to these procedures will be adopted for the proposed project, as appropriate.

- A survey of the proposed project site would be conducted no more than two weeks before any tree cutting to determine if there are any infected ‘ōhi‘a trees. If infected ‘ōhi‘a are suspected at the site, the appropriate agencies would be contacted for further guidance (including USFWS, University of Hawai‘i Cooperative Extension Service, USDA Forest Service, and USDA Agriculture Research Service).
• Tools used to cut 'ōhiʻa would be cleaned with a 70 percent rubbing alcohol solution or a freshly prepared 10 percent chlorine bleach solution. If a bleach solution is used, tools would be oiled afterwards to prevent corrosion. Chainsaw blades would be brushed clean, sprayed with the cleaning solution, and run briefly to lubricate the chain.

• Personal gear, including shoes and clothes, would be cleaned before and after entering the forest. Shoes would be brushed to remove soil, then sprayed with a 70 percent rubbing alcohol solution or a freshly prepared 10 percent chlorine bleach solution. Other personal gear would also be sprayed with the cleaning solution. Clothing would be washed with hot water and detergent.

• Vehicles used off-road or in infected forest areas would be thoroughly cleaned using a pressure-washer and detergent. All soil would be removed from the tires and vehicle undercarriage.

• If clearing or trimming of 'ōhiʻa is required for the proposed project, the cut wood would be left onsite and would not be transported.

These procedures are included in the EA and Biological Evaluation being developed to evaluate the potential impacts of the proposed project on the Hawaiian cultural resources as well as environmental conditions in the area of potential effect in the Puʻu Makaʻala Natural Area Reserve. The NSF anticipates the EA will be published in May 2017. Copies of your comment and this response will be attached in an appendix.

Please contact me (phone: 703-292-7162, email: mfutrell@nsf.gov) if you have any questions.

Best,

Montona Futrell-Griggs
Montona Futrell-Griggs
NEON Program
Division of Biological Infrastructure
Directorate for Biological Sciences
National Science Foundation
August 22, 2016

National Science Foundation
Attention: Ms. Montona Futrell-Griggs
4201 Wilson Boulevard; Suite 615N
Arlington, Virginia 2230

via email: NEON-EA-comm

Dear Ms. Futrell-Griggs:

SUBJECT: Scoping Notification for the National Science Foundation-Funded Proposed National Ecological Observatory Network Domain 20 Core Tower and Sampling Site at Pu‘u Maka‘ala Natural Area Reserve

Thank you for the opportunity to review and comment on the subject matter. The Department of Land and Natural Resources' (DLNR) Land Division distributed or made available a copy of your report pertaining to the subject matter to DLNR Divisions for their review and comments.

At this time, enclosed are comments from the Land Division – Hawaii District on the subject matter. Should you have any questions, please feel free to call Lydia Morikawa at 587-0410. Thank you.

Sincerely,

Russell Y. Tsuji
Land Administrator

Enclosure
cc: Central Files
August 12, 2016

MEMORANDUM

TO: DLNR Agencies:
   __ Div. of Aquatic Resources
   __ Div. of Boating & Ocean Recreation
   X Engineering Division
   X Div. of Forestry & Wildlife
   __ Div. of State Parks
   __ Commission on Water Resource Management
   X Office of Conservation & Coastal Lands
   X Land Division – Hawaii District
   X Historic Preservation

FROM: Russell Y. Tsuji, Land Administrator

SUBJECT: Scoping Notification for the National Science Foundation-Funded Proposed National Ecological Observatory Network Domain 20 Core Tower and Sampling Site at Pu‘u Maka‘ala Natural Area Reserve

LOCATION: Pu‘u Maka‘ala Natural Reserve, Island of Hawaii; TMK: (3) 2-4-008:009, 019, 025; 1-8-012:003; & 1-9-001:001

APPLICANT: National Science Foundation

Transmitted for your review and comment is information on the above-referenced project. We would appreciate your comments on this project. Please submit any comments by August 22, 2016.

If no response is received by this date, we will assume your agency has no comments. If you have any questions about this request, please contact Lydia Morikawa at 587-0410. Thank you.

Attachments

( ) We have no objections.
( ) We have no comments.
( ) Comments are attached.

Signed: ____________________________

Print Name: Gordon C. Heit
Date: 8/18/16
Response to Scoping Notification for the National Science Foundation Funded Proposed National Ecological Observatory Network Domain 20 Core Tower and Sampling Site at Pu‘u Maka‘ala Natural Area Reserve

April 26, 2017

Dear Lydia,

I apologize for the delayed response to the letter from the State of Hawai‘i Department of Land and Natural Resources Land Division. I also apologize for the fact that the email was rejected.

Thank you for the response to the scoping notice for an Environmental Assessment (EA) of potential impacts of the proposed installation of the National Ecological Observatory Network Domain 20 core tower and sampling site at Pu‘u Maka‘ala Natural Area Reserve, Hawai‘i Island published in the OEQC Environmental Notice on July 23, 2016.

The National Science Foundation anticipates the EA will be published in May 2017. Copies of your comment and this response will be attached in an appendix.

Please contact me (phone: 703-292-7162, email: mftrell@nsf.gov) if you have any questions in the future.

Best,

Montona Futrell-Griggs
NEON Program
Division of Biological Infrastructure
Directorate for Biological Sciences
National Science Foundation
Hi!
Sorry I was out of the Office the past 2 days below is our comments for the project
Have a great weekend
~Tiger
K. Tiger Mills, Staff Planner
State of Hawai‘i
Department of Land and Natural Resources
Office of Conservation And Coastal Lands
P.O. Box 621
Honolulu, Hawai‘i 96809
www.dlnr.hawaii.gov/occl

My apologies,
These comments are late.

The subject area appears to lie within the Resource subzone of the Conservation District.

With the initial information given, PRELIMINARILY, it appears a Conservation District Use Application (CDUA) should be filed for the proposed use pursuant to the Hawaii Administrative Rules (HAR) Section 13-5-22, P-1 Data Collection (D-1)Data collection, research, education, and resource evaluation that involves permanent facilities or structures larger than 500 square feet or a land use causing significant ground disturbance or impact to a natural resource. This would require a Board permit. To allow, modify or deny the proposed land use would be at the discretion of the Board of Land and Natural Resources.

Chapter 13-5, Hawaii Administrative Rules, the rules and regulations of the Conservation District, are
Thanks Tiger,

Have a great weekend too!

Montona

Montona Futrell-Griggs
NEON Program/MSB Program/BIO Clearance Liaison
NSF-BIO/DBI
703-292-7162
4201 Wilson Blvd
Arlington, VA 22230

---

From: "Mills, Kimberly T" <kimberly.mills@hawaii.gov>
Date: Friday, August 26, 2016 at 5:47 PM
To: "Futrell-Griggs, Montona LaNise" <mfutrell@nsf.gov>
Subject: FW: scoping Comments for NEON site [correspondence HA 17-37]

Hi!
Sorry I was out of the Office the past 2 days below is our comments for the project
Have a great weekend

~Tiger
K. Tiger Mills, Staff Planner
State of Hawai`i
Department of Land and Natural Resources
Office of Conservation And Coastal Lands
P.O. Box 621
Honolulu, Hawai`i 96809
www.dlnr.hawaii.gov/occl
Dear Tiger,

I would like to formally thank you for the information provided in your response to the scoping notice for an Environmental Assessment (EA) of potential impacts of the proposed installation of the National Ecological Observatory Network Domain 20 core tower and sampling site at Pu‘u Maka‘ala Natural Area Reserve, Hawai‘i Island published in the OEQC Environmental Notice on July 23, 2016.

The National Science Foundation anticipates the EA will be published in May 2017. Copies of your letter and this response will be attached in an appendix to the EA.

Best,
Montona

Montona Futrell-Griggs
NEON Program/MSB Program/BIO Clearance Liaison
NSF-BIO/DBI
703-292-7162
4201 Wilson Blvd
Arlington, VA 22230

From: "Futrell-Griggs, Montona LaNise" <mfutrell@nsf.gov>
Date: Friday, August 26, 2016 at 5:51 PM
To: "Mills, Kimberly T" <kimberly.mills@hawaii.gov>
Subject: Re: scoping Comments for NEON site [correspondence HA 17-37]

Thanks Tiger,

Have a great weekend too!

Montona

Montona Futrell-Griggs
NEON Program/MSB Program/BIO Clearance Liaison
NSF-BIO/DBI
703-292-7162
4201 Wilson Blvd
Arlington, VA 22230
August 25, 2016

Steven Ellis, Program Director  
National Science Foundation  
4201 Wilson Boulevard  
Arlington, VA 22230

SUBJECT: Scoping Notification for the National Science Foundation-Funded Proposed  
National Ecological Observatory Network Domain 20 Core Tower and  
Sampling Site at Pu‘u Maka‘ala Natural Area Reserve, Hawai‘i Island

In regards to the above-mentioned Use Permit application, the following shall be in accordance:

Hawai‘i Fire Department access to Tower and Electrical Infrastructure.

**NFPA 1, UNIFORM FIRE CODE, 2006 EDITION**

*Note. Hawai‘i State Fire Code, National Fire Protection Association 2006 version, with County  
of Hawaii amendments. County amendments are identified with a preceding “C~” of the  
reference code.*

Chapter 18 Fire Department Access and Water Supply, Section 18.2.

**18.2 Fire Department Access.**

18.2.1 Fire department access and fire department access roads shall be provided and maintained  
in accordance with Section 18.2.

**18.2.2* Access to Structures or Areas.**

18.2.2.1 Access Box(es). The AHJ shall have the authority to require an access box(es) to be  
installed in an accessible location where access to or within a structure or area is difficult  
because of security.

18.2.2.2 Access to Gated Subdivisions or Developments. The AHJ shall have the authority to  
require fire department access be provided to gated subdivisions or developments through  
the use of an approved device or system.
18.2.2.3 Access Maintenance. The owner or occupant of a structure or area, with required fire department access as specified in 18.2.2.1 or 18.2.2.2, shall notify the AHJ when the access is modified in a manner that could prevent fire department access.

18.2.3 Fire Department Access Roads. (*may be referred as FDAR)

18.2.3.1 Required Access.

18.2.3.1.1 Approved fire department access roads shall be provided for every facility, building, or portion of a building hereafter constructed or relocated.

18.2.3.1.2 Fire Department access roads shall consist of roadways, fire lanes, parking lots lanes, or a combination thereof.

18.2.3.1.3* When not more than two one- and two-family dwellings or private garages, carports, sheds, agricultural buildings, and detached buildings or structures 400 ft² (37 m²) or less are present, the requirements of 18.2.3.1 through 18.2.3.2.1 shall be permitted to be modified by the AHJ.

18.2.3.1.4 When fire department access roads cannot be installed due to location on property, topography, waterways, nonnegotiable grades, or other similar conditions, the AHJ shall be authorized to require additional fire protection features.

18.2.3.2 Access to Building.

18.2.3.2.1 A fire department access road shall extend to within in 50 ft (15 m) of at least one exterior door that can be opened from the outside that provides access to the interior of the building. Exception: 1 and 2 single-family dwellings.

18.2.3.2.1.1 When buildings are protected throughout with an approved automatic sprinkler system that is installed in accordance with NFPA 13, NFPA 13D, or NFPA 13R, the distance in 18.2.3.2.1 shall be permitted to be increased to 300 feet.

18.2.3.2.2 Fire department access roads shall be provided such that any portion of the facility or any portion of an exterior wall of the first story of the building is located not more than 150 ft (46 m) from fire department access roads as measured by an approved route around the exterior of the building or facility.

18.2.3.2.2.1 When buildings are protected throughout with an approved automatic sprinkler system that is installed in accordance with NFPA 13, NFPA 13D, or NFPA 13R, the distance in 18.2.3.2.2 shall be permitted to be increased to 450 ft (137 m).
18.2.3.3 Multiple Access Roads. More than one fire department access road shall be provided when it is determined by the AHJ that access by a single road could be impaired by vehicle congestion, condition of terrain, climatic conditions, or other factors that could limit access.

18.2.3.4 Specifications.

18.2.3.4.1 Dimensions.

C~ 18.2.3.4.1.1 FDAR shall have an unobstructed width of not less than 20ft with an approved turn around area if the FDAR exceeds 150 feet. Exception: FDAR for one and two family dwellings shall have an unobstructed width of not less than 15 feet, with an area of not less than 20 feet wide within 150 feet of the structure being protected. An approved turn around area shall be provided if the FDAR exceeds 250 feet.

C~ 18.2.3.4.1.2 FDAR shall have an unobstructed vertical clearance of not less then 13ft 6 in.

C~ 18.2.3.4.1.2.1 Vertical clearances may be increased or reduced by the AHJ, provided such increase or reduction does not impair access by the fire apparatus, and approved signs are installed and maintained indicating such approved changes.

18.2.3.4.1.2.2 Vertical clearances shall be increased when vertical clearances or widths are not adequate to accommodate fire apparatus.

C~ 18.2.3.4.2 Surface. Fire department access roads and bridges shall be designed and maintained to support the imposed loads (25 Tons) of the fire apparatus. Such FDAR and shall be comprised of an all-weather driving surface.

18.2.3.4.3 Turning Radius.

C~ 18.2.3.4.3.1 Fire department access roads shall have a minimum inside turning radius of 30 feet, and a minimum outside turning radius of 60 feet.

18.2.3.4.3.2 Turns in fire department access road shall maintain the minimum road width.

18.2.3.4.4 Dead Ends. Dead-end fire department access roads in excess of 150 ft (46 m) in length shall be provided with approved provisions for the fire apparatus to turn around.

18.2.3.4.5 Bridges.

18.2.3.4.5.1 When a bridge is required to be used as part of a fire department access road, it shall be constructed and maintained in accordance with county requirements.
18.2.3.4.5.2 The bridge shall be designed for a live load sufficient to carry the imposed loads of fire apparatus.

18.2.3.4.5.3 Vehicle load limits shall be posted at both entrances to bridges where required by the AHJ.

18.2.3.4.6 Grade.

C~ 18.2.3.4.6.1 The maximum gradient of a Fire department access road shall not exceed 12 percent for unpaved surfaces and 15 percent for paved surfaces. In areas of the FDAR where a Fire apparatus would connect to a Fire hydrant or Fire Department Connection, the maximum gradient of such area(s) shall not exceed 10 percent.

18.2.3.4.6.2* The angle of approach and departure for any means of fire department access road shall not exceed 1 ft drop in 20 ft (0.3 m drop in 6 m) or the design limitations of the fire apparatus of the fire department, and shall be subject to approval by the AHJ.

18.2.3.4.6.3 Fire department access roads connecting to roadways shall be provided with curb cuts extending at least 2 ft (0.61 m) beyond each edge of the fire lane.

18.2.3.4.7 Traffic Calming Devices. The design and use of traffic calming devices shall be approved the AHJ.

18.2.3.5 Marking of Fire Apparatus Access Road.

18.2.3.5.1 Where required by the AHJ, approved signs or other approved notices shall be provided and maintained to identify fire department access roads or to prohibit the obstruction thereof of both.

18.2.3.5.2 A marked fire apparatus access road shall also be known as a fire lane.

18.2.4 Obstruction and Control of Fire Department Access Road.

18.2.4.1 General.

18.2.4.1.1 The required width of a fire department access road shall not be obstructed in any manner, including by the parking of vehicles.

18.2.4.1.2 Minimum required widths and clearances established under 18.2.3.4 shall be maintained at all times.

18.2.4.1.3* Facilities and structures shall be maintained in a manner that does not impair or impede accessibility for fire department operations.
18.2.4.1.4 Entrance to fire departments access roads that have been closed with gates and barriers in accordance with 18.2.4.2.1 shall not be obstructed by parked vehicles.

18.2.4.2 Closure of Accessways.

18.2.4.2.1 The AHJ shall be authorized to require the installation and maintenance of gates or other approved barricades across roads, trails, or other accessways not including public streets, alleys, or highways.

18.2.4.2.2 Where required, gates and barricades shall be secured in an approved manner.

18.2.4.2.3 Roads, trails, and other access ways that have been closed and obstructed in the manner prescribed by 18.2.4.2.1 shall not be trespassed upon or used unless authorized by the owner and the AHJ.

18.2.4.2.4 Public officers acting within their scope of duty shall be permitted to access restricted property identified in 18.2.4.2.1.

18.2.4.2.5 Locks, gates, doors, barricades, chains, enclosures, signs, tags, or seals that have been installed by the fire department or by its order or under its control shall not be removed, unlocked, destroyed, tampered with, or otherwise vandalized in any manner.

If there are any questions regarding these requirements, please contact the Fire Prevention Bureau at (808) 932-2911.

[Signature]

DARREN J. ROSARIO
Fire Chief

RP:ds
Darren J. Rosario  
Fire Chief  
County of Hawai‘i  
Hawai‘i Fire Department  
25 Aupuni Street, Suite 2501  
Hilo, Hawai‘i 96720

Subject: Response to the Scoping Notification for the National Science Foundation-Funded Proposed National Ecological Observatory Network Domain 20 Core Tower and Sampling Site at Pu‘u Maka‘ala Natural Area Reserve

Dear Darren,

I apologize for the delayed response to your letter.

Thank you for the information provided in your response to the scoping notice for an Environmental Assessment (EA) of potential impacts of the proposed installation of the National Ecological Observatory Network Domain 20 core tower and sampling site at Pu‘u Maka‘ala Natural Area Reserve, Hawai‘i Island published in the OEQC Environmental Notice on July 23, 2016.

The National Science Foundation anticipates the EA will be published in May 2017. Copies of your letter and this response will be attached in an appendix.

Please contact me (phone: 703-292-7876, email: stellis@nsf.gov) or Montona Futrell-Griggs (phone: 703-292-7162, email: mtfutrell@nsf.gov) if you have any questions.

Best,

Steven E. Ellis, Ph.D.  
Division of Biological Infrastructure  
BIO Directorate  
National Science Foundation
Subject: FW: NEON Pu‘u Maka’ala Natural Area Reserve
Date: Thursday, August 25, 2016 at 4:10:18 PM Eastern Daylight Time
From: Watanabe, Shancy
To: Futrell-Griggs, Montona LaNise
Attachments: Plan Approval Application Form (saved from online 01-31-2014).pdf

Aloha Ms. Montona Futrell-Griggs,

Good morning. Thank you for taking my phone call this morning and providing an alternative email, as the email sent below was returned back to me unsent.

Please see our office comments below.

If you have any questions, please call me at (808)961-8288 ext. 8144.

Thank you,
Mahalo nui loa,
Shancy

From: Watanabe, Shancy
Sent: Thursday, August 25, 2016 9:57 AM
To: ‘neon-ea-comments@nsf.gov’ <neon-ea-comments@nsf.gov>
Subject: NEON Pu‘u Maka’ala Natural Area Reserve

Aloha Ms. Montona Futrell-Griggs,

Good morning. Thank you for your letter inquiry for comments. Please accept my apology for the delay in response. Our office confirmed that zoning below for the subject properties:

<table>
<thead>
<tr>
<th>TMK: (3)</th>
<th>County Zoning</th>
<th>State Land Use</th>
<th>Critical Habitats</th>
</tr>
</thead>
<tbody>
<tr>
<td>2--4--008:0</td>
<td>Forest Reserve</td>
<td>Conservation</td>
<td>Yes</td>
</tr>
<tr>
<td>2--4--008:0</td>
<td>Forest Reserve</td>
<td>Conservation</td>
<td>Yes</td>
</tr>
<tr>
<td>1--9--001:0</td>
<td>Forest Reserve</td>
<td>Conservation</td>
<td>Yes</td>
</tr>
<tr>
<td>1--8--012:0</td>
<td>Forest Reserve</td>
<td>Conservation</td>
<td>Yes</td>
</tr>
<tr>
<td>2--4--008:0</td>
<td>Forest Reserve</td>
<td>Conservation</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Please note that a structure placed on the subject property will require a Plan Approval. The Plan Approval process takes thirty (30) days. Please see the following attachment for the Plan Approval form.

If you have any questions, please call me at (808)961-8288 ext. 8144.

Thank you,
Mahalo nui loa,
Ms. Shancy H. Watanabe
Subject: Re: NEON Puʻu Makaʻala Natural Area Reserve
Date: Thursday, August 25, 2016 at 4:11:50 PM Eastern Daylight Time
From: Futrell-Griggs, Montona LaNise
To: Watanabe, Shancy

Good afternoon,

I have received your comments and the Plan Approval form.

Thank you,
Montona

Montona Futrell-Griggs
NEON Program/MSB Program/BIO Clearance Liaison
NSF-BIO/DBI
703-292-7162
4201 Wilson Blvd
Arlington, VA 22230

From: "Watanabe, Shancy" <Shancy.Watanabe@hawaiicounty.gov>
Date: Thursday, August 25, 2016 at 4:10 PM
To: "Futrell-Griggs, Montona LaNise" <mfutrell@nsf.gov>
Subject: FW: NEON Puʻu Makaʻala Natural Area Reserve

Aloha Ms. Montona Futrell-Griggs,

Good morning. Thank you for taking my phone call this morning and providing an alternative email, as the email sent below was returned back to me unsent.

Please see our office comments below.

If you have any questions, please call me at (808)961-8288 ext. 8144.

Thank you,
Mahalo nui loa,
Shancy

From: Watanabe, Shancy
Sent: Thursday, August 25, 2016 9:57 AM
To: 'neon-ea-comments@nsf.gov' <neon-ea-comments@nsf.gov>
Subject: NEON Puʻu Makaʻala Natural Area Reserve

Aloha Ms. Montona Futrell-Griggs,

Good morning. Thank you for your letter inquiry for comments. Please accept my apology for the delay in response. Our office confirmed that zoning below for the subject properties:
Subject: Re: NEON Pu‘u Maka‘ala Natural Area Reserve

Date: Friday, April 28, 2017 at 1:36:35 PM Eastern Daylight Time

From: Futrell-Griggs, Montona

To: Watanabe, Shancy

Dear Shancy,

I would like to formally thank you for the information provided in your response to the scoping notice for an Environmental Assessment (EA) of potential impacts of the proposed installation of the National Ecological Observatory Network Domain 20 core tower and sampling site at Pu‘u Maka‘ala Natural Area Reserve, Hawai‘i Island published in the OEQC Environmental Notice on July 23, 2016.

The National Science Foundation anticipates the EA will be published in May 2017. Copies of your letter and this response will be attached in an appendix to the EA.

Best,
Montona

Montona Futrell-Griggs
NEON Program/MSB Program/BiO Clearance Liaison
NSF-BiO/DBI
703-292-7162
4201 Wilson Blvd
Arlington, VA 22230

---

From: "Watanabe, Shancy" <Shancy.Watanabe@hawaiicounty.gov>
Date: Thursday, August 25, 2016 at 4:10 PM
To: "Futrell-Griggs, Montona LaNise" <mfutrell@nsf.gov>
Subject: FW: NEON Pu‘u Maka‘ala Natural Area Reserve

Aloha Ms. Montona Futrell-Griggs,

Good morning. Thank you for taking my phone call this morning and providing an alternative email, as the email sent below was returned back to me unsent.

Please see our office comments below.

If you have any questions, please call me at (808)961-8288 ext. 8144.

Thank you,
Mahalo nui loa,
Shancy

---
In Reply Refer To: 01EPIF00-2016-TA-0479

Mr. Steven Ellis, Program Director
Division of Biological Infrastructure
Biological Sciences Directorate
National Science Foundation
4201 Wilson Boulevard
Arlington, Virginia 22230

Subject: Technical Assistance for Proposed National Ecological Observatory Network Domain 20 Core Tower and Sampling Site at Puu Makaala Natural Area Reserve, Hawaii Island

Dear Mr. Ellis:

The U.S. Fish and Wildlife Service (Service) received your letter on August 11, 2016, requesting technical assistance for the National Science Foundation-funded proposed National Ecological Observatory Network (NEON) Domain 20 Core Tower and Sampling Site at Puu Makaala Natural Area Reserve (Puu Makaala NAR), Hawaii Island. The proposed site is to provide ecological data on NEON’s Domain 20, “Pacific Neotropical in Hawaii,” and would be the only site representing this domain in the United States. Site components would include an ecological research tower proposed to be approximately 30.5 meters tall, instrument hut, soil array, Double Fence Intercomparison Reference (DFIR) precipitation gauge (with required vegetation clearance area), and associated electrical infrastructure with power run. A suite of terrestrial sampling protocols and an annual aerial flight would occur within the greater permitted area in the Puu Makaala NAR. Terrestrial plot sampling and associated plot size would include the following: 20 Tower Plots-40x40 m; 6 Tick Plots-40x40 m; 30 Base Plots-40x40 m; 6-8 Mammal Grids-90x90 m; 5-15 Bird Grids-500x500 m; 2 Phenology Plots-200x200 m; and 10 Mosquito Points-5x5 m. The proposed project area including plots encompasses TMK (3) 2-4-008:009, TMK (3) 2-4-008:025, TMK (3) 1-9-001:001, TMK (3) 1-8-012:003 and TMK(3) 2-4-008:019, and would be permitted by the State of Hawaii via a Natural Area Reserve System (NARS) Special Use Permit and OCCL Use Permit.

Based on information you provided and pertinent information in our files, including data compiled by the Hawaii Biodiversity and Mapping Project, there is one federally listed mammal in the vicinity of the project area, the endangered Hawaiian hoary bat (*Lasiurus cinereus semotus*); eight federally listed birds, including the Hawaiian crow or alala (*Corvus hawaiiensis*), nene (*Branta sandvicensis*), Hawaiian hawk or io (*Buteo solitarius*), akiapolaau (*Hemignathus munroi*), Hawaii creeper, (*Oreomyctis mana*), Hawaii akepa (*Loxops coccineus*), Hawaiian petrel (*Pterodroma sandwichensis*), and the threatened Newell’s shearwater (*Puffinus newelli*); one
bird species proposed for listing, the band-rumped storm-petrel (*Oceanodroma castro*); and one 
bird species petitioned for listing, the iʻiwi (*Vestiaria coccinea*). There are fifteen federally listed 
plants in the vicinity of the project area: palai laau (*Adenophorus periens*), Mauna Loa 
silversword (*Argyrotrychium kauense*), Asplenium peruvianum var. insulare, oha wai (*Clermontia 
lindseyanum*), oha wai (*Clermontia peleana*), haha (*Cyanea coplanadit*), akuaku (*Cyanea 
platiphylla*), haha (*Cyanea shipmanii*), hapa (*Cyanea stictophylla*), hawai (*Cyrandrea 
giffardii*), hawai (*Cyrandrea tintinnabula*), kiponakona (*Pyloselga racemosa*), *Phyllostegia 
velutina*, anunu (*Sicyos alba*), and Hawaiian vetch (*Vicia menziesii*). There is no proposed or 
final critical habitat within the vicinity of the project area. The Service recommends the 
following measures to avoid and minimize project impacts to listed species:

**Hawaiian hoary bat**
The Hawaiian hoary bat is known to occur across a broad range of habitats throughout the State 
of Hawaii. This bat roosts in both exotic and native woody vegetation and, while foraging, 
leaves young unattended in “nursery” trees and shrubs. If trees or shrubs suitable for bat 
roosting are cleared during the Hawaiian hoary bat breeding season (June 1 to September 15), 
there is a risk that young bats that cannot yet fly on their own could inadvertently be harmed or 
killed. The Service recommends that woody plants greater than 15 feet tall should not be 
removed or trimmed during the Hawaiian hoary bat breeding season. Additionally, Hawaiian 
hoary bats forage for insects from as low as three feet to higher than 500 feet above the ground. 
When barbed wire is used in fencing, Hawaiian hoary bats can become entangled. The Service 
therefore recommends that barbed wire not be used for fencing as part of this proposed action.

**Hawaiian hawk**
The Hawaiian hawk is known to occur across a broad range of forest habitats throughout the 
Island of Hawaii. Loud, irregular and unpredictable activities, such as using heavy equipment or 
building a structure, near an endangered Hawaiian hawk nest may cause nest failure. 
Harassment of Hawaiian hawk nesting sites can alter feeding and breeding patterns or result in 
nest or chick abandonment. Nest disturbance can also increase exposure of chicks and juveniles 
to inclement weather or predators. If any ground clearing or construction will occur during the 
Hawaiian hawk breeding season (March through September), we recommend a nest search of the 
project footprint and surrounding areas be conducted by a qualified ornithologist immediately 
before the start of construction activities. Pre-disturbance surveys for Hawaiian hawks are only 
valid for 14 days. If disturbance for the specific location does not occur within 14 days of the 
survey, another survey will be required. Surveys should ensure that construction activity will not 
occur within 1,600 feet of any Hawaiian hawk nest. If nesting Hawaiian hawks are present in the 
action area or within 1,600 feet of the action area, we recommend you coordinate with the 
Service to develop appropriate avoidance and minimization measures dependent upon the site 
specific information.

**Nene**
The nene is currently found on all the main islands except Lanai and Kahoolawe. Nene are 
known to occupy various habitat and vegetation community types ranging from coastal dune 
vegetation and non-native grasslands (such as golf courses, pastures, and rural areas) to sparsely 
vegetated low- and high-elevation lava flows, mid-elevation native and non-native shrubland, 
cinder deserts, native alpine grasslands and shrublands, and open and nonnative alpine 
shrubland-woodland community interfaces. Nene do not occur in closed forest areas. Nene have 
an extended breeding season with eggs reported from all months except May, June, and July, 
although the majority of birds in the wild nest during the rainy (winter) season between October
and March. Nesting peaks in December and most goslings hatch from December to January. Nene nest on the ground, in a shallow scrape in the dense shade of a shrub or other vegetation. To avoid adverse impacts to nene, we recommend a qualified individual conduct surveys at the proposed project site for presence of nene prior to project(s) initiation. We further recommend if a nene is observed, or flies into the site while activities are occurring, all activities be halted within 100-ft (30-m) of the individual(s), and work should not resume until the nene leave the area on their own accord.

Forest Birds
Akiapolaau, Hawaii creeper, and Hawaii akepa, and i‘iwi (collectively known as forest birds) occur in forest habitats throughout the Island of Hawaii. The Hawaiian crow is planned to be introduced to Pu‘u Maka‘ala NAR in fall 2016. Luid, irregular and unpredictable activities, such as using heavy equipment or building a structure, near a nest of these species may cause nest failure. Harassment of nesting sites can alter feeding and breeding patterns or result in nest or chick abandonment. Nest disturbance can also increase exposure of chicks and juveniles to inclement weather or predators. If any ground clearing or construction will occur during the breeding season for these species (February through July), we recommend a nest search of the project footprint and surrounding areas be conducted by a qualified ornithologist immediately prior to the start of construction activities. Pre-disturbance surveys are only valid for 14 days. If disturbance for the specific location does not occur within 14 days of the survey, another survey will be required. Surveys should ensure that construction activity will not occur within 500 feet of any nest of Akiapolaau, Hawaii creeper, and Hawaii akepa, and 1,600 feet of any nest of Hawaiian crow. If listed forest birds are present in the action area or within 500 feet of the action area for Akiapolaau, Hawaii creeper, and Hawaii akepa and 1,600 feet of the action area for Hawaiian crow, we recommend you coordinate with the Service to develop appropriate avoidance and minimization measures dependent upon the site specific information.

Seabirds
Hawaiian petrels, Newell’s shearwaters and band-rumped storm-petrels (collectively known as seabirds) are known to transit over the project area when flying between the ocean and upland breeding colonies. Many bird species are known to strike objects, such as antennas or guywires, protruding above surrounding vegetation. In Hawaii, seabirds are attracted to lights and are known to collide with buildings, light poles, wires, and other tall objects. Any lights associated with the projects should be cut-off, equipped with a motion sensor, or shielded so that the light cannot be seen from above. Fledging seabirds are especially affected by artificial lighting and have a tendency to exhaust themselves while circling the light sources and become grounded. Too weak to fly, these birds become vulnerable to predation by feral predators such as small Indian mongoose (Herpestes auropunctatus), cats (Felis catus), and dogs (Canis familiaris). We therefore recommend avoiding or minimizing use of artificial lighting and avoiding night work if possible. If artificial lighting must be used we recommend this be shielded so the bulb is not visible at or above bulb-height. If night work must be conducted this should take place outside the seabird fledging season (September 15 through December 15) and should utilize shielded lighting.

Plants
Listed plants are distributed throughout the Pu‘u Maka‘ala NAR. We recommend close coordination with Hawaii NARS to fully avoid any adverse impacts to listed plants during installation of proposed sampling grids.
Technical Assistance Regarding Rapid Ohia Death

Rapid Ohia Death (ROD), a newly identified disease, has killed large numbers of mature ohia trees (*Metrosideros polymorpha*) in forests and residential areas of Hawaii Island. The disease is caused by a vascular wilt fungus (*Ceratocystis fimbriata*). Crowns of affected trees turn yellowish or brown within days to weeks and dead leaves typically remain on branches for some time. All ages of ohia trees can be affected and can have symptoms of browning of branches or leaves. As of early 2015, the disease was confined to Hilo and the Puna district on Hawaii Island, but has since been confirmed in Volcano, South Kona, and Hamakua districts. Additional information on ROD can be found at [http://www2.ctahr.hawaii.edu/forestry/downloads/ROD-trifold-03.2016.pdf](http://www2.ctahr.hawaii.edu/forestry/downloads/ROD-trifold-03.2016.pdf) and [http://www2.ctahr.hawaii.edu/forestry/disease/ohia_wilt.html](http://www2.ctahr.hawaii.edu/forestry/disease/ohia_wilt.html).

Many of our listed species are reliant on native ohia forest. The following avoidance and minimization measures should be followed for projects working in ohia forests or at sites with ohia trees on Hawaii Island:

- A survey of the proposed project site should be conducted within two weeks prior to any tree cutting to determine if there are any infected ohia trees. If infected ohia are suspected at the site, the following agencies should be contacted for further guidance.
  - USFWS – please contact the name at the bottom of this letter
  - Dr. J.B. Friday, University of Hawaii Cooperative Extension Service, 808-969-8254 or jbfriday@hawaii.edu
  - Dr. Flint Hughes, USDA Forest Service, 808-854-2617, fhughes@fs.fed.us
  - Dr. Lisa Keith, USDA Agriculture Research Service, 808-959-4357, Lisa.Keith@ars.usda.gov

- Both prior to cutting ohia and after the project is complete:
  - Tools used for cutting infected ohia trees should be cleaned with a 70 percent rubbing alcohol solution. A freshly prepared 10 percent solution of chlorine bleach and water can be used as long as tools are oiled afterwards, as chlorine bleach will corrode metal tools. Chainsaw blades should be brushed clean, sprayed with cleaning solution, and run briefly to lubricate the chain.
  - Vehicles used off-road in infected forest areas should be thoroughly cleaned. The tires and undercarriage of the vehicle should be cleaned with detergent if they have travelled from an area with ROD or travelled off-road.
  - Shoes and clothing used in infected forests should also be cleaned. Shoes should be decontaminated by dipping the soles in 10 percent bleach or 70 percent rubbing alcohol to kill the ROD Fungus. Other gear can be sprayed with the same cleaning solutions. Clothing can be washed in hot water and detergent.

- Wood of affected ohia trees should not be transported to other areas of Hawaii Island or interisland. All cut wood should be left on-site to avoid spreading the disease. The pathogen may remain viable for over a year in dead wood. The HDOA has passed a new quarantine rule that prohibits interisland movement, except by permit, of all ohia plant or plant parts.
Mr. Steven Ellis

Thank you for your efforts to conserve listed species and native habitats. Please contact Fish and Wildlife Biologist Jay Nelson (phone: 808-792-9441, email: jay_nelson@fws.gov) if you have any questions or for further guidance.

Sincerely,

[Signature]

Michelle Bogardus
Island Team Leader
Maui Nui and Hawaii Island

cc: Ms. Emma Yuen, NARS
Ms. Michelle Bogardus  
US FWS  
Pacific Islands Fish and Wildlife Office  
300 Ala Moana Boulevard, Room 3-122  
Honolulu, Hawaii 96850

RE: 01EP1F00-2016-TA-0479  
Technical Assistance for Proposed National Ecological Observatory Network Domain 20  
Core Tower and Sampling Site at Puu Maka'ala Natural Area Reserve, Hawaii Island

Dear Michelle

I apologize for the delayed response to your letter.

Thank you for your response to the scoping notice for an Environmental Assessment (EA) of potential impacts of the proposed installation of the National Ecological Observatory Network Domain 20 core tower and sampling site at Pu’u Maka’ala Natural Area Reserve, Hawai’i Island published in the OEQC Environmental Notice on July 23, 2016.

The information provided was evaluated and, as appropriate, incorporated into the EA and Biological Evaluation being developed to evaluate the potential impacts of the proposed project on the Hawaiian cultural resources as well as environmental conditions in the area of potential effect in the Pu’u Maka’ala Natural Area Reserve.

The National Science Foundation anticipates the EA will be published in May 2017. Your comment and this response will be attached in an appendix.

Please contact me (phone: 703-292-7876, email: stellis@nsf.gov) or Montona Futrell-Griggs (phone: 703-292-7162, email: mutfrell@nsf.gov) if you have any questions.

Best,

Steven E. Ellis, Ph.D.  
Division of Biological Infrastructure  
BIO Directorate  
National Science Foundation
Thank you for the opportunity to comment on the aforementioned proposed project by the National Science Foundation (NSF). The National Ecological Observatory Network Domain (NEON), a continental-scale research network funded by the NSF, proposes to establish a research site within the Pu‘u Maka‘ala Natural Area Reserve (NAR) on Hawai‘i Island. The site will include an ecological research tower, instrument hut, soil array, Double Fence Intercomparison Reference (DFIR) precipitation gauge (with required vegetation clearing area), associated electrical infrastructure and other on-site eco-systems collection tools. The proposed project area would occupy approximately 1,000 acres, to be discontinuous within the cumulative 12,000-acres of State owned lands as listed in the above TMKs. SHPD received this submittal on August 18, 2016.

SHPD has insufficient information to determine the potential impacts to historic properties pursuant to both Hawaii Administrative Rules (HAR) §13-275 and 36 CFR 800. **SHPD requests the following information:**

1. A delegation letter from the NSF that identifies the particular activities and responsibilities they have delegated to NEON on their behalf;
2. Information indicating that a reasonable and good faith effort to identify historic properties (architectural, archaeological, or traditional cultural properties [TCPs]) within the area of potential effect (APE) pursuant to 36 CFR §800.4(a) and 4(b) has been completed. The identification effort must include consultation efforts with Native Hawaiian Organizations (NHOs) [36 CFR §800.4(a)(4)] and consultation with individuals, organizations and the public with a demonstrated interest in the undertaking [36 CFR §800.2(c)] and should include documentation of the nature of the consultation, the names of the consulted parties, and their comments/concerns; and
3. A determination of eligibility for any historic properties or potential historic districts within the APE [36 CFR§800.4(c)]; assessment of project effect [36 CFR §800.4(d)]; and if necessary resolution of adverse effects [36 CFR §800.6] for any sites located with the APE.

Per 36 CFR 800, **SHPD looks forward to** receiving a request from the lead federal agency or its delegated authority to initiate NHPA Section 106 consultation with SHPD on the proposed undertaking.

The NSF is the office of record for this undertaking. Please maintain a copy of this letter with your environmental review record.
Please contact Mr. Ikaika Nakahashi at (808) 243-4600 or at Chris.Nakahashi@hawaii.gov for History and Culture concerns for Hawaii Island including Native Hawaiian Organization (NHO) consultations, cultural sites, and burials. Please contact me at Susan.A.Lebo@hawaii.gov or at (808) 692-8019 for any questions regarding archaeological resources or this letter.

Aloha,

![Signature]

Alan S. Downer, PhD
Administrator, State Historic Preservation Division
Deputy State Historic Preservation Officer

cc: David G. Smith, DOFAW (David.G.Smith@hawaii.gov)
Lydia Morikawa, DLNR-Land (Lydia.M.Morikawa@hawaii.gov)
Montona Futrell-Griggs, NSF, Re: NEON (mfortrell@nsf.gov)
Steven Ellis, NSF, Re: NEON (stellis@nsf.gov)
Sam J. Lemmo, OCCL (Sam.J.Lemmo@hawaii.gov)
Via overnight mail and email

Alan S. Downer, PhD.
Administrator, State Historic Preservation Division
Deputy State Historic Preservation Officer
Department of Land and Natural Resources
Kakuhihewa Building
601 Kamokila Blvd, Ste. 555
Kapolei, Hawai‘i  96707

December 7, 2016

Subject: Initiation of Section106 Consultation for Proposed National Science Foundation-Funded National Ecological Observatory Network Domain 20 Core Tower and Sampling Site at Pu'u Maka'ala Natural Area Reserve, Hawai'i Island, Hawai'i - portions of TMK (3) 2-4-008:009, TMK (3) 2-4-008:025, TMK (3) 1-9-001:001, TMK (3) 1-8-012:003, and TMK (3) 2-4-008:019
Log No. 2016.01949, Doc No. 1609GC04 Archaeology

Dear Dr. Downer:

The National Science Foundation (NSF) Directorate for Biological Sciences (BIO) funds the National Ecological Observatory Network (NEON), a continental-scale research network operated by awardee Battelle Ecology, Inc. NEON proposes to establish a research site within the Pu'u Maka'ala Natural Area Reserve (NAR), Hawai'i Island. The proposed site would provide ecological data on NEON's Domain 20, "Pacific Neotropical in Hawai'i," and would be the only site representing this domain in the United States. Site components would include a tower, instrument hut, an array of soil plots, a precipitation gauge, and associated electrical infrastructure with on-grade power lines. The total construction acreage of these components is expected to be less than 0.25 acre. A suite of terrestrial sampling protocols and an annual aerial flight would occur within the greater permitted area; a total of approximately 80-90 (or less) sampling plots would be distributed throughout the Pu‘u Maka’ala NAR. The site is located southwest of Hilo and encompasses portions of TMK (3) 2-4-008:009, TMK (3) 2-4-008:025, TMK (3) 1-9-001:001, TMK (3) 1-8-012:003, and TMK (3) 2-4-008:019 (see attached map).

NSF, as the responsible federal agency, is initiating Section 106 consultation under the National Historic Preservation Act (NHPA) for this undertaking as well as complying with Chapter 6E-8, Hawai'i Revised Statutes. NSF is also concurrently preparing an Environmental Assessment (EA) under the National Environmental Policy Act (NEPA) to identify and assess any potential environmental effects of establishing a NEON site at the proposed location. The federal NEPA process is being conducted in coordination with state-level review under Chapter 343, Hawai’i
Revised Statutes. NSF has not delegated any of its authority to perform these actions, although NSF may request that its environmental contractor, CH2M Hill, and the NEON awardee, Battelle Ecology, Inc., conduct research and other information gathering activities to support NSF’s Section 106 and Chapter 6E-8 compliance.

The NEON Project partitioned the continental United States, including Alaska, Hawai’i and Puerto Rico, into 20 eco-climatic domains. Each domain represents a different region of vegetation, landforms, climate, and ecosystem performance. Within each of these domains a fully instrumented core site will be established, hosting a tower (approximately 10 meters above the surrounding canopy), instrument hut, soil array, associated electrical infrastructure with power run, a suite of terrestrial sampling protocols, and an annual flight. Each site will collect data on climate and atmosphere, soils, vegetation, and a variety of organisms. Core sites must be located in minimally managed “wildland” areas and are slated to operate for the 30-year lifetime of NEON. For the proposed Pu‘u Maka‘ala site, no additional roads would be constructed and strict construction limits would be implemented during the tower construction phase.

NSF has established a draft Area of Potential Effects (APE) for this undertaking to include all proposed instrument and potential sampling areas, as shown on the attached map. We request your review and approval of the APE.

NSF, after consulting with your staff, has preliminarily identified organizations and individuals who may have an interest in the proposal’s potential to affect historic properties. These organizations and individuals may qualify as consulting parties and, accordingly, we have reached out to them to invite their participation:

- Association of Hawaiian Civic Clubs
- Hawaiian Civic Club of Hilo
- George K. Cypher ‘Ohana
- Kākoʻo ʻŌiwi
- Keoni Kealoha Alvarez
- Koʻolau Foundation
- Makuʻu Farmers Association
- Office of Hawaiian Affairs
- Piihonua Hawaiian Homestead Community Association
- Kamehameha Schools (adjacent property owner)
- Hawai‘i Island Burial Council
- Hawai‘i County Cultural Resources Commission
- Historic Hawai‘i Foundation
- Aha Moku Council
- Kua O Ka Lā
- Protect Kahoʻolawe ‘Ohana
• Hawai‘i Volcanoes National Park
• Mauna Kea Watershed Alliance

Please let us know if there are others we should include in our consultation efforts.

Potential consulting parties were invited to attend a meeting on October 26th, 2016, to discuss the draft APE and to assist in identifying any historic properties and cultural practices. Meeting attendees provided input on usage of the Pu‘u O‘o Trail and the presence of the historic Wright camp, both of which are outside of the draft APE, as well as the Mauna Loa Boys’ School, which is within the draft APE. A November 18, 2011, letter from the Deputy State Historic Preservation Officer to the Division of Forestry and Wildlife regarding the Pu‘u Maka‘ala Natural Area Reserve Management Plan describes the school, which was opened in 1952 and closed the following year. This letter notes that “the Mauna Loa Boys School is within the NAR project area and is currently being used to store fencing materials; this use does not cause or constitute any adverse effects to the structure, which is in poor condition.” Meeting attendees likewise noted the poor condition of the former school, and that the proposed NEON site had no potential to affect the building. Attendees were not aware of any cultural practices within the draft APE, noting that this area is challenging to access. NSF acknowledges that there was short notice for this consulting parties meeting due to logistical challenges, and we, therefore, plan to hold an additional consulting parties’ meeting during the comment period for the Draft EA. We look forward to receiving further input from consulting parties at that time. In addition to that consultation opportunity, we are copying all potential consulting parties on this letter and will, by separate correspondence, request their review and comment on the information and findings in this letter during a comment period that extends up to and including January 9, 2017.

As part of our effort to identify historic properties in the vicinity of the proposed site, a literature review was completed at the SHPD library, and other research was done to locate previous Environmental Assessments and cultural studies done for the proposed site area. The results from that search are shown in the table below.

<table>
<thead>
<tr>
<th>Title</th>
<th>Author</th>
<th>Date</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archaeological Inventory Survey and Limited Cultural Assessment</td>
<td>Rechtman, Robert B. Ph.D.</td>
<td>July 2001</td>
<td>No sites found. Archeological expectations for the general area are very limited due to location in the &quot;rainforest zone.&quot;</td>
</tr>
<tr>
<td>for the Proposed Wastewater Treatment Facility at Kulani Correctional</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facility (TMK:3-2-4-08:9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He Mo‘Olelo ‘Āina: A Cultural Study of the Pu‘u Maka‘Ala Natural Area</td>
<td>Kumu Pono Associates LLC</td>
<td>May 2004</td>
<td>No references to archaeological sites.</td>
</tr>
<tr>
<td>Reserve Districts of Hilo and Puna, Island of Hawai‘i</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draft Environmental Assessment - Pu‘u Maka‘ala Natural Area Reserve</td>
<td>Hawaii Branch Natural Area</td>
<td>January 2012</td>
<td>SHPD concurred with the finding of No Historic Properties Affected</td>
</tr>
<tr>
<td>Management Plan</td>
<td>Reserve System</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If there is any other information you can provide or sources you would like to suggest, please let us know.

The 2004 study by Kumu Pono did not note any records or references to specific archaeological sites in the proposed site area. The study notes that "because of the remote nature of the 'Ola'a and Waiakea forest lands which comprise the present-day Pu‘u Maka‘ala NAR, no government communications pertaining to historic trails or government road projects exist for the region. Boundary Commission testimonies describe trails through the forest lands, rising from the lowlands of Waiakea, ‘Ola'a, Keahou and Humu'ula. Based on the native traditions and kama'aina testimonies, it is likely that ‘practitioner' trails existed throughout the forest region. Features such as ‘kauhale manu' (bird-catcher's shelters), ‘kahua kala’iwa‘a' (canoe-makers clearings), ‘oioina’ (trailside resting places and shelters), the ‘ala hele’ (trails), and other features associated with traditional and customary accesses, would leave little evidence in the present-day, as the traditional features and uses generally had minimal impact on the natural landscape. Those things left behind, not cared for or maintained, were simply reabsorbed into the landscape" (Kumu Pono Associates LLC, 2004).

We also interviewed NAR staff on any known cultural sites or practices. Mr. Nick Agorastos, NAR Specialist with Hawaii Department of Land and Natural Resources (DLNR) Division of Forestry and Wildlife (DOFAW), stated that he had never encountered anyone engaged in cultural practices in the site area, even though he and/or his staff are on the property almost daily. He noted that the NAR rules specify the need for a permit to conduct cultural practices within the NAR, and that he is only aware of two previous permit requests for Pu‘u Maka‘ala NAR, both involving removal of a koa log to build a canoe.

The Kumu Pono Associates report also notes that "the mountain landscape, its' native species, and the intangible components therein, are a part of a sacred Hawaiian landscape. Thus, the landscape itself is a highly valued cultural property. Its protection, and the continued exercise of traditional and customary practices, in a traditional and customary manner, are mandated by native custom, and State and Federal Laws (as those establishing the 'Ola'a and Waiakea Forest Reserves, the Pu‘u Maka‘ala NAR, and the Endangered Species Act)." NSF recognizes that members of the ‘alalā (Corvus hawaiiensis) species may also be culturally significant. This species is currently extinct in the wild but is planned for reintroduction beginning in December 2016.

Although the proposed site area has not been surveyed, previous studies indicate that the probability of historic properties being present in the proposed site area is very low. Specifically, the site elevation and difficult accessibility, combined with the ephemeral nature of traditional uses and features, makes the archaeological expectations for the area very low. Should any archaeological historic properties be present, the likelihood of adverse effects to them from the proposal is low because the site components entail only minimal ground disturbance. In summary:

- Proposed site is in remote area in upper elevation with no known archaeological or historic properties.
- Proposed actions involve minimal ground disturbance.
- Archaeological studies in adjacent areas have not found any sites and have determined there is a low likelihood of sites in this wet upper-elevation rain forest.
We look forward to consulting with you on this undertaking. We anticipate preparing our Draft EA in January; any input provided to us by the SHPD and/or consulting parties by January 9th will be incorporated into the cultural resources section of the Draft EA. If you have any questions, or wish to discuss the proposal or our agency’s responsibilities in more detail, please contact me at (703) 292-7162.

Sincerely,

Montona Futrell-Griggs
NEON Program
Division of Biological Infrastructure
Directorate for Biological Sciences

Cc (via mail and email, if available):

Association of Hawaiian Civic Clubs
Hawaiian Civic Club of Hilo
George K. Cypher ‘Ohana
Kākoʻo ‘Ōiwi
Keoni Kealoha Alvarez
Koʻolau Foundation
Makuʻu Farmers Association
Office of Hawaiian Affairs
Piihonua Hawaiian Homestead Community Association
Kamehameha Schools (adjacent property owner)
Hawaiʻi Island Burial Council
Hawaiʻi County Cultural Resources Commission
Historic Hawaiʻi Foundation
Aha Moku Council
Kua O Ka Lā
Protect Kahoʻolawe ‘Ohana
Hawaiʻi Volcanoes National Park
Mauna Kea Watershed Alliance
Ms. Montona Futrell-Griggs  
NEON Puu Makaala Natural Area Reserve  
National Science Foundation  
4201 Wilson Boulevard  
Suite 615N  
Arlington, Virginia 22230  

Dear Ms. Futrell-Griggs:  

Subject: National Ecological Observatory Network (NEON) Domain 20 Core Tower and Sampling Site at Puu Makaala Natural Area Reserve  
Scoping Notification and Pre-Assessment Consultation under Chapter 343  
South Hilo, Hawaii  
TMK: (3) 1-8-012:003, 1-9-001:001, 2-4-008:009, 2-4-008:019 & 2-4-008:025  

Our Department of Transportation’s (DOT) comments on the subject project are as follows:  

Airports Division (DOT-AIR)  

The proposed project is approximately 21 miles southerly of the Air Operations Area of the Hilo International Airport (ITO) and 53 miles easterly of the Kona International Airport (KOA). DOT-AIR have concerns related to the tower element of the proposal.  

1. The developer should submit a Federal Aviation Administration (FAA) Form 7460-1 “Notice of Proposed Construction or Alteration,” in accordance with the Code of Federal Regulations, Title 14, Part 77.9. This form and criteria for submittal can be found at the following website: https://oeaaa.faa.gov/oeaaa/external/portal.jsp.  

2. We recommend that a red light be placed on the tower.  

Highways Division (DOT-HWY)  

The subject project is not expected to significantly impact the State highway facility. However, we will defer further comments until we review the Draft Environmental Assessment.
Should you have any questions, please contact Mr. Norren Kato of the DOT Statewide Transportation Planning Office at telephone number (808) 831-7976.

Sincerely,

[Signature]

FORD N. FUCHIGAMI
Director of Transportation
Mr. Ford N. Fuchigami  
Director of Transportation  
Department of Transportation  
State of Hawaii  
869 Punchbowl Street  
Honolulu, HI 96813-5097

Re: Response to letter dated October 3, 2016, concerning the proposed NEON Domain 20 site on the Island of Hawai‘i: STP 8.2033

Dear Director Fuchigami,

I am in receipt of your letter dated October 3, 2016, in which you state that the National Science Foundation (NSF) should submit Form 7460-1, “Notice of Proposed Construction or Alteration,” to the Federal Aeronautical Administration (FAA) in accordance with 14 C.F.R. Part 77. After reviewing the applicable regulations under 14 C.F.R. Part 77, Subparts B and C, however, NSF has concluded that the proposed NEON Domain 20 tower does not meet the height criteria requiring that notice be given to the FAA. In addition to reviewing the regulations, NSF also applied the FAA referenced “Notice Criterial Tool,” provided by the FAA to assist in applying the Part 77 Notice Criteria, and the finding was as follows: “Results: You do not exceed Notice Criteria.” Accordingly, no notice is required to be submitted to the FAA for the proposed NEON tower for the Domain 20 site on the Island of Hawai‘i.

Thank you for responding to our scoping notice and submitting your comments regarding NSF’s proposed NEON Domain 20 site. If you have any questions or concerns, please do not hesitate to contact me directly at (703) 292-4820.

Best regards,

Kristen Hamilton  
Environmental Compliance Officer  
National Science Foundation  
4201 Wilson Boulevard, Suite 1265  
Arlington, VA 22230
This page is intentionally left blank.
Appendix B
Distribution List for Draft EA
This page is intentionally left blank.
Appendix B
Draft EA Distribution List

FEDERAL AGENCIES
U.S. Fish and Wildlife Service
U.S. Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS)
U.S. Geological Survey USDA NRCS Soil and Water Conservation Districts
U.S. National Park Service USDA Farm Service Agency
U.S. Forest Service Department of the Army, U.S. Army Garrison Pohakuloa

STATE AGENCIES
Department of Health (DOH) Office of Environmental Quality Control DLNR Division of Forestry and Wildlife
DOH Environmental Planning Office DLNR Natural Area Reserve Commission
DOH Environmental Management Division DLNR Division of Conservation and Resources Enforcement
Dept. of Business, Economic Development & Tourism (DBEDT) DLNR Division of State Parks
DBEDT Office of Planning DLNR State Historic Preservation Division (SHPD)
Department of Defense Hawaii Island Burial Council
Department of Public Safety Department of Agriculture
Department of Hawaiian Home Lands (UHHL) Department of Agriculture, Agribusiness Development Corporation
Department of Transportation Department of Accounting and General Services (DAGS)
Department of Land and Natural Resources (DLNR) Land Division Office of Hawaiian Affairs
DLNR Office of Conservation and Coastal Lands

SCHOOLS/LIBRARIES
University of Hawaii (UH) Environmental Center Hilo Regional Library
UH College of Tropical Agriculture and Human Resources Mountain View Public and School Library
UH at Manoa, Thomas H. Hamilton Library Keaau Public Library
UH at Hilo, Maunakea Library Legislative Reference Bureau Library
Hawaii State Library, Hawaii Documents Center

COUNTY AGENCIES
Department of Environmental Management Department of Research and Development
Department of Parks and Recreation Civil Defense
Department of Water Supply Fire Department
Planning Department Police Department
Department of Public Works

ELECTED OFFICIALS
U.S. Senator Brian Schatz State Representative Richard Onishi (District 3)
U.S. Senator Mazie Hirono State Representative Joy San Buenaventura (District 4)
U.S. Representative Tulsi Gabbard County Council Member Aaron Chung (District 2)
State Senator Gilbert Kahele (District 1) County Council Member Sue Lee Loy (District 3)
State Senator Russell Ruderman (District 2) County Council Member Jen Ruggles (District 5)
State Senator Lorraine Inouye (District 4) County Council Member Maile David (District 6)
State Representative Mark Nakashima (District 1) Governor David Ige
State Representative Cliff Tsuji (District 2) Mayor Harry Kim

ORGANIZATIONS
ABC Hawaiian Birds Program Ka Nohona Pono Inc
American Association of University Women Kamehameha Schools
American Forest Management, Inc. Livable Hawaii Kai Hawaii
Association of Hawaiian Civic Clubs Malama O Puna
Big Island Bird Hunters Målama O Puna
Big Island Bow Hunters Mu‘ A‘ena Center for Non-Violent Education and Action
Big Island Invasive Species Committee Mauna Kea Recreational Users Group
Bishop Museum Native Hawaiian Advisory Council
Conservation Council of Hawaii Native Hawaiian Legal Corporation
Earth Justice Legal Defense Fund Ohana Hoopakele
Edith Kanakaole Foundation Pacific Cooperative Studies Unit - UH Manoa
Environment Hawaii Pig Hunters of Hawaii
Hawaii Audubon Society Plant Extinction Prevention Program
Hawaii Community Stewardship Network Prince David Kawananakoa Hawaiian Civic Club
Hawaii County Economic Opportunity Council San Diego Zoo
Hawaii County Game Management Advisory Council Sierra Club, Moku Loa Chapter
Hawaii Forest and Trail Silversword Foundation
Hawaii Forest Industry Association Society of American Foresters Hawaii Chapter
Hawaii Hunting Advisory Council The Alaka‘i Project
Hawaii Hunting Association The Kohala Center
Hawaiian Botanical Society The League of Women Voters of Hawaii
Hawaiian Civic Club of Hilo The Nature Conservancy of Hawaii
Hawaiian Civic Club of Hilo Three Mountain Alliance
Historic Hawaii Foundation Volcano Art Center
Hoopu‘ula Hawaiian Civic Club Volcano Community Association
Hui Ma‘alama Māna‘a‘ina O Hawai‘i Nei Volcano Rare Plant Facility
Island Transitions Wildlife Conservation Association of Hawaii, Hilo Chapter
Ka Lei Maile All ‘I Maui Hawaiian Civic Club

INTERESTED INDIVIDUALS
Alan Burdick Martha Lockwood
Becky Ostertag Nani K M Pogline
Brooks Rownd Pamela Scheffler
Christian Giardina Pat Conant
Christina Cornell Pat Hart
## Appendix B

### Draft EA Distribution List

<table>
<thead>
<tr>
<th>Name</th>
<th>Email Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christine Ogura</td>
<td>Paul Banko</td>
</tr>
<tr>
<td>Dan Taylor</td>
<td>Rebecca Montgomery</td>
</tr>
<tr>
<td>Danny Li</td>
<td>Rhondia Loh</td>
</tr>
<tr>
<td>Debbie Ward</td>
<td>Richard Camp</td>
</tr>
<tr>
<td>Diane Ley</td>
<td>Rick Warshauer</td>
</tr>
<tr>
<td>Don Drake</td>
<td>Rob Shallenberger</td>
</tr>
<tr>
<td>Edwin Ung</td>
<td>Ron Terry</td>
</tr>
<tr>
<td>Eldridge Naboa</td>
<td>Ronald Fujiyoshi</td>
</tr>
<tr>
<td>Fred Stone</td>
<td>Sam Kaleleiki</td>
</tr>
<tr>
<td>George DeCosta</td>
<td>Shannon Rudolph</td>
</tr>
<tr>
<td>H. Douglas Pratt</td>
<td>Sheila Conant</td>
</tr>
<tr>
<td>Hannah Hedrick</td>
<td>Sierra McDaniel</td>
</tr>
<tr>
<td>J.B. Friday</td>
<td>Steve Montgomery</td>
</tr>
<tr>
<td>Jack Jeffrey</td>
<td>Steven Hess</td>
</tr>
<tr>
<td>Janice Palma-Glennie</td>
<td>Susan Cordell</td>
</tr>
<tr>
<td>Jim Juvik</td>
<td>Thaney and Linda Pratt</td>
</tr>
<tr>
<td>Joanne Martin</td>
<td>Tim Tunison</td>
</tr>
<tr>
<td>Jon Price</td>
<td>Tialoc Tokuda</td>
</tr>
<tr>
<td>Karl Magnacca</td>
<td>Tracy Johnson</td>
</tr>
<tr>
<td>Mark Wasser</td>
<td>Zach Judd</td>
</tr>
</tbody>
</table>

### NEIGHBORING LANDOWNERS

<table>
<thead>
<tr>
<th>Name</th>
<th>Email Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene Alan Rynkewicz et. al</td>
<td>Robert W Babick</td>
</tr>
<tr>
<td>Christopher J Linden et. al</td>
<td>Kanoe M Mc Tavish et. al</td>
</tr>
<tr>
<td>James Cobb</td>
<td>Purdyco Ltd.</td>
</tr>
<tr>
<td>Benjamin K S SriRamona Hu Trust</td>
<td>Emily M Essner et. al</td>
</tr>
<tr>
<td>Glenda M White</td>
<td>Bong Hee Park et. al</td>
</tr>
<tr>
<td>Palmer Kin et. al</td>
<td>Louie S Ondo et. al</td>
</tr>
<tr>
<td>Russell Kaneko</td>
<td>Keith &amp; Betty Wilhelm</td>
</tr>
<tr>
<td>James Chow Tust</td>
<td>Sue S Johnson et. al</td>
</tr>
<tr>
<td>Tadashi Higaki Trust et. al</td>
<td>Natalie Ann Varnato Trust</td>
</tr>
<tr>
<td>Thomas Jerome Canny</td>
<td>Elspeth Kalani Vandeale</td>
</tr>
<tr>
<td>W. H. Shipman Ltd.</td>
<td>Richard Lee Pierce Trust et. al</td>
</tr>
<tr>
<td>Wilbert Castro Jr Trust et. al</td>
<td>Albert Lindsey Bicknell Jr et. al</td>
</tr>
<tr>
<td>Eleanor K Chow Trust</td>
<td>Kirk Black</td>
</tr>
<tr>
<td>Dorian Marvin</td>
<td>Manuel Arruda Jr ust</td>
</tr>
<tr>
<td>Keith Eric Hompstead et. al</td>
<td>Kathleen Michelle Demello Trust</td>
</tr>
<tr>
<td>Lau Family Trust</td>
<td>Daniel Grice and Kathleen Christensen</td>
</tr>
<tr>
<td>Jeffrey Robert Noguchi</td>
<td>Wendell G Causey et. al</td>
</tr>
<tr>
<td>Vincent Git Kin Chun et. al</td>
<td>Dick Reason et. al</td>
</tr>
<tr>
<td>Lance J Wilson Trust et. al</td>
<td>Brigham Nephi Clifton</td>
</tr>
<tr>
<td>Delbert T Cambra et. al</td>
<td>Sarah Helena Linfoot</td>
</tr>
<tr>
<td>Juane Rapoza Yee</td>
<td>Milton Kaneko</td>
</tr>
<tr>
<td>Gary R Guenther et. al</td>
<td>David Harold Ung</td>
</tr>
<tr>
<td>Gary M Urasaki</td>
<td>Troy Burton Hill et. al</td>
</tr>
<tr>
<td>Kathryn Anne Burton Trust</td>
<td>Bruce James Morgan</td>
</tr>
<tr>
<td>Lorna S Orteust</td>
<td>Monte Roldan et. al</td>
</tr>
<tr>
<td>Carol Knoelani Lum Trust</td>
<td>Michel Dean Daak</td>
</tr>
<tr>
<td>Randolph Schemkes et. al</td>
<td>Dennis Delphin Sr et. al</td>
</tr>
<tr>
<td>Lori Ann C Lindsey Trust</td>
<td>Clifford Muragin</td>
</tr>
<tr>
<td>Ronald T Toyama Trust et. al</td>
<td>Robin Leinaala Amador</td>
</tr>
<tr>
<td>Maria L S Faisone Trust</td>
<td>Cory Harden Trust</td>
</tr>
<tr>
<td>Jason T MacMurray</td>
<td>Michael J Donald</td>
</tr>
<tr>
<td>Jonathan P Kurtzweil et. al</td>
<td>James T Hiyane et. al</td>
</tr>
<tr>
<td>Russell Shibata et. Al</td>
<td>Wendell G Causey et. al</td>
</tr>
<tr>
<td>Robert William Patey</td>
<td>Charles and Eleanor Arakaki</td>
</tr>
<tr>
<td>Daniel Y N Yee Family Trust et. al</td>
<td>Theresa K Donham et. al</td>
</tr>
<tr>
<td>John William ikaka Crabbe</td>
<td>Kalina A Kalauomoana</td>
</tr>
<tr>
<td>Michael P Kelley et. Al</td>
<td>Maria Elena Calso Andaya et. al</td>
</tr>
<tr>
<td>Gary Robert Kozanecki et. al</td>
<td>Glenn Y Toyama</td>
</tr>
<tr>
<td>Margaret L Lipinski Trust</td>
<td>Gary L Sisneros et. al</td>
</tr>
<tr>
<td>Alberta B Turner et. al</td>
<td>Kaipo Saiki</td>
</tr>
<tr>
<td>Lucille Kozanecki Trst</td>
<td>Priest (Monk) Of Bang San Ho Temple</td>
</tr>
<tr>
<td>Charlotte Nobue Ng</td>
<td>Casimir K Ah Yo et. al</td>
</tr>
<tr>
<td>Daniel J Lutkenhouse et. al</td>
<td>Lenore M Vincent et. al</td>
</tr>
<tr>
<td>Francis M Toyama Trust</td>
<td>Thomas Rapoza</td>
</tr>
<tr>
<td>Melissa L Pang Ching</td>
<td></td>
</tr>
</tbody>
</table>

### NEWS MEDIA

<table>
<thead>
<tr>
<th>Name</th>
<th>Email Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honolulu Star Advertiser</td>
<td>West Hawaii Today</td>
</tr>
<tr>
<td>Hawaii Tribune Herald</td>
<td>Honolulu Civil Beat</td>
</tr>
</tbody>
</table>
Appendix C
National Historic Preservation Act
Section 106 and HRS Chapter 6E
Consultation Documentation
This page is intentionally left blank.
September 12, 2016

Russell Y. Tsuji, Land Administrator
Land Division, Department of Land and Natural Resources
P.O. Box 621
Honolulu, HI 96809

Dear Mr. Tsuji:

SUBJECT: Chapter 6E-8 and National Historic Preservation Act (NHPA) Section 106 Review – Scoping Notification for the National Science Foundation (NSF) – Funded Proposed National Ecological Observatory Network Domain, Pu‘u Maka‘ala Natural Area Reserve Waiakea Ahupua‘a, Hilo District, Island of Hawai‘i
TMK: (3) 1-8-012:003, 1-9-001:001, 2-4-008:009, 019, 025

Thank you for the opportunity to comment on the aforementioned proposed project by the National Science Foundation (NSF). The National Ecological Observatory Network Domain (NEON), a continental-scale research network funded by the NSF, proposes to establish a research site within the Pu‘u Maka‘ala Natural Area Reserve (NAR) on Hawai‘i Island. The site will include an ecological research tower, instrument hut, soil array, Double Fence Intercomparison Reference (DFIR) precipitation gauge (with required vegetation clearing area), associated electrical infrastructure and other on-site eco-systems collection tools. The proposed project area would occupy approximately 1,000 acres, to be discontinuous within the cumulative 12,000-acres of State owned lands as listed in the above TMKs. SHPD received this submittal on August 18, 2016.

SHPD has insufficient information to determine the potential impacts to historic properties pursuant to both Hawaii Administrative Rules (HAR) §13-275 and 36 CFR 800. SHPD requests the following information:

1. A delegation letter from the NSF that identifies the particular activities and responsibilities they have delegated to NEON on their behalf;

2. Information indicating that a reasonable and good faith effort to identify historic properties (architectural, archaeological, or traditional cultural properties [TCPs]) within the area of potential effect (APE) pursuant to 36 CFR §800.4(a) and 4(b) has been completed. The identification effort must include consultation efforts with Native Hawaiian Organizations (NHOs) [36 CFR §800.4(a)(4)] and consultation with individuals, organizations and the public with a demonstrated interest in the undertaking [36 CFR §800.2(c)] and should include documentation of the nature of the consultation, the names of the consulted parties, and their comments/concerns; and

3. A determination of eligibility for any historic properties or potential historic districts within the APE [36 CFR§800.4(c)]; assessment of project effect [36 CFR §800.4(d)]; and if necessary resolution of adverse effects [36 CFR §800.6] for any sites located with the APE.

Per 36 CFR 800, SHPD looks forward to receiving a request from the lead federal agency or its delegated authority to initiate NHPA Section 106 consultation with SHPD on the proposed undertaking.

The NSF is the office of record for this undertaking. Please maintain a copy of this letter with your environmental review record.
Please contact Mr. Ikaika Nakahashi at (808) 243-4600 or at Chris.Nakahashi@hawaii.gov for History and Culture concerns for Hawaii Island including Native Hawaiian Organization (NHO) consultations, cultural sites, and burials. Please contact me at Susan.A.Lebo@hawaii.gov or at (808) 692-8019 for any questions regarding archaeological resources or this letter.

Aloha,

Alan S. Downer, PhD
Administrator, State Historic Preservation Division
Deputy State Historic Preservation Officer

cc: David G. Smith, DOFAW (David.G.Smith@hawaii.gov)
Lydia Morikawa, DLNR-Land (Lydia.M.Morikawa@hawaii.gov)
Montona Futrell-Griggs, NSF, Re: NEON (mfutrell@nsf.gov)
Steven Ellis, NSF, Re: NEON (stellis@nsf.gov)
Sam J. Lemmo, OCCL (Sam.J.Lemmo@hawaii.gov)
Subject: Section106 Consultation and Meeting on Proposed National Science Foundation-Funded National Ecological Observatory Network Domain 20 Core Tower and Sampling Site at Pu‘u Maka'ala Natural Area Reserve, Hawai‘i Island, Hawai‘i

Date: Tuesday, October 18, 2016 at 9:38:16 PM Eastern Daylight Time

From: Futrell-Griggs, Montona LaNise

CC: Hamilton, Kristen, Blanco, Caroline M, Futrell-Griggs, Montona LaNise

BCC: DLNR.Intake.SHPD@hawaii.gov, acamaral@yahoo.com, mallow@hawaii.edu, jhd6@hawaii.edu, kanekoaks@gmail.com, Keonialvarez@aol.com, malamapono744@aol.com, makuufarmersassociation@gmail.com, kamanaoc@oha.or, phhcahilo@gmail.com, pihanoha@ksbe.edu, kiersten@historichawaii.org, Punatita7@yahoo.com, Info@kuaokala.org, contact@protectkahoolaweohana.org


Good afternoon,

Attached is a letter with information about a proposed National Science Foundation-funded National Ecological Observatory Network (NEON) field study site within the Pu‘u Maka’ala Natural Area Reserve, located on the eastern side of Hawai‘i Island. With this letter, we are seeking to identify consulting parties for consultation regarding this undertaking under Section 106 of the National Historic Preservation Act. In addition, we would like to invite consulting parties to a meeting next Wednesday, October 26th. Due to the short notice, we are sending the letter via email and would be happy to speak with you directly about the process ahead of the meeting- please feel free to contact my colleague, Kristen Hamilton, at 703-292-4820 with any questions or concerns.

Meeting details:
Date: Wednesday, October 26th
Time: 6:00-7:30 p.m.
Location: Division of Forestry and Wildlife office located at 19 E. Kawili Street, Hilo, HI 96720

Thank you in advance for your interest and participation in this process.

Montona Futrell-Griggs

Montona Futrell-Griggs
NEON Program/MSB Program/BIo Clearance Liaison
NSF-BIO/DDBI
703-292-7162
4201 Wilson Blvd
Arlington, VA 22230
This page is intentionally left blank.
Via overnight mail and email

Alan S. Downer, PhD.
Administrator, State Historic Preservation Division
Deputy State Historic Preservation Officer
Department of Land and Natural Resources
Kakuhihewa Building
601 Kamokila Blvd, Ste. 555
Kapolei, Hawai’i  96707

December 7, 2016

Subject:  Initiation of Section 106 Consultation for Proposed National Science Foundation-Funded National Ecological Observatory Network Domain 20 Core Tower and Sampling Site at Pu'u Maka'ala Natural Area Reserve, Hawai'i Island, Hawai’i - portions of TMK (3) 2-4-008:009, TMK (3) 2-4-i008:025, TMK (3) 1-9-001:001, TMK (3) 1-8-012:003, and TMK (3) 2-4-008:019
Log No. 2016.01949, Doc No. 1609GC04 Archaeology

Dear Dr. Downer:

The National Science Foundation (NSF) Directorate for Biological Sciences (BIO) funds the National Ecological Observatory Network (NEON), a continental-scale research network operated by awardee Battelle Ecology, Inc. NEON proposes to establish a research site within the Pu'u Maka'ala Natural Area Reserve (NAR), Hawai'i Island. The proposed site would provide ecological data on NEON's Domain 20, "Pacific Neotropical in Hawai'i," and would be the only site representing this domain in the United States. Site components would include a tower, instrument hut, an array of soil plots, a precipitation gauge, and associated electrical infrastructure with on-grade power lines. The total construction acreage of these components is expected to be less than 0.25 acre. A suite of terrestrial sampling protocols and an annual aerial flight would occur within the greater permitted area; a total of approximately 80-90 (or less) sampling plots would be distributed throughout the Pu’u Maka’ala NAR. The site is located southwest of Hilo and encompasses portions of TMK (3) 2-4-008:009, TMK (3) 2-4-008:025, TMK (3) 1-9-001:001, TMK (3) 1-8-012:003, and TMK (3) 2-4-008:019 (see attached map).

NSF, as the responsible federal agency, is initiating Section 106 consultation under the National Historic Preservation Act (NHPA) for this undertaking as well as complying with Chapter 6E-8, Hawai'i Revised Statutes. NSF is also concurrently preparing an Environmental Assessment (EA) under the National Environmental Policy Act (NEPA) to identify and assess any potential environmental effects of establishing a NEON site at the proposed location. The federal NEPA process is being conducted in coordination with state-level review under Chapter 343, Hawai'i
Revised Statutes. NSF has not delegated any of its authority to perform these actions, although NSF may request that its environmental contractor, CH2M Hill, and the NEON awardee, Battelle Ecology, Inc., conduct research and other information gathering activities to support NSF’s Section 106 and Chapter 6E-8 compliance.

The NEON Project partitioned the continental United States, including Alaska, Hawai’i and Puerto Rico, into 20 eco-climatic domains. Each domain represents a different region of vegetation, landforms, climate, and ecosystem performance. Within each of these domains a fully instrumented core site will be established, hosting a tower (approximately 10 meters above the surrounding canopy), instrument hut, soil array, associated electrical infrastructure with power run, a suite of terrestrial sampling protocols, and an annual flight. Each site will collect data on climate and atmosphere, soils, vegetation, and a variety of organisms. Core sites must be located in minimally managed “wildland” areas and are slated to operate for the 30-year lifetime of NEON. For the proposed Pu’u Maka’ala site, no additional roads would be constructed and strict construction limits would be implemented during the tower construction phase.

NSF has established a draft Area of Potential Effects (APE) for this undertaking to include all proposed instrument and potential sampling areas, as shown on the attached map. We request your review and approval of the APE.

NSF, after consulting with your staff, has preliminarily identified organizations and individuals who may have an interest in the proposal’s potential to affect historic properties. These organizations and individuals may qualify as consulting parties and, accordingly, we have reached out to them to invite their participation:

- Association of Hawaiian Civic Clubs
- Hawaiian Civic Club of Hilo
- George K. Cypher ‘Ohana
- Kākoʻo ʻŌiwi
- Keoni Kealoha Alvarez
- Koʻolau Foundation
- Makuʻu Farmers Association
- Office of Hawaiian Affairs
- Piihonua Hawaiian Homestead Community Association
- Kamehameha Schools (adjacent property owner)
- Hawai’i Island Burial Council
- Hawai’i County Cultural Resources Commission
- Historic Hawai’i Foundation
- Aha Moku Council
- Kua O Ka Lā
- Protect Kahoʻolawe ‘Ohana
• Hawai‘i Volcanoes National Park
• Mauna Kea Watershed Alliance

Please let us know if there are others we should include in our consultation efforts.

Potential consulting parties were invited to attend a meeting on October 26th, 2016, to discuss the draft APE and to assist in identifying any historic properties and cultural practices. Meeting attendees provided input on usage of the Pu‘u O’o Trail and the presence of the historic Wright camp, both of which are outside of the draft APE, as well as the Mauna Loa Boys’ School, which is within the draft APE. A November 18, 2011, letter from the Deputy State Historic Preservation Officer to the Division of Forestry and Wildlife regarding the Pu‘u Maka‘ala Natural Area Reserve Management Plan describes the school, which was opened in 1952 and closed the following year. This letter notes that “the Mauna Loa Boys School is within the NAR project area and is currently being used to store fencing materials; this use does not cause or constitute any adverse effects to the structure, which is in poor condition.” Meeting attendees likewise noted the poor condition of the former school, and that the proposed NEON site had no potential to affect the building. Attendees were not aware of any cultural practices within the draft APE, noting that this area is challenging to access. NSF acknowledges that there was short notice for this consulting parties meeting due to logistical challenges, and we, therefore, plan to hold an additional consulting parties’ meeting during the comment period for the Draft EA. We look forward to receiving further input from consulting parties at that time. In addition to that consultation opportunity, we are copying all potential consulting parties on this letter and will, by separate correspondence, request their review and comment on the information and findings in this letter during a comment period that extends up to and including January 9, 2017.

As part of our effort to identify historic properties in the vicinity of the proposed site, a literature review was completed at the SHPD library, and other research was done to locate previous Environmental Assessments and cultural studies done for the proposed site area. The results from that search are shown in the table below.

<table>
<thead>
<tr>
<th>Title</th>
<th>Author</th>
<th>Date</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archaeological Inventory Survey and Limited Cultural Assessment</td>
<td>Rechtman, Robert B. Ph.D.</td>
<td>July 2001</td>
<td>No sites found. Archeological expectations for the general area are very limited due to location in the &quot;rainforest zone.&quot;</td>
</tr>
<tr>
<td>for the Proposed Wastewater Treatment Facility at Kulani Correctional</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facility (TMK:3-2-4-08:9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He Mo‘Olelo ʻĀina: A Cultural Study of the Pu‘u Makaʻala Natural</td>
<td>Kumu Pono Associates LLC</td>
<td>May 2004</td>
<td>No references to archaeological sites.</td>
</tr>
<tr>
<td>Area Reserve Districts of Hilo and Puna, Island of Hawai‘i</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draft Environmental Assessment - Pu‘u Makaʻala Natural Area Reserve</td>
<td>Hawaii Branch Natural</td>
<td>January 2012</td>
<td>SHPD concurred with the finding of No Historic Properties Affected</td>
</tr>
<tr>
<td>Management Plan</td>
<td>Area Reserves System</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If there is any other information you can provide or sources you would like to suggest, please let us know.

The 2004 study by Kumu Pono did not note any records or references to specific archaeological sites in the proposed site area. The study notes that "because of the remote nature of the 'Ola'a and Waiakea forest lands which comprise the present-day Pu'u Maka'ala NAR, no government communications pertaining to historic trails or government road projects exist for the region. Boundary Commission testimonies describe trails through the forest lands, rising from the lowlands of Waiakea, 'Ola'a, Keahou and Humu'ula. Based on the native traditions and kama'aina testimonies, it is likely that 'practitioner' trails existed throughout the forest region. Features such as 'kauhale manu' (bird-catcher's shelters), 'kahua kalaiwaa' (canoe-makers clearings), 'oioina' (trailside resting places and shelters), the 'ala hele' (trails), and other features associated with traditional and customary accesses, would leave little evidence in the present-day, as the traditional features and uses generally had minimal impact on the natural landscape. Those things left behind, not cared for or maintained, were simply reabsorbed into the landscape" (Kumu Pono Associates LLC, 2004).

We also interviewed NAR staff on any known cultural sites or practices. Mr. Nick Agorastos, NAR Specialist with Hawaii Department of Land and Natural Resources (DLNR) Division of Forestry and Wildlife (DOFAW), stated that he had never encountered anyone engaged in cultural practices in the site area, even though he and/or his staff are on the property almost daily. He noted that the NAR rules specify the need for a permit to conduct cultural practices within the NAR, and that he is only aware of two previous permit requests for Pu'u Maka'ala NAR, both involving removal of a koa log to build a canoe.

The Kumo Pono Associates report also notes that "the mountain landscape, its' native species, and the intangible components therein, are a part of a sacred Hawaiian landscape. Thus, the landscape itself is a highly valued cultural property. Its protection, and the continued exercise of traditional and customary practices, in a traditional and customary manner, are mandated by native custom, and State and Federal Laws (as those establishing the 'Ola'a and Waiakea Forest Reserves, the Pu'u Maka'ala NAR, and the Endangered Species Act)." NSF recognizes that members of the 'alalā (Corvus hawaiiensis) species may also be culturally significant. This species is currently extinct in the wild but is planned for reintroduction beginning in December 2016.

Although the proposed site area has not been surveyed, previous studies indicate that the probability of historic properties being present in the proposed site area is very low. Specifically, the site elevation and difficult accessibility, combined with the ephemeral nature of traditional uses and features, makes the archaeological expectations for the area very low. Should any archaeological historic properties be present, the likelihood of adverse effects to them from the proposal is low because the site components entail only minimal ground disturbance. In summary:

- Proposed site is in remote area in upper elevation with no known archaeological or historic properties.
- Proposed actions involve minimal ground disturbance.
- Archaeological studies in adjacent areas have not found any sites and have determined there is a low likelihood of sites in this wet upper-elevation rain forest.
We look forward to consulting with you on this undertaking. We anticipate preparing our Draft EA in January; any input provided to us by the SHPD and/or consulting parties by January 9th will be incorporated into the cultural resources section of the Draft EA. If you have any questions, or wish to discuss the proposal or our agency’s responsibilities in more detail, please contact me at (703) 292-7162.

Sincerely,

Montona Futrell-Griggs
NEON Program
Division of Biological Infrastructure
Directorate for Biological Sciences

Cc (via mail and email, if available):
Association of Hawaiian Civic Clubs
Hawaiian Civic Club of Hilo
George K. Cypher ‘Ohana
Kāko‘o ‘Ōiwi
Keoni Kealoha Alvarez
Ko‘olau Foundation
Maku‘u Farmers Association
Office of Hawaiian Affairs
Piihanau Hawaiian Homestead Community Association
Kamehameha Schools (adjacent property owner)
Hawai‘i Island Burial Council
Hawai‘i County Cultural Resources Commission
Historic Hawai‘i Foundation
Aha Moku Council
Kua O Ka Lā
Protect Kaho‘olawe ‘Ohana
Hawai‘i Volcanoes National Park
Mauna Kea Watershed Alliance
This page is intentionally left blank.
This page is intentionally left blank.
Good morning,

Because you have been identified as a potential consulting party interested in the National Science Foundation’s proposed funding of a National Ecological Observatory Network research site within the Pu‘u Maka‘ala Natural Area Reserve, we invite you to review the attached letter to the State Historic Preservation Division (attached). This letter identifies the Draft APE and contains our evaluation regarding the presence of any historic properties within the Draft APE. A hard copy of the letter has been mailed to you as well, if a mailing address was available to us. If you have input on the Draft APE and any historic properties, or any other concerns with regard to the proposal, we respectfully request that you submit your comments to us by January 9th so that they may inform the cultural resources section of our draft Environmental Assessment. Please email any comments to mfutrell@nsf.gov Or mail them to 4201 Wilson Blvd, Suite 615 Arlington, VA 22230. If you have any questions, contact me at (703) 292-7162.

Note: Upon release of the draft EA for the project, a comment period will start during which comments related to the presence of historic properties and cultural practices can also be submitted. In addition, NSF is planning to hold two other meetings in February or March 2017 during this period to solicit comments (one meeting will be on the draft EA and the other meeting will be a Section 106 consultation meeting).

Thank you,
Montona

Montona Futrell-Griggs
NEON Program/MSB Program/BIO Clearance Liaison
NSF-BIO/DBI
703-292-7162
4201 Wilson Blvd
Arlington, VA 22230
Subject: RE: Section106 Consultation and Meeting on Proposed National Science Foundation-Funded National Ecological Observatory Network Domain 20 Core Tower and Sampling Site at Pu‘u Maka‘ala Natural Area Reserve, Hawai‘i Island, Hawai‘i

Date: Thursday, January 12, 2017 at 7:36:50 PM Eastern Standard Time

From: Kiersten Faulkner
To: Futrell-Griggs, Montona
CC: planning@co.hawaii.hi.us, Jessica Puff (jessica.l.puff@hawaii.gov), Susan Lebo (Susan.A.Lebo@hawaii.gov), Sean Naleimaile (sean.p.naleimaile@hawaii.gov), Lucas Mead (Lucas.Mead@hawaiicounty.gov)

Attachments: HHF Comments_NSF NEON_PuuMakaalaNAR_011217.pdf

Aloha,
Please see attached comments from Historic Hawai‘i Foundation on the NEON project at the Pu‘u Maka‘ala Natural Area Reserve.

We have concerns that the APE is too narrowly drawn, but also acknowledge the low probability of the presence of National Register-eligible historic properties. Unless additional information about the presence of cultural resources is revealed, HHF agrees with the finding of no historic properties affected.

Hard copy of the letter will follow by mail.

Thank you,
Kiersten Faulkner

Kiersten Faulkner
Executive Director
Historic Hawai‘i Foundation
680 Iwilei Rd. Ste. 690
Honolulu, HI 96817
Email: Kiersten@historichawaii.org
Phone: 808-523-2900
FAX: 808-523-0800
WEB: www.historichawaii.org

From: Futrell-Griggs, Montona [mailto:mfutrell@nsf.gov]
Sent: Tuesday, December 13, 2016 3:28 AM
To: Kiersten Faulkner <Kiersten@historichawaii.org>; planning@co.hawaii.hi.us
Subject: Re: Section106 Consultation and Meeting on Proposed National Science Foundation-Funded
January 12, 2017

Ms. Montona LaNise Futrell-Griggs
Project Manager, NEON Program
Division of Biological Infrastructure
National Science Foundation
4201 Wilson Blvd.
Arlington, VA 22230
Via email: mfutrell@nsf.gov

Re: NHPA Section 106 Consultation on Proposed National Science Foundation-Funded National Ecological Observatory Network Domain 20 Core Tower and Sampling Site at Pu'u Maka'ala Natural Area Reserve, Hawai'i Island, Hawai'i

TMK: portions of (3) 2-4-008:009; (3) 2-4-i008:025; (3) 1-9-001:001; (3) 1-8-012:003; and (3) 2-4-008:019

Dear Ms. Futrell-Griggs,

Thank you for the invitation via email on December 13, 2016 to continue participation in the National Historic Preservation Act (NHPA) Section 106 Consultation on the proposed research site within the Pu‘u Maka‘ala Natural Reserve Area. Historic Hawai‘i Foundation (HHF) is in receipt of materials distributed at the October 26, 2016 meeting and was copied on the letter dated December 7, 2016 to the State Historic Preservation Division (SHPD) of the Department of Land and Natural Resources initiating Section 106 Consultation.

HHF accepts the invitation to continue consultation for the proposed National Ecological Observatory Network (NEON) research site number 20 and efforts to avoid, minimize and mitigate adverse effects on historic properties.

Undertaking: The project proposes to establish a research station within the Pu‘u Maka‘ala Natural Reserve Area southwest of Hilo on the Island of Hawai‘i. The NEON Project partitioned the United States, including Alaska, Hawai‘i and Puerto Rico, into 20 eco-climatic domains. Each domain represents a different region of vegetation, landforms, climate, and ecosystem performance. Within each of these domains a fully instrumented core site will be established, hosting a tower (approximately 10 meters above the surrounding canopy), instrument hut, soil array, associated electrical infrastructure with power run, a suite of terrestrial sampling protocols, and an annual flight. Each site will collect data on climate and atmosphere, soils, vegetation, and a variety of organisms. Core sites must be located in minimally managed “wildland” areas and are slated to operate for the 30-year lifetime of NEON.

APE: The proposed Area of Potential Effect (APE) is described as “all proposed instrument and potential sampling areas” as shown on the map submitted with the consultation letter.
HHF notes that the photographs of other NEON sites also show above-ground utility connections between the separate instrument and sampling areas. For that reason we believe that the APE is actually the entire Pu'u Maka'ala Natural Area Reserve (NAR), including that portion fully surrounded by the reserve for the proposed DFIR.

In addition, the proposed tower would rise 10-meters above the tree canopy and would be visible from a distance. The APE for visual effects should include areas from which the tower could be seen.

**Identification of Historic Resources:** The NSF determined that no historic properties are present at the site, based on:

- Literature review of previous studies found no known archaeological or historic sites;
- Archaeological studies in adjacent areas indicate that the probability of historic properties being present in the proposed site is very low due to the site's remote location in the wet upper-elevation rain forest; and
- Discussions with NAR staff

HHF does not know of any historic or cultural resources in the NAR. However, if Native Hawaiian Organizations or individuals have knowledge of cultural or other sites, that information should be taken into account. It may be necessary to provide for cultural or archaeological monitoring during construction to guard against inadvertent effects.

**Determination of Effect:** The NSF proposes a preliminary determination of “no historic properties affected”.

Based on the materials presented HHF concurs with the preliminary finding of no historic properties affected. However, if the scope of the proposed work changes, or previously unidentified historic or cultural resources are identified during the project, please notify HHF so we may reevaluate if our involvement is warranted at that time.

We wish you well with your project and efforts to monitor and protect natural resources in the NAR.

Very truly yours,

/Kiersten Faulkner, AICP
Executive Director

Copies via email:

SHPD: Susan Lebo, Jessica Puff, Sean Naleimaile
Hawai'i County Cultural Resources Commission: Deborah Chang, Chair (planning@co.hawaii.hi.us)
Susan Lebo, PhD.
Administrator, State Historic Preservation Division
Department of Land and Natural Resources
Kakuhihewa Building
601 Kamokila Blvd, Ste. 555
Kapolei, Hawai‘i 96707

April 24, 2017

Subject: Section 106 Consultation for Proposed National Science Foundation-Funded National Ecological Observatory Network Domain 20 Core Tower and Sampling Site at Pu‘u Maka'ala Natural Area Reserve, Hawai‘i Island, Hawai‘i - portions of TMK (3) 2-4-008:009, TMK (3) 2-4-008:025, TMK (3) 1-9-001:001, TMK (3) 1-8-012:003, and TMK (3) 2-4-008:019
Log No. 2016.01949, Doc No. 1609GC04 Archaeology

Dear Dr. Lebo:

The National Science Foundation (NSF) Directorate for Biological Sciences funds the National Ecological Observatory Network (NEON), a continental-scale research network operated by awardee Battelle Memorial Institute. NEON proposes to establish a research site within the Pu‘u Maka’ala Natural Area Reserve (NAR), Hawai‘i Island. The proposed site would provide ecological data on NEON's Domain 20, "Pacific Neotropical in Hawai‘i," and would be the only site representing this domain in the United States. Site components would include a tower, instrument hut, an array of soil plots, a soil horizon pit, a precipitation gauge, and associated electrical infrastructure with on-grade power lines. The total construction acreage of these components is expected to be less than 0.25 acre. A suite of terrestrial sampling protocols and an annual aerial flight would occur within the greater permitted area; a total of approximately 80-90 sampling plots would be distributed throughout the Pu‘u Maka’ala NAR. The site is located southwest of Hilo and encompasses portions of TMK (3) 2-4-008:009, TMK (3) 2-4-008:025, TMK (3) 1-9-001:001, TMK (3) 1-8-012:003, and TMK (3) 2-4-008:019.

NSF, as the responsible federal agency responsible for Section 106 consultation under the National Historic Preservation Act (NHPA) and Chapter 6E-8, Hawai‘i Revised Statutes compliance for this undertaking, initiated consultation with the State Historic Preservation Division (SHPD) by letter dated December 7, 2016 (see Appendix A of the attached report). NSF is also preparing an Environmental Assessment (EA) to identify and assess any potential environmental effects of establishing a NEON site at the proposed location, per the National Environmental Policy Act and Chapter 343, Hawai‘i Revised Statutes. We anticipate the EA to be published in May 2017.

NSF conducted a consulting parties meeting on October 26, 2016 to gather input on any historic properties in the APE. Our December letter to your office proposed a Draft Area of Potential Effects (APE) for this undertaking for your review and approval, described the process whereby NSF has engaged with consulting parties to identify any historic properties within the APE, and summarized the
results of our literature review to identify historic properties within the APE. The consulting parties were provided a copy of the December letter. We have followed up with you and Mr. Sean Naleimaile of your office via email to provide an opportunity for input as we finalized our Assessment of Effects and the cultural resources section of the EA. No comments regarding either NSF’s determination of the APE or NSF’s identification of historic properties within the APE have been received from either the SHPD or the consulting parties.

With this letter, the attached Cultural Resources Assessment of Effects is submitted for your review. Although there are no known historic properties within the APE, this assessment considers potential impacts to the cultural landscape, archaeological resources, and Traditional Cultural Properties (TCPs). In summary, with implementation of best management practices to address any unanticipated discovery of buried cultural resources (see Section 3.1.1), NSF expects no historic properties to be affected by the proposed undertaking. In addition, due to the nature of the proposed research site components, NSF finds that the undertaking would result in no adverse effects to TCPs such as the cultural landscape, as well as to cultural uses, practices, and properties.

We seek your concurrence on our finding of No Adverse Effect to Historic Properties. If you have any questions, or wish to discuss this proposed undertaking, please contact me at (703) 292-7162. Note that we will be holding a public meeting following the publishing of the EA, and the agenda will include an informational presentation on the Cultural Resources Assessment of Effects and consulting parties will be invited to attend.

Sincerely,

Montona Futrell-Griggs
NEON Program
Division of Biological Infrastructure
Directorate for Biological Sciences

cc (via email, if available): Alan S. Downer
Sean Naleimaile
Ikaika Nakahashi
Consulting parties
Domain 20 Field Site for the National Ecological Observatory Network
Pu’u Maka’ala Natural Area Reserve
South Hilo District, Hawai’i Island,
Hawai’i: Cultural Resources Assessment of Effects

April 2017

Prepared for
National Science Foundation

Prepared by
CH2M
This page is intentionally left blank.
Contents

Section                                      Page

Acronyms and Abbreviations.................................................. iii

Introduction ...................................................................................... 1-1
  1.1 Definition of Proposed Undertaking ........................................... 1-1
  1.2 Project Location ..................................................................... 1-2
  1.3 Project Background .................................................................. 1-2
  1.4 Description of Proposed Alternatives ........................................ 1-5
    1.4.1 Proposed Action Alternative ............................................. 1-6
    1.4.2 No Action Alternative ..................................................... 1-9
  1.5 Area of Potential Effects ....................................................... 1-10
  1.6 Methodology .......................................................................... 1-10
    1.6.1 Consultation .................................................................... 1-10

Identified Historic Properties ......................................................... 2-1
  2.1 Historical Context .................................................................. 2-1
  2.2 Literature Review Results ...................................................... 2-2
    2.2.1 Archaeological Resources ................................................. 2-2
    2.2.2 Architectural Resources .................................................. 2-2
    2.2.3 Traditional Cultural Properties ....................................... 2-3
    2.2.4 Cultural Uses, Practices, and Properties ............................. 2-3

Assessment of Effects ...................................................................... 3-1
  3.1 Proposed Action Alternative .................................................. 3-1
    3.1.1 Archaeological Resources ............................................... 3-1
    3.1.2 Traditional Cultural Properties ...................................... 3-1
    3.1.3 Cultural Uses, Practices, and Properties ........................... 3-2
  3.2 No-Action Alternative ............................................................. 3-2

Conclusion....................................................................................... 4-1

References ....................................................................................... 5-1

Appendix
A  Section 106 Consultation Correspondence

Figures
  1  Area of Potential Effects......................................................... 1-3

Tables
  1  Cultural Resources Studies Conducted within the APE .................... 2-12
This page is intentionally left blank.
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACHP</td>
<td>Advisory Council on Historic Preservation</td>
</tr>
<tr>
<td>APE</td>
<td>Area of Potential Effects</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>DFIR</td>
<td>double-fenced intercomparison reference</td>
</tr>
<tr>
<td>DLNR</td>
<td>State of Hawai‘i Department of Land and Natural Resources</td>
</tr>
<tr>
<td>DOFAW</td>
<td>DLNR Division of Forestry and Wildlife</td>
</tr>
<tr>
<td>EA</td>
<td>Environmental Assessment</td>
</tr>
<tr>
<td>HRS</td>
<td>Hawaii Revised Statutes</td>
</tr>
<tr>
<td>MOA</td>
<td>Memorandum of Agreement</td>
</tr>
<tr>
<td>NAR</td>
<td>Natural Area Reserve</td>
</tr>
<tr>
<td>NARS</td>
<td>Natural Area Reserves System</td>
</tr>
<tr>
<td>NEON</td>
<td>National Ecological Observatory Network</td>
</tr>
<tr>
<td>NHPA</td>
<td>National Historic Preservation Act</td>
</tr>
<tr>
<td>NRC</td>
<td>National Research Council</td>
</tr>
<tr>
<td>NRHP</td>
<td>National Register of Historic Places</td>
</tr>
<tr>
<td>NSF</td>
<td>National Science Foundation</td>
</tr>
<tr>
<td>PVC</td>
<td>polyvinyl chloride</td>
</tr>
<tr>
<td>RFI</td>
<td>request for information</td>
</tr>
<tr>
<td>SHPO</td>
<td>State Historic Preservation Officer</td>
</tr>
<tr>
<td>SHPD</td>
<td>State Historic Preservation Division</td>
</tr>
<tr>
<td>TCP</td>
<td>traditional cultural property</td>
</tr>
<tr>
<td>TMK</td>
<td>tax map key</td>
</tr>
</tbody>
</table>
This page is intentionally left blank.
SECTION 1

Introduction

The National Ecological Observatory Network (NEON) is a continental-scale ecological observation facility sponsored by the National Science Foundation (NSF) and operated by Battelle Memorial Institute. NSF is proposing to establish a NEON field study site within the Pu’u Maka’ala Natural Area Reserve (NAR) on the eastern side of Hawai’i Island, part of the statewide Natural Area Reserves System (NARS). The proposed field study site would provide data for NEON’s Pacific Tropical domain (Domain 20), and would be the only site representing this domain for the continental-wide network. Site components would include a research tower, instrument hut, a soil horizon pit, an array of soil plots, walkways, a precipitation gauge, and associated electrical infrastructure with on-grade power lines. A suite of terrestrial sampling protocols and an annual aerial flight would occur within the greater permitted area. The infrastructure would occupy less than 0.25 acre. Terrestrial sampling plots, with a total footprint of approximately 650 acres, would be distributed throughout approximately 11,660 acres of the surrounding NAR property. This technical report identifies cultural resources located within the proposed project area and provides an assessment of effects on cultural resources as a result of the proposed project.

1.1 Definition of Proposed Undertaking

The use of federal funds for the proposed project is considered an undertaking and establishes the need for consultation under Section 106 of the National Historic Preservation Act (NHPA). NSF, as the responsible federal agency, initiated Section 106 consultation with the Hawai’i State Historic Preservation Officer (SHPO) on December 7, 2016. In Hawai’i, the SHPO is housed in the State Historic Preservation Division (SHPD). Consultation with SHPD is ongoing.

Cultural resources include prehistoric and historic archaeological sites, historic architectural properties (including buildings, structures, and objects), historic districts, designed landscapes, and traditional cultural properties (TCPs). Section 106 of the NHPA requires federal agencies to consider the effects of actions they fund or approve on any resource that is listed in or eligible for listing in the National Register of Historic Places (NRHP). The implementing regulation for NHPA is the Protection of Historic Properties (36 Code of Federal Regulations [CFR] §800). Historic properties are defined in 36 CFR §800.16 as any historic and prehistoric archaeological sites, districts, buildings, structures, objects, and landscapes included in or eligible for the NRHP.

In addition, there are other federal and state laws that protect cultural resources that are not necessarily listed in or eligible for listing in the NRHP. These laws include the National Environmental Policy Act (NEPA) and Hawaii Revised Statutes (HRS) Chapter 6E-8. In addition, HRS Chapter 343 and its implementing rules (Hawaii Administrative Rules 11-200) require consideration of a proposed project’s potential effect on cultural beliefs, practices, and resources.

In coordination with the Section 106 process, NSF is also complying with HRS Chapter 6E-8 and concurrently preparing an Environmental Assessment (EA) under NEPA. The federal NEPA process is being conducted in coordination with state-level review under HRS Chapter 343. Effects to non-NRHP properties that are considered under NEPA, HRS Chapter 6E, and HRS Chapter 343, are discussed and analyzed in the EA. This technical memorandum is in compliance with Section 106 of the NHPA and assesses effects to historic properties as defined in 36 CFR §800. However, in order to address all cultural resources identified in the EA, this assessment of effects technical report also includes discussion of effects to non-NRHP cultural resources that have been considered during the EA process.
1.2 Project Location

The proposed Domain 20 core field study site is within the Pu‘u Maka‘ala NAR, which is located on the northeast slopes of Mauna Loa, in the South Hilo District, approximately 30 kilometers (19 miles) southwest of the town of Hilo (Figure 1). Pu‘u Maka‘ala NAR is approximately 18,730 acres in size, and is managed by State of Hawai‘i Department of Land and Natural Resources (DLNR) Division of Forestry and Wildlife (DOFAW) for the protection of unique natural resources. It is bordered by the Upper Waiakea Forest Reserve of the north and east, the Ola‘a Forest Reserve on the east, the Ola‘a Tract of Hawai‘i Volcanoes National Park to the south, and private property to the west (Kamehameha Schools), southwest and southeast (various agricultural parcels). The Kulani Correctional Facility, which occupies approximately 280 acres, is located within an interior portion of the NAR. Stainback Highway provides access from Mahaloha Highway (State Route 11) to the eastern edge of Pu‘u Maka‘ala NAR and the Kulani Correctional Facility. A series of existing unimproved roads provide limited access within the NAR.

The proposed Domain 20 core site would be located in the western portion of the NAR, with the proposed infrastructure for the site located approximately 1.7 kilometers (1 mile) northwest of the Kulani Correctional Facility. The proposed infrastructure would be located within tax map key (TMK) (3)2-4-008:009. Terrestrial sampling would occur within the surrounding lands, with distributed sampling plots located within the following TMKs: (3)2-4-008:009, (3)2-4-008:025 (portion), (3)1-9-001:001 (portion), (3)1-8-012:003 (portion), and (3)2-4-008:019 (portion).

1.3 Project Background

For nearly two decades, the ecological sciences research community has called for the national research and observation capability needed to promote understanding of the biosphere. Two reports published by the National Research Council (NRC), Grand Challenges in Environmental Science (2001) and NEON: Addressing the Nation’s Environmental Challenges (2003), identified the “Grand Environmental Challenges” and the associated research questions which were deemed critically important to address now, cannot be addressed with existing research infrastructure, and require environmental measurements on a regional to continental scale.

To provide the basis to respond to these critical research questions, NEON was developed as a continental-scale ecological observation facility, comprised of a network of long-term scientific infrastructure deployments to collect high-quality, standardized data. The design divides the continental United States, Alaska, Hawai‘i, and Puerto Rico into 20 domains, with each domain representing a specific range of eco-climatic conditions, thereby encompassing the full range of environmental variability. Within each domain, infrastructure is deployed to field study sites strategically selected to represent different regions of vegetation, landforms, climate, and ecosystem performance. Data collection methods are standardized across the field study sites and include in situ instrument measurements, field sampling, and airborne remote sensing. This network of deployments forms a fully integrated continental-scale research platform. Under this system, measurement of a variable over time in all 20 domains facilitates understanding of the quantity, changes in, and spatial heterogeneity of that variable at a continental scale. Given the time required to observe changes in some ecological parameters, NEON is designed to have a 30-year operational lifespan. Overall, this platform enables scientists to analyze, understand, and forecast the nature and pace of biological change at scales ranging from local to continental.

A thorough process was conducted to identify, evaluate, and select sites for deployment of NEON infrastructure within each of the 20 domains. The NEON project team established site criteria and a detailed selection and review process (involving research community workshops, Blue Ribbon committees, and NRC and NSF merit reviews). In October 2006, the NEON project team announced a request for information (RFI) inviting members of the ecological research community to submit ideas.
This page is intentionally left blank.
over the course of this process and the site suitability requirements for NEON, only a single alternative has been identified as viable for consideration (in addition to the No Action alternative).

1.4.1 Proposed Action Alternative

Under the Proposed Action, the Domain 20 core site would be constructed within Pu’u Maka’ala NAR, and would be operated as part of the continental-scale network of long-term ecological infrastructure deployments for NEON. Per the designations used to evaluate possible sites within Pu’u Maka’ala NAR, the proposed infrastructure would be located in the northwestern portion of the NAR, approximately 1.7 kilometers (1 mile) northwest of the Kulani Correctional Facility (field study Site 11). Terrestrial sampling protocols would be conducted within distributed sampling plots located in the surrounding areas within Pu’u Maka’ala NAR. Site-specific characteristics that make the selected location highly suitable for construction and operation of the Domain 20 core field study site include:

- The forest in this area is highly representative of similar habitat across the Hawaiian Islands. It is relatively high-quality, intact forest with very little development, which meets the NEON criteria for a “wildland” area. However, it is within an area that has been subject to some degree of disturbance, such that the project would not be affecting otherwise pristine forest habitat. The site includes adequate space such that the infrastructure can be installed with a very minimal amount of vegetation clearing/trimming. In addition, former pastureland located adjacent to the forested area would allow for the precipitation gauge to be proximate to the tower without impacting native species.

- The soils are deeper than those encountered at alternative sites, which provides better opportunity to implement NEON’s proposed soil protocols and installation of soil sensors.

- The site is readily accessible by existing access roads, but does not overlap with any trails or other recreational resources. The area does not support hunting (as it is located within ungulate fencing), and given its proximity to the Kulani Correctional Facility, the site is rarely (if ever) accessed by the public.

- Existing electrical lines are located reasonably close to the proposed site, thus minimizing the distance of the proposed power run.

As a core field study site in NEON, the Proposed Action includes deployment of standardized infrastructure and equipment, as well as terrestrial sampling and data collection consistent with NEON protocols. These project components, including the associated construction and site closure activities, are detailed below.

1.4.1.1 Project Components

Core Site Infrastructure and Equipment

Similar to other NEON core field study sites, the Domain 20 site would be fully instrumented with standardized infrastructure and equipment designed to collect biological, biophysical, biogeochemical, and land use data. The following infrastructure and equipment would be deployed to the site; all proposed infrastructure would be located adjacent to existing roads, and no new roads would be required for access to or within the site.

- Research Tower: The site would include a single scaffold lattice tower, which would support an array of sensors to collect data on climate, canopy microclimate, and air quality. The tower would extend 10 meters above the forest canopy and would be approximately 30 meters (105 feet) tall. It would be constructed on a concrete foundation pad (approximately 6.5 foot square). An adjacent set of stairs with a landing would provide access to the tower. Four guy wires would be installed to stabilize the tower. The wires would attach toward the top of the tower (but below the canopy top, to minimize the potential for bird strikes), and would attach to concrete
anchors located approximately 30 meters from the tower base. Minor vegetation trimming would likely be required to maintain proper clearance around the guy wires. If needed, the guy wires could be fitted with bird flight diverters to increase the visibility of the guy wires for forest birds.

- **Instrument Hut**: The instrument hut would be a prefabricated module that would house gas-analyzer instruments, data recording equipment, and communications and control hardware. It would be mounted on a buried concrete foundation (approximately 9 feet wide by 22 feet long), and would have a raised boardwalk (46 inches wide) installed around the perimeter with a 10-foot-long ramp to facilitate equipment delivery. The instrument hut would include a climate control system; a small drainage trench would be installed to collect condensation generated by this system.

- **Soil Horizon Pit**: A 6-foot by 6-foot pit would be temporarily excavated to a depth of 7 feet (or as deep as reasonably possible based on substrate conditions and depth to bedrock) to allow for inspection and research of soil horizons. The pit would be properly stabilized, covered with plywood and surrounded with construction fencing for safety purposes. The excavated materials would be stockpiled onsite, and once inspection and research activities have been completed, the pit would be backfilled. These activities would all occur during the construction phase.

- **Soil Array**: The soil array would include a series of five sequential soil plots. Each plot would be 5 meters (16.4 feet) square, and would include a network of in-ground soil sensors. The sensors would be installed using minimally intrusive methods, as the goal is to maintain undisturbed native soil for research purposes. Polyvinyl chloride (PVC) conduit with power and communication lines would be routed to each plot (in conjunction with the walkway described immediately below); device posts and metal arbors would be installed at the edge of each plot to support the power and communications equipment needed to operate the soil sensors.

- **Walkways**: Designated walkways would be installed from the access road to the proposed infrastructure within forested habitat to provide a focused point of access and minimize the potential extent of disturbance from repeated visits for maintenance or data collection. The walkways would be approximately 2 feet wide and would consist of flexible honeycomb paver mats designed to reduce soil compaction.

- **Precipitation Gauge**: The precipitation gauge would be a DFIR system. The gauge would be mounted to a pipe installed with a 2-foot-diameter concrete foundation. Two concentric fences (each between 5 and 6 feet high) would be installed around the gauge, with diameters of approximately 13 feet and 26 feet, respectively. Clearing of woody vegetation is typically needed within and surrounding the fenced area to preclude interference with the gauge. However, to minimize impacts to native vegetation, the gauge would be located in a former pastureland dominated by grass species, such that no woody vegetation clearing or trimming is expected to be required.

- **Electrical Equipment**: Power would be obtained from an existing electrical line located at the edge of the Kulani Correctional Facility property. Secondary power service would extend from an existing pole on this line to a meter socket and transfer switch, which would be owned and used by the local utility to deliver electricity. An auxiliary portal would be installed adjacent to the transfer switch. It would consist of a step-up transformer and communication pedestal, and would serve the research tower and instrument hut. It would also include a plug for a generator, which would only be brought onsite and used in the case of a long-term electrical system outage. The auxiliary portal would be pad-mounted, with the fiberglass pad (approximately 8 feet by 2 feet) installed at existing grade. A second portal (approximately 3 feet by 3 feet) would be installed to serve the precipitation gauge. From the portals, on-grade electrical and
communication lines (contained within PVC conduit) would be laid along an existing fence line to the instrument hut (approximately 2,520 linear feet), and through former pastureland to the precipitation gauge (approximately 600 linear feet). The conduit would be installed above ground and would keep in place using fiberglass uni-strut supports, placed at regular intervals and staked into the ground. In a single location, the conduit would be trenched (and capped with concrete) across the existing access road.

- **Staging Area:** A temporary staging area would be near the research tower and instrument hut to provide for parking and staging of equipment during construction. The staging area would be approximately 40 feet by 40 feet, and would consist of approximately 6 inches of base course underlain by geotextile fabric. All materials associated with the staging area would be removed from the site at the end of the construction period.

The locations of the proposed infrastructure are shown in Figure 1.

**Long-Term Terrestrial Sampling**

Following construction and over the course of the 30-year operational period for NEON, a suite of terrestrial sampling protocols would be implemented on a routine basis. Sampling would occur at designated plots and grids established in locations throughout the surrounding lands of Pu‘u Maka‘ala NAR. Based on stakeholder concerns regarding potential environmental impacts, the density and total footprint of sampling plots and grids was substantially reduced from the levels implemented at other NEON field study sites to the minimum level needed to ensure scientific viability of the project. Up to 62 plots or grids, with a total footprint of approximately 650 acres, would be distributed over approximately 11,660 acres of the NAR. The sampling plots and grids would include the following:

- **Tower Base Plots:** Approximately 20 plots, 16 measuring 20 by 20 meters and 4 measuring 40 by 40 meters
- **Distributed Base Plots:** Approximately 20 plots, each 40 by 40 meters
- **Bird Grids:** Approximately 10 grids, each 500 by 500 meters
- **Phenology Plots:** an 800m transect
- **Mosquito Plots:** Approximately 10 plots, each 0.5 by 0.5 meters

There would be minimal disturbance associated with the sampling plots and grids, limited to (1) NEON technicians visiting each plot to confirm the scientific validity of the location and (2) placement of permanent markers at a fixed sample point or at the ends of a sample transect. Permanent markers would consist of rebar or survey caps (or similar marking device approved by NARS staff) driven into the ground and would be placed only at the start of the project. If the plot or grid were to be relocated during the project, the original marker(s) would be removed and new permanent marker(s) would be placed.

Over the 30-year operational period, research technicians would visit each sampling plot and grid on a routine basis, as needed to conduct the prescribed sampling activities. The sampling protocols are consistent with the standardized requirements for NEON, but have been tailored as appropriate based on the local ecology and site-specific conditions. The sampling protocols are designed to be passive, with minimal ground disturbance.

Similar to the determination of plot and grid location, the timing for sampling activities is designed to avoid or minimize impacts, including activities during sensitive periods (e.g., breeding season), to the extent possible. In addition, to further minimize disturbance, sampling visits would be combined where possible to minimize the number of times researchers are at the site. It is currently expected that three full-time staff (one domain manager and two research technicians) would be needed to conduct the
sampling and other operational requirements. The staff would be supplemented with up to eight
temporary technicians during peak sampling periods.

The sampling data collected from the site would be reviewed, synthesized, and packaged by the NEON
project team. The resulting data set would be uploaded to an online portal, where it would be made
available to the scientific community and general public as part of the continental NEON data set. The
Domain 20 data would also be transferred directly to DOFAW and NARS staff to assist with management
of the site.

Aerial Observations

In addition to the terrestrial sampling effort, an aerial flight would be conducted on an annual basis. The
aerial flight would use a small aircraft outfitted with remote sensing equipment (including a
hyperspectral imager, Light Detection and Ranging sensor, and high-resolution camera). The typical
flight elevation would be approximately 1,000 meters, but would vary based on topography. Data
collected from the flight would provide detailed spatial information on the structure and
biogeochemical properties of vegetation, and would also facilitate the development of algorithms for
scaling up site-specific data.

Infrastructure and Equipment Maintenance

Long-term operation of the NEON project would require ongoing maintenance to ensure the
infrastructure and equipment are in optimal working order and remain properly calibrated. Standard
maintenance activities are planned to occur approximately every 2 weeks, with one larger maintenance
event conducted annually. In addition, emergency repairs would be conducted as needed.

Project Duration and Site Closure

NEON is projected to operate for 30 years. The exact nature of site closure at the end of the operational
period is based on the interests of DOFAW, as the site host. If requested, it is possible that some or all of
the infrastructure or equipment may be retained onsite. The specific decommissioning and closure plans
are undefined at this time. It is assumed that all sampling infrastructure (including the tower and
instrument hut) would be removed, but below-grade material (such as the tower foundation) would be
left in place. All boardwalk materials and electrical equipment (including power lines and conduits)
would be removed.

Any materials removed during these processes would be reused, recycled, or properly disposed of at an
approved location. All disturbed ground would be stabilized with biodegradable materials and
revegetated with species (or propagules of such species) that are native to the area and appropriate for
the specific disturbed area. Compacted soil would be loosened and aerated prior to revegetation. If
needed, topsoil appropriate for the area would be brought in and spread over the loosened soil prior to
revegetation.

1.4.2 No Action Alternative

Under the No Action Alteration, NEON research infrastructure and equipment would not be deployed to
the site within Pu‘u Maka‘ala NAR to represent Domain 20. Biological, biophysical, biogeochemical, and
land use data would not be collected and/or made available to the ecological sciences research
community. Implementation of the No Action Alternative would eliminate the opportunity to study
ecosystem responses and changes at the local scale as part of NEON. In addition, it would preclude
integration of data from the Pacific Tropical domain into the continental-wide dataset, thus reducing the
potential for broad-scale analysis and the overall integrity of NEON.
1.5 Area of Potential Effects

NSF has established the Area of Potential Effects (APE) for this undertaking to include all proposed instrument and sampling areas, as shown on Figure 1.

1.6 Methodology

A literature review was completed at the Hawai‘i SHPD library in order to identify historic properties in the vicinity of the proposed site. Additional research was conducted to locate previous cultural resources studies that have occurred within the APE. Interviews were conducted with the NAR staff in order to identify any known cultural sites or practices, including any significant resources that may not be listed in or eligible for listing in the NRHP.

NSF initiated Section 106 consultation with the Hawai‘i SHPD on December 7, 2016. As stipulated in 36 CFR §800.1(a), the goal of consultation is to identify historic properties potentially affected by the undertaking, assess effects to them, and seek ways to avoid, minimize, or mitigate any adverse effects on historic properties. After historic properties within the APE are identified, the Criteria of Adverse Effect are applied to each Alternative. These criteria are used to make a determination of whether the proposed undertaking could change the characteristics that qualify the property for inclusion in the NRHP in a manner that would diminish the integrity of the property’s location, design, setting, materials, workmanship, feeling, or association. Section 106 of the NHPA allows three findings for effects on historic properties:

- No Historic Properties Affected
- No Adverse Effect
- Adverse Effect

When an undertaking is found to have an adverse effect, Section 106 requires notification to the Advisory Council on Historic Preservation (ACHP) and consultation with SHPO and other interested parties regarding appropriate avoidance or mitigation measures. Examples of mitigation measures include such things as redesigning aspects of a project, or relocating or documenting buildings and/or structures. For a finding of adverse effect, the product of consultation is usually a Memorandum of Agreement (MOA) per 36 CFR §800.6(c) among the SHPO, federal agency, ACHP if it chooses to participate, and other consulting parties. This agreement contains stipulations specifying measures to be implemented that would avoid, minimize, and/or mitigate the adverse effects.

1.6.1 Consultation

NSF identified organizations and individuals with an interest in the proposed project’s potential to affect historic properties who may qualify as Section 106 consulting parties. The following potential consulting parties were identified:

- Association of Hawaiian Civic Clubs
- Hawaiian Civic Club of Hilo
- George K. Cypher ‘Ohana
- Kāko‘o ‘Ōiwi
- Keoni Kealoha Alvarez
- Ko‘olau Foundation
- Maku‘u Farmers Association
- Office of Hawaiian Affairs
• Piihonua Hawaiian Homestead Community Association
• Kamehameha schools (adjacent property owner)
• Hawai‘i Island Burial Council
• Hawai‘i County Cultural Resources Commission
• Historic Hawai‘i Foundation
• Aha Moku Council for the island of Hawai‘i
• Kua O Ka Lā
• Protect Kahō‘olawe ‘Ohana
• National Park Service

As part of a good faith effort to identify historic properties, NSF asked them to provide any information they would like to share on history, land use, and cultural sites; traditional gathering practices in the proposed site area – both past and present; cultural associations through traditions, legends, traditional use, or otherwise; and referrals of kupuna who might be willing to share their cultural knowledge of the area.
SECTION 2

Identified Historic Properties

2.1 Historical Context

Early Hawaiian settlement is traced back to A.D. 300 and was primarily concentrated along the “watered, windward (ko’olau) shores” of Hawai’i’s main islands (Maly and Maly, 2004). With an abundant supply of reliable water, these areas were conducive to agricultural production and the establishment of communities. The population primarily “engaged in subsistence practices in the form of fishing, and in agriculture on lands extending towards the uplands from the bays” (Maly and Maly, 2004). Hilo Bay attracted a large concentration of settlers due to its “lush tropical verdure and beauty” (Maly and Maly, 2004). As the population increased, settlers moved away from the more naturally rich areas and towards the more inaccessible areas of the islands.

Traditionally, natural and cultural resources are considered indistinguishable from one another in Hawaiian culture (Maly and Maly, 2004):

Native traditions described the formation (literally the birth) of the Hawaiian Islands and the presence of life on, and around them, in the context of genealogical accounts. All forms of the natural environment, from the skies and mountain peaks, to the watered valleys and lava plains, and to the shore line and ocean depths are believed to be embodiments of Hawaiian gods and deities.

Hawai’i, the largest of the islands, was the first island to be “born.” Since ancient times, Hawaiians have established land and resource management systems. By circa 1525, the island of Hawai’i had been divided into six districts (moku-o-loko), one of which was Hilo. The “district of Hilo itself, extends from the shore up to the 9,000 foot level on Mauna Kea, and up to the summit of Mauna Loa, where it joins the districts of Ka’u, Kona and Hamakua” (Maly and Maly, 2004). Hilo itself was subdivided into three traditional regions: Hilo Hanakeahi, Hilo One, and Hilo Paliku. Today, the district is divided into North and South Hilo. As a whole, “Hilo has been most famed for its rains, and is commemorated in many traditional mele (chants) and ‘olelo no’eau (poetical sayings) by reference to the rains” (Maly and Maly, 2004).

Archibald Menzies and Captain George Vancouver were among the first Europeans to visit Hawai’i. They arrived in 1793-1794 and were the first foreigners to reach the top of Mauna Loa, a feat that would not be repeated by another foreigner until 1834. Because of the remoteness of the ‘Ola’a and Waiakea forest lands that make up the Pu’u Maka’ala NAR, the area remained largely untouched by government infrastructure projects, including trails or roads (Maly and Maly, 2004). With the arrival of more European explorers, however, came new plant and animal species that often posed a threat to the natural Hawaiian landscape. In 1876, King David Kalākaua established the Act for the Protection and Preservation of Wood and Forests, which authorized the Minister of the Interior to “set apart and protect from ‘damage by trespass of animals or otherwise, such woods and forest lands, the property of government...best suited for the protection of water resources...’” (Maly and Maly, 2004). In 1904, the Board of Commissioners of Agriculture and Forestry enacted further legislation to protect the district of Hilo; “the Commissioners approved the recommendation that “all government and other lands in the district of Hilo, Island of Hawai’i, lying above a line approximately 1750 feet above the sea, be set apart as forestry reservation”” (Maly and Maly, 2004). More land was added to the reservation in 1905 and 1913, including sections of the ‘Ola’a tract and upland sections of the Waiakea, “thus, making a contiguous line of forest across the Hilo District, and adjoining the Puna District” (Maly and Maly, 2004).

Records indicate that ‘practitioner’ trails associated with traditional and customary activities such as bird catching and canoe-making likely existed in the region (Maly and Maly, 2004). It was not until the 1940s that a road was constructed through the ‘Ola’a and Waiakea forest lands, around the same time that the
Kulani Prison Farm (now Kulani Correctional Facility) was opened. An access road was constructed in the early 1950s that connected the prison to Mauna Loa's summit region (Maly and Maly, 2004).

Hawai‘i was among the first states in the United States to establish a system of NARs. In 1981, Executive Order (E.O.) 3102, enacted by Governor Waihe‘e, dedicated sections of the Waiakea and ‘Ola‘a Forest Reserve lands as the Pu‘u Maka‘ala NAR (Maly and Maly, 2004).

2.2 Literature Review Results

A literature review was completed at the SHPD library and additional research was conducted to locate previous EAs and cultural studies done for the proposed site area. Three documents have been produced relating to the APE and are listed in Table 1.

<table>
<thead>
<tr>
<th>Table 1. Cultural Resources Studies Conducted within the APE</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Title</strong></td>
</tr>
<tr>
<td>Archaeological Inventory Survey and Limited Cultural Assessment for the Proposed Wastewater Treatment Facility at Kulani Correctional Facility (TMK:3-2-4-08:9)</td>
</tr>
<tr>
<td>He Mo‘Olelo ‘Aina: A Cultural Study of the Pu‘u Maka‘ala Natural Area Reserve Districts of Hilo and Puna, Island of Hawai‘i</td>
</tr>
<tr>
<td>SHPD Consultation for the Pu‘u Maka‘ala Natural Area Reserve Management Plan</td>
</tr>
</tbody>
</table>

2.2.1 Archaeological Resources

The literature review indicated that no archaeological sites have been previously identified within the APE. No records or references to specific archaeological sites within the APE were mentioned in the 2004 cultural study by Kumu Pono and the findings were negative for the other two reports listed in Table 7. No additional archaeological survey work was conducted for this undertaking.

2.2.2 Architectural Resources

One architectural resource that is more than 50 years old is located within the APE: the Mauna Loa Boys School building. The school was constructed in 1952 and remained open for only one year, closing in 1953. At various points in its history, it was used by the Kulani Correctional Facility and for military training activities. Currently, the dilapidated building is used to store fencing materials. Original fenestration has been removed and replaced with plywood, large sections of the roof are missing, and the surrounding landscape is overgrown. The building has not been used as a school since 1953. The building lacks integrity of materials, design, workmanship, feeling, association, and setting. A November 18, 2011, letter from the Deputy SHPO to DOFAW regarding the Pu‘u Maka‘ala NAR Management Plan describes the school as in “poor condition.” During a Section 106 Consulting Parties meeting held for the proposed project on October 26, 2016, meeting attendees likewise noted the poor condition of the former school and that the proposed NEON site would have no potential to affect the building. The building was not identified as a historic property. In addition to the Mauna Loa Boys School, there are several water tanks in the APE; however, these are less than 50 years old and do not meet the age
criterion for NRHP eligibility. Because the Proposed Action Alternative has no potential to affect the Mauna Loa Boys School, architectural resources are not further analyzed.

2.2.3 Traditional Cultural Properties

TCPs are sites, areas, and materials associated with cultural practices or beliefs of a living community that are rooted in that community's history and are important in maintaining the continuing cultural identity of the community. Landscapes can acquire cultural and historical meaning through traditional use “by the peoples who have traveled, used, and interwoven these places into generations of practices” (ACHP, 2016). Because cultural landscapes gain their significance through traditional cultural practices, they are viewed as a type of TCP. Physical characteristics as well as visual and audio aspects can all contribute to the significance of a landscape (ACHP, 2016). The 2004 study by Kumu Pono (Maly and Maly, 2004), which was a cultural study of the Pu’u Maka’ala NAR (including the entire APE), notes:

...the mountain landscape, its native species, and the intangible components therein, are a part of a sacred Hawaiian landscape. Thus, the landscape itself is a highly valued cultural property. Its protection, and the continued exercise of traditional and customary practices, in a traditional and customary manner, are mandated by native custom, and State and Federal Laws (as those establishing the ‘Ola’a and Waiakea Forest Reserves, the Pu’u Maka’ala NAR, and the Endangered Species Act).

As such, the overall NAR has been characterized as a cultural landscape, but no formal determination of NRHP-eligibility for the landscape as a TCP has occurred. The NAR is an approximately 18,730-acre site and a determination of eligibility for this large property as a cultural landscape is beyond the scope of this Proposed Action. Although the cultural landscape has not been determined NRHP eligible, it has been identified as a significant cultural resource under NEPA, and NSF is treating the cultural landscape as a potential historic property for the purposes of this project.

2.2.4 Cultural Uses, Practices, and Properties

Other cultural resources can include plant or animal species, objects, places, uses, or practices that are considered culturally or spiritually significant. While these properties may be culturally significant, they are not eligible as historic properties under the NRHP and thus are not covered by the NHPA. However, potential effects to such cultural resources are considered in the EA under NEPA and in this report to address all potentially significant cultural resources present within the APE.

Individual species in the NAR may be culturally significant, such as the ‘alalā or ‘io, both of which are regarded as ‘umakua (Hawaiian ancestral spirits). While living species with spiritual or cultural significance are not eligible for inclusion in the NRHP, they may be considered potentially significant cultural properties.

Historically, areas of the NAR were used to build bird-catcher’s shelters, canoes, trails, and trailside resting places and shelters. The 2004 Kumu Pono report notes:

Because of the remote nature of the ‘Ola’a and Waiakea forest lands which comprise the present-day Pu’u Maka’ala NAR, no government communications pertaining to historic trails or government road projects exist for the region. Boundary Commission testimonies describe trails through the forest lands, rising from the lowlands of Waiakea, ‘Ola’a, Keauhou and Humu’ula. Based on the native traditions and kama‘aina testimonies, it is likely that ‘practitioner’ trails existed throughout the forest region. Features such as ‘kauhale manu’ (bird-catcher's shelters), ‘kahua kalaiwaa’ (canoe-makers clearings), ‘oioina’ (trailside resting places and shelters), the ‘ala hele’ (trails), and other features associated with traditional and customary accesses, would leave little evidence in the present-day, as the traditional features and uses generally had minimal
IDENTIFIED HISTORIC PROPERTIES

impact on the natural landscape. Those things left behind, not cared for or maintained, were simply reabsorbed into the landscape.

NARS staff were interviewed to identify any known cultural sites or practices. Mr. Nick Agorastos, NAR Specialist with DLNR DOFAW, stated that he had never encountered anyone engaged in cultural practices in the APE, even though he or his staff are on the property almost daily. He noted that the NAR rules specify the need for a permit to conduct cultural practices within the NAR, and that he is only aware of two previous permit requests for Pu‘u Maka‘ala NAR, both involving removal of a koa log to build a canoe (Rau, 2016). There are no cultural uses or practices that are currently known to occur within the APE or the greater NAR.
Assessment of Effects

3.1 Proposed Action Alternative

There are no known historic properties that are eligible for or listed in the NRHP located within the APE. In addition, there are no known cultural practices or specific sites associated with the APE. However, the overall NAR has been characterized as a cultural landscape and there are other culturally significant resources, including species such as the ‘alalā, present within the APE. Because potential effects to such cultural resources are considered in the EA under NEPA, they are being addressed in this report so that it includes all potentially significant cultural resources present within the APE.

Effects from the Proposed Action would not be detectable and are not anticipated to alter the significant aspects of the cultural landscape or other cultural resources present within the APE. Therefore, the Proposed Action would result in a finding of no adverse effects to historic properties. An unanticipated discovery plan would be in place before initiating project activities to address any archaeological resources that might be inadvertently found.

3.1.1 Archaeological Resources

There are no known archaeological resources within the APE. Although the proposed site area has not been surveyed, previous cultural resources studies indicate that the probability of historic properties being present in the proposed site area is very low. Several factors diminish the likelihood for archaeological resources to be present within the APE: the property site is in a remote area with a high elevation, there are no known archaeological or historic properties in the vicinity, and archaeological studies in adjacent areas have not found any sites and have determined that there is a low likelihood of sites in the western upper-elevation of the rain forest. The area was not historically inhabited and the historic uses associated with the area were limited to transient activities, such as bird catching, canoe making, and trail building that did not alter the natural landscape (Maly and Maly, 2004). No physical evidence of features associated with these historic uses is extant. Therefore, the site elevation and difficult accessibility, combined with the ephemeral nature of traditional uses and features, make the archaeological expectations for the area very low. Should any historic properties be present, the likelihood of adverse effects to them from the Proposed Action is low because the site components entail only minimal ground disturbance.

As with any ground-disturbing project, there remains a potential for discovery of buried cultural resources. If previously unidentified archaeological resources were discovered during project activities, ground-disturbing activities would be halted in the vicinity of the find and NSF would consult with the SHPD and other consulting parties, as appropriate, regarding eligibility for listing in the NRHP, project effects, necessary mitigation, or other treatment measures. An unanticipated discovery plan would be in place before initiating project activities to address any archaeological resources that might be discovered.

With implementation of these best management practices, the Proposed Action Alternative is expected to result in no historic properties affected.

3.1.2 Traditional Cultural Properties

There are no known TCPs within the APE that have been determined eligible for or are listed in the NRHP. The NAR is characterized as a cultural landscape, although it has never been formally evaluated for the NRHP. The Proposed Action would encompass the scientific infrastructure and a total of approximately 62 sampling plots (comprising approximately 650 acres) that would be distributed throughout approximately 11,663 acres of the 18,730-acre Pu‘u Maka‘ala NAR, with a permanent project footprint of less than 0.25 acre. Because of the dense forest vegetation and remote nature of
ASSESSMENT OF EFFECTS

this area, potential visual changes associated with the project would be very limited and are not expected to significantly affect the visual quality of the site. The proposed site components are small intrusions into the expansive cultural landscape, and their presence should not inhibit traditional or customary practices, should they occur. Therefore, the Proposed Action Alternative would result in no adverse effects to TCPs such as the cultural landscape.

3.1.3 Cultural Uses, Practices, and Properties

There are certain species in the NAR that are considered culturally or spiritually significant, such as the 'alalā. The Proposed Action is not anticipated to alter the cultural or spiritual associations of these species. The research towers could result in slight changes to the visual character of the species' habitat, but this is not expected to diminish their cultural or spiritual significance. In addition, the types of activities associated with the Proposed Action (pedestrian access to conduct terrestrial sampling and research) are consistent with the activities associated with cultural practices that have occurred in the area historically, including access for establishing bird-catcher shelters, canoe-makers clearings, trailside resting places and shelters, and trails. There are no cultural uses or practices that are currently known to occur within the APE or other portions of the NAR. Therefore, the Proposed Action Alternative would result in no adverse effects to cultural uses, practices, and properties.

3.2 No-Action Alternative

Under the No Action Alternative there would be no change from the existing conditions. The No Action Alternative would result in a finding of no historic properties affected.
SECTION 4

Conclusion

There are no known historic properties that are listed in or determined eligible for listing in the NRHP located within the APE. Other significant cultural resources that are not listed in or determined eligible for the NRHP have been identified within the APE, including the cultural landscape and the ‘alalā. The proposed site components would not diminish the cultural or spiritual significance of these resources and would not inhibit traditional or customary practices, should they occur. Therefore, the Proposed Action Alternative and the No Action Alternative would result in a finding of No Adverse Effect to Historic Properties.
This page is intentionally left blank.
References


This page is intentionally left blank.
Appendix D
Endangered Species Act Section 7 Consultation Documentation
This page is intentionally left blank.
United States Department of the Interior
FISH AND WILDLIFE SERVICE
Pacific Islands Fish and Wildlife Office
300 Ala Moana Boulevard, Room 3-122
Honolulu, Hawaii 96850

In Reply Refer To:
01EPIF00-2016-TA-0479

Mr. Steven Ellis, Program Director
Division of Biological Infrastructure
Biological Sciences Directorate
National Science Foundation
4201 Wilson Boulevard
Arlington, Virginia 22230

SEP 1 2 2016

Subject: Technical Assistance for Proposed National Ecological Observatory Network Domain 20 Core Tower and Sampling Site at Puu Makaala Natural Area Reserve, Hawaii Island

Dear Mr. Ellis:

The U.S. Fish and Wildlife Service (Service) received your letter on August 11, 2016, requesting technical assistance for the National Science Foundation-funded proposed National Ecological Observatory Network (NEON) Domain 20 Core Tower and Sampling Site at Puu Makaala Natural Area Reserve (Puu Makaala NAR), Hawaii Island. The proposed site is to provide ecological data on NEON’s Domain 20, “Pacific Neotropical in Hawaii,” and would be the only site representing this domain in the United States. Site components would include an ecological research tower proposed to be approximately 30.5 meters tall, instrument hut, soil array, Double Fence Intercomparison Reference (DFIR) precipitation gauge (with required vegetation clearance area), and associated electrical infrastructure with power run. A suite of terrestrial sampling protocols and an annual aerial flight would occur within the greater permitted area in the Puu Makaala NAR. Terrestrial plot sampling and associated plot size would include the following: 20 Tower Plots-40x40 m; 6 Tick Plots-40x40 m; 30 Base Plots-40x40 m; 6-8 Mammal Grids-90x90 m; 5-15 Bird Grids-500x500 m; 2 Phenology Plots-200x200 m; and 10 Mosquito Points-5x5 m. The proposed project area including plots encompasses TMK (3) 2-4-008:009, TMK (3) 2-4-008:025, TMK (3) 1-9-001:001, TMK (3) 1-8-012:003 and TMK(3) 2-4-008:019, and would be permitted by the State of Hawaii via a Natural Area Reserve System (NARS) Special Use Permit and OCCL Use Permit.

Based on information you provided and pertinent information in our files, including data compiled by the Hawaii Biodiversity and Mapping Project, there is one federally listed mammal in the vicinity of the project area, the endangered Hawaiian hoary bat (*Lasiurus cinereus semotus*); eight federally listed birds, including the Hawaiian crow or alala (*Corvus hawaiiensis*), nene (*Branta sandvicensis*), Hawaiian hawk or io (*Buteo solitarius*), akiapolaau (*Hemignathus munroi*), Hawaii creeper, (*Oreomystis mana*), Hawaii akepa (*Loxops coccineus*), Hawaiian petrel (*Pterodroma sandwichensis*), and the threatened Newell’s shearwater (*Puffinus newelli*); one
bird species proposed for listing, the band-rumped storm-petrel (Oceanodroma castro); and one
bird species petitioned for listing, the iwi (Vestiaria coccinea). There are fifteen federally listed
plants in the vicinity of the project area: palai laau (Adenophoros periens), Mauna Loa
silversword (Argyrotryphum kauense), Asplenium peruvianum var. insulare, oha wai (Clermontia
linseyana), oha wai (Clermontia peleana), haha (Cyanea coplanadit), akuaku (Cyanea
platyphylla), haha (Cyanea shipmanii), hahai (Cyanea stictophylla), hawaiale (Cyrandra
giffardii), hawaiale (Cyrandra tintinnabula), kiponapona (Pyllostegia racemosa), Phyllostegia
velutina, anunu (Sicyos alba), and Hawaiian vetch (Vicia menziesii). There is no proposed or
final critical habitat within the vicinity of the project area. The Service recommends the
following measures to avoid and minimize project impacts to listed species:

Hawaiian hoary bat
The Hawaiian hoary bat is known to occur across a broad range of habitats throughout the State
of Hawaii. This bat roosts in both exotic and native woody vegetation and, while foraging,
leaves young unattended in “nursery” trees and shrubs. If trees or shrubs suitable for bat
roosting are cleared during the Hawaiian hoary bat breeding season (June 1 to September 15),
there is a risk that young bats that cannot yet fly on their own could inadvertently be harmed or
killed. The Service recommends that woody plants greater than 15 feet tall should not be
removed or trimmed during the Hawaiian hoary bat breeding season. Additionally, Hawaiian
hoary bats forage for insects from as low as three feet to higher than 500 feet above the ground.
When barbed wire is used in fencing, Hawaiian hoary bats can become entangled. The Service
therefore recommends that barbed wire not be used for fencing as part of this proposed action.

Hawaiian hawk
The Hawaiian hawk is known to occur across a broad range of forest habitats throughout the
Island of Hawaii. Loud, irregular and unpredictable activities, such as using heavy equipment or
building a structure, near an endangered Hawaiian hawk nest may cause nest failure.
Harassment of Hawaiian hawk nesting sites can alter feeding and breeding patterns or result in
nest or chick abandonment. Nest disturbance can also increase exposure of chicks and juveniles
to inclement weather or predators. If any ground clearing or construction will occur during the
Hawaiian hawk breeding season (March through September), we recommend a nest search of the
project footprint and surrounding areas be conducted by a qualified ornithologist immediately
prior to the start of construction activities. Pre-disturbance surveys for Hawaiian hawks are only
valid for 14 days. If disturbance for the specific location does not occur within 14 days of the
survey, another survey will be required. Surveys should ensure that construction activity will not
occur within 1,600 feet of any Hawaiian hawk nest. If nesting Hawaiian hawks are present in the
action area or within 1,600 feet of the action area, we recommend you coordinate with the
Service to develop appropriate avoidance and minimization measures dependent upon the site
specific information.

Nene
The nene is currently found on all the main islands except Lanai and Kahoolawe. Nene are
known to occupy various habitat and vegetation community types ranging from coastal dune
vegetation and non-native grasslands (such as golf courses, pastures, and rural areas) to sparsely
vegetated low- and high-elevation lava flows, mid-elevation native and non-native shrubland,
cinder deserts, native alpine grasslands and shrublands, and open and nonnative alpine
shrubland-woodland community interfaces. Nene do not occur in closed forest areas. Nene have
an extended breeding season with eggs reported from all months except May, June, and July,
although the majority of birds in the wild nest during the rainy (winter) season between October
and March. Nesting peaks in December and most goslings hatch from December to January. Nene nest on the ground, in a shallow scrape in the dense shade of a shrub or other vegetation. To avoid adverse impacts to nene, we recommend a qualified individual conduct surveys at the proposed project site for presence of nene prior to project(s) initiation. We further recommend if a nene is observed, or flies into the site while activities are occurring, all activities be halted within 100-ft (30-m) of the individual(s), and work should not resume until the nene leave the area on their own accord.

**Forest Birds**
Akiapoa, Hawaii creeper, and Hawaii akepa, and iiwi (collectively known as forest birds) occur in forest habitats throughout the Island of Hawaii. The Hawaiian crow is planned to be introduced to Puu Makaala NAR in fall 2016. Loud, irregular and unpredictable activities, such as using heavy equipment or building a structure, near a nest of these species may cause nest failure. Harassment of nesting sites can alter feeding and breeding patterns or result in nest or chick abandonment. Nest disturbance can also increase exposure of chicks and juveniles to inclement weather or predators. If any ground clearing or construction will occur during the breeding season for these species (February through July), we recommend a nest search of the project footprint and surrounding areas be conducted by a qualified ornithologist immediately prior to the start of construction activities. Pre-disturbance surveys are only valid for 14 days. If disturbance for the specific location does not occur within 14 days of the survey, another survey will be required. Surveys should ensure that construction activity will not occur within 500 feet of any nest of Akiapoa, Hawaii creeper, and Hawaii akepa, and 1,600 feet of any nest of Hawaiian crow. If listed forest birds are present in the action area or within 500 feet of the action area for Akiapoa, Hawaii creeper, and Hawaii akepa and 1,600 feet of the action area for Hawaiian crow, we recommend you coordinate with the Service to develop appropriate avoidance and minimization measures dependent upon the site specific information.

**Seabirds**
Hawaiian petrels, Newell’s shearwaters and band-rumped storm-petrels (collectively known as seabirds) are known to transit over the project area when flying between the ocean and upland breeding colonies. Many bird species are known to strike objects, such as antennas or guywires, protruding above surrounding vegetation. In Hawaii, seabirds are attracted to lights and are known to collide with buildings, light poles, wires, and other tall objects. Any lights associated with the projects should be cut-off, equipped with a motion sensor, or shielded so that the light cannot be seen from above. Fledging seabirds are especially affected by artificial lighting and have a tendency to exhaust themselves while circling the light sources and become grounded. Too weak to fly, these birds become vulnerable to predation by feral predators such as small Indian mongoose (*Herpestes auropunctatus*), cats (*Felinus catus*), and dogs (*Canis familiaris*). We therefore recommend avoiding or minimizing use of artificial lighting and avoiding night work if possible. If artificial lighting must be used we recommend this be shielded so the bulb is not visible at or above bulb-height. If night work must be conducted this should take place outside the seabird fledging season (September 15 through December 15) and should utilize shielded lighting.

**Plants**
Listed plants are distributed throughout the Puu Makaala NAR. We recommend close coordination with Hawaii NARS to fully avoid any adverse impacts to listed plants during installation of proposed sampling grids.
Technical Assistance Regarding Rapid Ohia Death

Rapid Ohia Death (ROD), a newly identified disease, has killed large numbers of mature ohia trees (*Metrosideros polymorpha*) in forests and residential areas of Hawaii Island. The disease is caused by a vascular wilt fungus (*Ceratocystis fimбриata*). Crowns of affected trees turn yellowish or brown within days to weeks and dead leaves typically remain on branches for some time. All ages of ohia trees can be affected and can have symptoms of browning of branches or leaves. As of early 2015 the disease was confined to Hilo and the Puna district on Hawaii Island, but has since been confirmed in Volcano, South Kona, and Hamakua districts. Additional information on ROD can be found at [http://www2.ctahr.hawaii.edu/forestry/downloads/ROD-trifold-03.2016.pdf](http://www2.ctahr.hawaii.edu/forestry/downloads/ROD-trifold-03.2016.pdf) and [http://www2.ctahr.hawaii.edu/forestry/disease/ohia_wilt.html](http://www2.ctahr.hawaii.edu/forestry/disease/ohia_wilt.html).

Many of our listed species are reliant on native ohia forest. The following avoidance and minimization measures should be followed for projects working in ohia forests or at sites with ohia trees on Hawaii Island:

- A survey of the proposed project site should be conducted within two weeks prior to any tree cutting to determine if there are any infected ohia trees. If infected ohia are suspected at the site, the following agencies should be contacted for further guidance.
  - USFWS – please contact the name at the bottom of this letter
  - Dr. J.B. Friday, University of Hawaii Cooperative Extension Service, 808-969-8254 or jbfriday@hawaii.edu
  - Dr. Flint Hughes, USDA Forest Service, 808-854-2617, fhughes@fs.fed.us
  - Dr. Lisa Keith, USDA Agriculture Research Service, 808-959-4357, Lisa.Keith@ars.usda.gov

- Both prior to cutting ohia and after the project is complete:
  - Tools used for cutting infected ohia trees should be cleaned with a 70 percent rubbing alcohol solution. A freshly prepared 10 percent solution of chlorine bleach and water can be used as long as tools are oiled afterwards, as chlorine bleach will corrode metal tools. Chainsaw blades should be brushed clean, sprayed with cleaning solution, and run briefly to lubricate the chain.
  - Vehicles used off-road in infected forest areas should be thoroughly cleaned. The tires and undercarriage of the vehicle should be cleaned with detergent if they have travelled from an area with ROD or travelled off-road.
  - Shoes and clothing used in infected forests should also be cleaned. Shoes should be decontaminated by dipping the soles in 10 percent bleach or 70 percent rubbing alcohol to kill the ROD Fungus. Other gear can be sprayed with the same cleaning solutions. Clothing can be washed in hot water and detergent.

- Wood of affected ohia trees should not be transported to other areas of Hawaii Island or interisland. All cut wood should be left on-site to avoid spreading the disease. The pathogen may remain viable for over a year in dead wood. The HDOA has passed a new quarantine rule that prohibits interisland movement, except by permit, of all ohia plant or plant parts.
Thank you for your efforts to conserve listed species and native habitats. Please contact Fish and Wildlife Biologist Jay Nelson (phone: 808-792-9441, email: jay_nelson@fws.gov) if you have any questions or for further guidance.

Sincerely,

[Signature]

Michelle Bogardus
Island Team Leader
Maui Nui and Hawaii Island

cc: Ms. Emma Yuen, NARS
Hello,

The National Ecological Observatory Network (NEON), a continental-scale research network funded by the National Science Foundation (NSF) and operated by awardee Battelle Ecology, Inc. (BEI), proposes to establish a research site within the Pu‘u Maka’ala Natural Area Reserve, Hawai‘i Island. The site is needed in order to provide ecological data on NEON’s Domain 20, “Pacific Neotropical in Hawai‘i,” and would be the only site representing this domain in the United States. Site components include a tower, instrument hut, soil array, Double Fence Intercomparison Reference (DFIR) precipitation gauge, and associated electrical infrastructure with power run; no additional roads are anticipated. Additionally, a suite of terrestrial sampling protocols would be implemented and an annual aerial flight would occur over the Pu‘u Maka’ala Natural Area Reserve. Additional information can be found in the attached pre-consultation notice. Attached are a map of the proposed elements and summaries of proposed sampling plans for the site.

The NSF is holding a stakeholder meeting to discuss questions and concerns regarding the potential impacts on threatened and endangered species and their habitats as a result of the proposed NEON project. This meeting will occur on October 26 from 2:30 – 4:30 PM in the DOFAW office located at 19 E Kawili St, Hilo, HI 96720. Please respond to this e-mail if you plan to attend the stakeholder meeting. A conference line will be set up for those unable to attend in person.

Additionally, an evening meeting will be held at the DOFAW office from 6:00 –7:30 PM to discuss potential cultural resources within the proposed project area and, if there are any such resources, to consult on ways to avoid, minimize, and/or mitigate any adverse effects on them. This meeting will be held in compliance with Section 106 of the National Historic Preservation Act and the State Historic Preservation Division regulations; this meeting will be open to the public.

Please RSVP by Friday, October 21.

Hope to see you there!
Montona Futrell-Griggs
Subject: HI NEON Site Stakeholders Meeting Follow-up
Date: Monday, January 23, 2017 at 9:42:52 PM Eastern Standard Time
From: Futrell-Griggs, Montona
CC: Gagne, Betsy H, Agorastos, Nicholas R
BCC: gaudioso@hawaii.edu, axwang@hawaii.edu, cgiardina@fs.fed.us, fhughes@fs.fed.us, Donna_L_Ball@fws.gov, jpprice@hawaii.edu, conant@hawaii.edu, ostertag@hawaii.edu, tcolleencoale@gmail.com
Attachments: D20 Hawaii Stakeholder Meeting 10262016.docx, HI Proposed Sampling Protocols.docx, Draft Identification of Biological Resources, Impact and Measures.docx

Hello,

Attached are meeting minutes from the Stakeholders meeting for the proposed NEON research site within the Pu‘u Maka‘ala Natural Area Reserve, Hawai‘i Island held at the DOFAW offices on October 26, 2016. Amy Little with Battelle Ecology, Inc. has indicated in red font the action items identified during the meeting and updates associated with each item.

We have also attached a table detailing revised protocols which have been vetted for scientific viability to meet the scientific objectives of the NEON program for this site. The revised protocols were developed in response to the concerns expressed during the about the potential impact of human presence to the site and on rare, endangered and threatened species and sea birds. Most of the proposed sampling protocols have been reduced in frequency or located near existing roads or paths. The table details the frequency and number of staff required per visit to the site.

The last document attached is a draft of the biological resources discussion that would be included in the draft Environmental Assessment and identifies resources, evaluates impact and describes mitigation strategies for the site.

If wanted we would be happy to schedule calls with you this week and next to discuss your review of the attached documents.

Best,
Montona

Montona Futrell-Griggs
NEON Program/MSB Program/BIO Clearance Liaison
NSF-BIO/DBI
703-292-7162
4201 Wilson Blvd
Arlington, VA 22230
Good morning,

When Lisa, Caroline and I met with you in late October 2016, we discussed providing you with a document to begin reviewing and providing comments on which would include avoidance and mitigation strategies for NEON construction and operations activities that could potentially impact rare, threatened and endangered species located in the Pu’u Maka’ala NAR.

Based on feedback from stakeholders and discussions arising during the development of the environmental assessment, CH2M Hill was able to develop a draft biological evaluation. However due to funding decisions that were being made internally at NSF, we put off sending you the document until now.

We would like you to review the attached document to provide us with your comments on it. We would then like to schedule a call with you to discuss your comments and concerns on it, perhaps in 2 weeks. Please note that we will include this draft as an attachment to the draft EA that will be released in April or May. Revisions based on your comments and public comments received will be used to draft the final versions of the EA and biological evaluation.

Let me know if you have any questions or concerns.

Thank you for your time,
Montona

Montona Futrell-Griggs
NEON Program/MSB Program/Bio Clearance Liaison
NSF-Bio/DBI
703-292-7162
4201 Wilson Blvd
Arlington, VA 22230