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Abstract 

Conventional research in materials science is built upon phase diagrams. Recently, however, a new class 

of “ad-hoc” materials are emerging. They are made with multiple constituents and by processes that 

deploy electrical, magnetic, electromagnetic and supra-mechanical forces. Often, these new materials 
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lie outside the traditional realms of phase-diagrams. Energetic processing can induce high molar 

concentrations of defects, which now themselves become species thereby further increasing the 

complexity in the structure of these “energetic” materials. They manifest new spectra and patterns in X-

ray diffraction and X-ray scattering, TEM, FTIR, UV-absorption, Raman spectroscopy, XPS, neutron 

scattering and EXAFS. These spectra do not fit known patterns; thus, we are unable to tell what may be 

the atomistic, the defect and the electronic structure of these novel materials. We will deploy machine 

learning approaches to go through the millions of iterations to identify the structure that best matches 

the details of the spectroscopic data. The discovery of high entropy, lithium containing oxides with 

gigantic ionic conductivity are just one example of the technological impact of the proposed approach. 

The synergy between machine-learning, the discovery, the science and the design of these complex 

materials will have a persistent “broader-impact” for the next several decades. 

 

Question 1 (maximum 400 words) – Data-Intensive Research Question(s) and Challenge(s). Describe 

current or emerging data-intensive/data-driven S&E research challenge(s), providing context in terms of 

recent research activities and standing questions in the field. NSF is particularly interested in cross-

disciplinary challenges that will drive requirements for cross-disciplinary and disciplinary-agnostic data-

related CI. 

Machine learning methods will provide ground-breaking results in understanding the fundamental 

atomistic, and electronic structure of new materials that are far from equilibrium.     Electron microscopy 

and x-ray scattering experiments produce huge amounts of data. For example, the “4D Camera” (for 

Dynamic Diffraction Direct Detector) at Lawrence Berkeley National Laboratory can capture images with 

atomic scale resolution in microseconds. Processing of such large datasets is an enormous challenge that 

only AI-assisted tools can address. Recent advances in supervised and unsupervised deep learning show 

tremendous promise in analyzing these vast troves of electron microscopy and X-ray data.     Deep 

learning and other AI tools can identify microstructural changes and how they affect material properties. 

These tools can also denoise data, impute missing data, identify relevant structural features, classify 

them, and provide statistical analysis. Furthermore, novel neural networks such as Equation Learners 

can extract physical laws from experimental data. Generative models and neural network solvers for 

partial differential equations can address inverse problems, e.g. prediction of structures including defect 

distributions from measurements of material properties.     The emerging field of “flash sintering” serves 

as an example of the impact of the proposed coupling of experiments with machine learning for 

accelerated development of new materials that are far from equilibrium. Discovered less than a decade 

ago, when it was shown that modest electrical fields can sinter ceramics in mere seconds at low 

temperatures, this method has expanded into processing of complex materials, like high entropy oxides 

quickly, accelerating the processing of complex materials by orders of magnitude. What took weeks if 

not months to prepare and characterize new composition of complex materials, can now be completed 

many times over within one day. The bottle neck in the scientific and technological developments in this 

field is computational methods that can be empowered to quickly analyze the structure of these new 

materials, and predict their properties. Machine learning is indispensable in this pursuit. 
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Question 2 (maximum 600 words) – Data-Oriented CI Needed to Address the Research Question(s) 

and Challenge(s). Considering the end-to-end scientific data-to-discovery (workflow) challenges, 

describe any limitations or absence of existing data-related CI capabilities and services, and/or specific 

technical and capacity advancements needed in data-related and other CI (e.g., advanced computing, 

data services, software infrastructure, applications, networking, cybersecurity) that must be addressed 

to accomplish the research question(s) and challenge(s) identified in Question 1. If possible, please also 

consider the required end-to-end structural, functional and performance characteristics for such CI 

services and capabilities. For instance, how can they respond to high levels of data heterogeneity, data 

integration and interoperability? To what degree can/should they be cross-disciplinary and domain-

agnostic? What is required to promote ease of data discovery, publishing and access and delivery? 

Discovery of novel materials require integration of experimental methods, modeling and simulation, 

data science (DS) and machine learning (ML) tools. Faster and targeted discovery of materials hinges on 

automated methods to analyze raw experimental and simulation data that provide actionable 

information for rapid screening of material properties and processes. DS and ML will play a crucial role 

by capturing complex energy landscapes of functional materials and discovering transformation 

pathways from both simulation and experimental data.    A major bottleneck in materials modeling, 

simulations and experiments is that datasets are so huge that they cannot be analyzed on-the-fly or 

transferred to supercomputers fast enough for AI-assisted modeling and analysis. As a result, most of 

the data is archived and not analyzed. Very likely, important discoveries will be missed because the 

current CI is hopelessly inadequate to tackle these problems.     AI tools can couple petascale reactive 

and quantum dynamics simulations that generate unprecedented amounts of data for atomic 

trajectories, forces, wave functions, and electronic charge distributions. The datasets are prohibitively 

large for storage and analysis by manual, or even by semi-automated methodologies. Furthermore, 

upcoming exascale architectures are expected to be heavily optimized for atomic matrix-matrix 

operations, and therefore traditional MD force calculation requiring irregular memory access must be 

modified to scale on these new architectures. AI tools are needed for the development of 

experimentally-informed large-scale simulations.      Going forward, the critical CI needs for material 

discovery are: (i) Highly efficient computing platforms that can be attached directly to instruments for 

rapid screening. (ii) Visualization platforms integrated with on-the-fly screening of data. (iii) Continuous 

growth in high-performance computing to address bottlenecks in first-principles calculations. (iv) 

Infrastructure for rapid data transfer from instruments to supercomputers. And, (v) Post exascale 

machine learning tools to analyze and mathematically model experimental data to discover physical 

laws hidden in the data.    This proposal embarks on an unprecedented synergy between materials 

science, physics, chemistry, engineering and computer science, with the intensely focused objective of 

building the scientific foundation and the tools for next generation materials which are complex and 

made by energetic processes, and that are far from equilibrium, thereby being endowed with novel 

properties not present in conventional materials. 
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Question 3 (maximum 300 words) – Other considerations. Please discuss any other relevant aspects, 

such as organization, processes, learning and workforce development, access and sustainability, that 

need to be addressed; or any other issues more generally that NSF should consider. 

This proposal is led by Professors Kalia of the Department of Computer Science at USC and Raj of 

Materials Science/Mechanical Engineering at the University of Colorado. This collaboration has been 

brewing over the last year starting from an ECI Conference in Tomar, Portugal in March 2019. Our 

understanding of the fundamental issues from materials science and computer science viewpoints is 

deep and unique given the “firewall” that often exists between these two communities.     At USC, the AI 

Division of the Viterbi School of Engineering has close to 180 researchers which includes a large number 

of graduate students, underpinned by professional staff. Separately, the Department of Computer 

Science also has an AI group.      The Kalia group at USC investigates the applications of machine learning 

to experiments and simulations in materials science. They have used deep learning tools, such as the 

restricted Boltzmann machine, to model synthesis of layered materials on a quantum computer. They 

have also used variational autoencoder to study crack propagation and phase transformations in layered 

materials. They have applied weighted constraint satisfaction model to impute missing data in electron 

microscopy experiments.    Raj is the inventor of “flash sintering” which has captured the imagination of 

the materials science community. This method is now being deployed to process new materials of 

complex compositions in mere seconds (in comparison to several weeks needed by conventional 

processing). Thus, flash can radically accelerate the discovery of new materials; it can also can serve as 

an experimental leg of the Genome initiative which remains largely a theoretical pursuit. 

Multicomponent materials made in this way are already showing unusual features in X-ray 

measurements, and properties, for example gargantuan conductivities in solid state electrolytes for 

lithium ion batteries. 
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