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Abstract (maximum ~200 words). 

Research across all fields is increasingly digital, and increasingly dependent on software. However, software must be continually 
maintained for it to continue to function. This is part of the meaning of sustainability: software is sustainable if it will continue to be available 
in the future, on new platforms, and meet new needs. But sustainability doesn’t happen automatically; it must be encouraged, enabled, 
planned, and enacted. And for both individual projects and the overall software environment, NSF can and should help make this happen. 

Question 1 Research Challenge(s) (maximum ~1200 words): Describe current or emerging science or engineering research challenge(s), 
providing context in terms of recent research activities and standing questions in the field. 

Modern research is inescapably digital, with data and publications most often created, analyzed, and stored electronically. The processes 
by which this happens rely on software of ever-increasing complexity. While some of this software is general-purpose office software (e.g., 
for email, text, presentations, spreadsheet), a great deal of it is developed specifically for research, often by researchers themselves. This 
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type of research software is essential to progress in science, engineering, humanities, and all other fields. It has led to Nobel prizes (e.g. 
Karplus, Levitt and Warshel in Chemistry in 2013, Englert and Higgs in Physics in 2013, Perlmutter, Schmidt and Riess in Physics in 2011) 
and likely will again, such as for the LIGO discovery of gravitational waves, which relied on both data analysis and forward models to match 
a particular model to an observed set of data. Software also enables tens to hundreds of thousands of individual researchers to work on 
distinct aspects of grand challenges, and to have their work build into a set of knowledge, for example in bioinformatics, where computer 
scientists develop workflow tools, and bioinformaticians develop components, which then are combined together to solve problems. Despite 
this ubiquity of research software, few research environments offer researchers the necessary training, experience, or institutional support 
to robustly maintain the software they author. In particular, researchers who support sustainability of software rarely have external 
incentives in the existing academic landscape, and tenure and promotion committees seldom recognize the importance of software in 
research. All those involved in the research environment, from the researcher to the archivist to the university administrator to the funder to 
the publisher, must strive to make choices that contribute to improving that environment where research software is created and sustained. 

Question 2 Cyberinfrastructure Needed to Address the Research Challenge(s) (maximum ~1200 words): Describe any limitations or 
absence of existing cyberinfrastructure, and/or specific technical advancements in cyberinfrastructure (e.g. advanced computing, data 
infrastructure, software infrastructure, applications, networking, cybersecurity), that must be addressed to accomplish the identified 
research challenge(s). 

Research software is a key element of the cyberinfrastructure in many fields. Most research software is produced within academia, by 
academics, ranging in experience and status from students to postdocs to staff members to faculty. The academic environment in which 
this software is developed, maintained, and used, varies widely with regards to the software processes. While the environment and culture 
of science have developed over hundreds of years, software has become important only more recently, in some fields over the last 60+ 
years, but in many others, just in the last 20 or fewer years. Furthermore, much of the software is produced by academics who are not 
permanent employees of their institutions, and thus, many of these contributions have a transient nature: the developers may not continue 
to maintain the software after they graduate or change jobs. Even when software is produced by permanent employees (faculty and staff on 
university funding lines), these employees are often not hired, rewarded, or promoted based on their software work. 

Given this, the key need is not the software element of the cyberinfrastructure, but rather, the environment that allows it to be most 
effectively created, maintained, used, and sustained over time. The existing environment has been organically created by a variety of 
stakeholders, including funders, university administrators, research leaders, publishers, librarians, etc. For this environment to be improved 
so that better software is created and continues to exist, those stakeholders must make conscious decisions to improve the environment, 
not just to attempt to create specific software tools. 

Improvements that may make a research environment more suitable for sustaining software will vary according to many parameters (e.g. 
software purpose, scientific domain, institution type). Training programs and curriculum may improve the software skills of scientists at all 
levels, and these are being discussed in another response to this RFI, titled “Research Software Training Initiative: Identifying and 
addressing challenges in scientific software development” and led by Frank Löffler. In many cases, such training may only be feasible when 
coupled with institutional incentives so that permanent staff have the opportunity to be rewarded for their software products. In addition to 
training and incentives, expert support in the form of permanent scientific software staff may be appropriate for sustaining an institution’s 
research software investments. Beyond this, improved symbiosis between institutions and open source communities will be beneficial in 
many cases. When research software products have the potential to engage a sufficiently large open source user/developer community to 
sustain the research software, researchers may need support and training to nurture, nourish, maintain, and lead that community. 

The NSF has invested in campus cyberinfrastructure through the CC-* program and its predecessors. These investments have been in the 
form of science DMZs, computing resources, innovative storage, and “cyber teams” of applied scientific computing experts. We suggest a 
similar need to seed university-centered teams of cyberinfrastructure software architects and developers, with university-level commitments 
to sustainability. These university-centered software cyberinfrastructure centers of expertise can be networked into regional and domain-
specific federated teams, with an ultimate goal of a national level federation. The key element is to provide incentives at the university level, 
such as within the Office of the Vice Presidents/Provosts for Research, to make long term commitments to supporting cyberinfrastructure 
software and the architects and designers who produce it. 



Submission in Response to NSF CI 2030 Request for Information 
PAGE 3DATE AND TIME: 2017-04-03 20:36:51 

REFERENCE NO: 209 

Question 3 Other considerations (maximum ~1200 words, optional): Any other relevant aspects, such as organization, process, learning 
and workforce development, access, and sustainability, that need to be addressed; or any other issues that NSF should consider. 

Cyberinfrastructure includes software, and the software must be strengthened as it is a key but currently under-supported element. 
Because of software collapse (dependencies on underlying software which itself changes over time, see 
http://blog.khinsen.net/posts/2017/01/13/sustainable-software-and-reproducible-research-dealing-with-software-collapse/), software stops 
working relatively quickly if not continuously maintained. But NSF funding for software only lasts a short period, equivalent to the 
construction phase of an MREFC. In some cases, this maintenance after construction can be handled by an open source community, if 
there is a community of sufficient size, if funding is available, and if the community has the skills to do this maintenance. However, this 
combination is rare: either the community isn't large enough, or doesn't have the right skills, or doesn't have the funding needed. Members 
of the community might be cyberinfrastructure software professionals, supported by their universities. In other cases, if there is not a 
continuing investment, the software will stop working, and the initial construction effort will have been wasted. NSF first needs to recognize 
that this is a problem, and second needs to recognize that for some software, sustainability requires NSF to continue to invest in 
maintaining the software over time (equivalent to the operating period on an MREFC). If NSF is not willing to provide this longer term 
funding, and the developers don’t have a good alternative method to acquire the needed resources, NSF should carefully consider its 
choice to fund the initial development against the short term payoff during the life of the award. 

Funding to sustain software can be provided at multiple levels, which might range from continued funding of the project itself, to keep the 
development team together, to centralized funding of teams of research software developers at institutions, to take on projects as they 
move out of the build phase. Different projects will need different approaches. (Projects across NSF can also be incentivized to develop 
sustainable software from the start by providing funding in the initial award to cover the extra costs associated with performing these tasks 
during the life of the award, as the SI2 program tries to do.) 

To call attention to this need, and to make the best award decisions, NSF should also require a Software Management Plan for all 
proposals. Software Management Plans should provide a justification for the development of new software, having considered the 
existence of similar software already available, and should detail how (and for how long) any such new software is to be sustained. This 
might include plans to build a community around it, or a request for further support from NSF. Both Data and Software Management Plans 
must be public and should be machine-readable for two reasons: 

1. The science community (reviewers and program officers) needs to thoughtfully consider, at all stages of proposal review and project 
management, the public interest and NSF's requirement that investigators and organizations have the responsibility as members of the 
scientific and engineering community to make results, data, and collections available to other researchers. 

2. Software and data management plans should be public documents, stored as archival documents, similar to how papers, software, and 
datasets are stored, so the record of what a project planned can be later verified by other scientists, including peer-reviewers of future 
projects by the same investigators. As shown by Van Tuyl and Whitmire (http://dx.doi.org/10.1371/journal.pone.0147942), proposers 
compliance with their own data management plans have been somewhat problematic. 

The Software Management Plan might be combined with the Data Management Plan, but if so, it should be a true combination with a new 
name, not a slightly expanded Data Management Plan. 
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