text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Mathematical & Physical Sciences (MPS)
Mathematical & Physical Sciences (MPS)
design element
MPS Home
About MPS
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Advisory Committee
Career Opportunities
2013-2014 Distinguished Lecture Series
View MPS Staff
MPS Organizations
Astronomical Sciences (AST)
Chemistry (CHE)
Materials Research (DMR)
Mathematical Sciences (DMS)
Physics (PHY)
Office of Multidisciplinary Activities (OMA)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page

Discovery
Titan: A Climate Out of This World

Researchers using ground-based telescopes and space probes make amazing discoveries about the atmospheric cycle of Saturnís largest moon, and find similarities to Earth

Image shows a composite visible/infrared view of Titan.

Composite visible/infrared view of Titan shows a world with features strikingly similar to Earth.
Credit and Larger Version

January 7, 2010

Our knowledge of Titan has improved considerably over the last five years. Before that, Saturn's largest satellite had only been hastily approached by a handful of space probes.

In 1980, the Voyager-1 spacecraft took advantage of a flyby to take a few mysterious, yet frustrating, close-ups of Titan's opaque, rusty atmosphere. Despite its color, Titan actually seemed to look a lot like the early Earth.

There was a general feeling of excitement and perplexity: what lay beneath this atmosphere? Could Titan support life?

In July 2004, NASA's Cassini space probe entered Saturn's distant realm, this time to stay. The probe was designed right after Voyager's visit by a scientific community eager to unveil those new mysteries.

And unveil them it did. It has been hard to keep up with the flow of discoveries delivered from Titan to Earth since then. We now know that the 5,150-kilometer- (km, or 3,200-mile-) wide world has lakes and riverbeds. Earlier this year, even fog was discovered at Titan's South Pole.

Even more compelling is the fact that, just like similar features on Earth, all of those features are tightly related. Evaporated liquids create clouds that are carried around the planet by winds--and probably cause precipitation. This has never been seen on any other extraterrestrial body.

Moreover, Titan's atmospheric cycle is not a water cycle. It is instead an exotic climate of hydrocarbons that features methane and ethane. On Earth, those are gases, but the extremely cold temperature of Titan, around minus 290 degrees Fahrenheit (F, or minus 180 degrees Celcius), allows them to be liquid as well (and maybe even solid).

Weather forecast

Titan scientists grew very excited by these discoveries. "We can study the meteorological cycle on another planetary body involving a different molecule (methane)," said Emily Schaller, of the University of Arizona's Lunar and Planetary Laboratory. She started observing Titan from the ground in 2002, at the beginning of her doctorate, two years before Cassini arrived.

"I was monitoring the weather on Titan using the NASA Infrared Telescope Facility on Mauna Kea. I looked for daily changes in Titan's brightness that were due to the presence of clouds."

Ground-based observatories such as the 3-meter NASA Infrared Telescope Facility (IRTF) might indeed not be as detailed as Cassini for high-resolution pictures, but when it comes to daily monitoring, they are the ideal instruments. Indeed, Cassini only flies by Titan roughly every two months.

So what is it like to study the daily changes of another world? "Nearly every night a spectrum of Titan is taken with IRTF," Schaller explains. "Every morning, I download and process that data to determine the amount of cloud cover on Titan. The result is that I get a daily weather report for Titan."

The IRTF cannot resolve Titan's globe: it just sees a point of light. You can tell when there are clouds because the dot gets brighter at certain wavelengths. When there seemed to be a cloud showing up in Titan's atmosphere, Schaller would call her colleague Henry Roe of the Lowell Observatory in Flagstaff, Ariz., who had a target-of-opportunity proposal on the bigger 8-meter Gemini North Telescope. The National Science Foundation-supported Gemini telescope, equipped with adaptive optics, is able to take a resolved picture of Titan's disk to determine the latitudes and longitudes of the clouds Schaller detected with IRTF. Schaller continued with these observations for six years, the time it took her to complete her doctoral studies.

"The day I handed in my dissertation, I reduced the daily data and was just shocked. I thought at first I did something wrong. I e-mailed Henry Roe, and the next night, he triggered observations on Gemini. Sure enough, there was a huge cloud in the tropics," Schaller recalled.

It was the first time such an observation was made. "I joke that it was Titan's little present to me," she added.

More to come

Titan's climate is expected to change rapidly in the coming months, as the distant Saturn system reached the spring equinox in August 2009.

"The year on Titan lasts about 30 Earth years. My thesis lasted six years--not even a Titan season!" explains Schaller. "It is now the equivalent of March 21 on Titan. When I started my thesis, it was December 22. We are now entering an interesting time as Titan is changing seasons," she adds.

Scientists try to predict what the impact of the coming northern spring will be. They are using Earth atmospheric models, modified for Titan's smaller size and temperature. Titan provides us with an Earth-like, yet alternative, atmospheric circulation system to study. The observation of seasonal climate changes on an alien world may possibly help us better understand how things work on Earth, too. This process is called comparative planetology.

Since Titan is so similar to our planet, some scientists are asking whether it could even support life. "It is much further away from the Sun," said Schaller. "The cold temperature means that chemical reactions occur very slowly, so the chances of life are very slim. Though there might be a chance of life further down in the interior of Titan."

Indeed, some heat could be preserved inside Titan, and last year, Cassini's observations provided clues for a potential ocean of hydrocarbons under the surface. However, if there is life anywhere else in the solar system, many scientists suspect it may be more likely to appear on Jupiter's icy moon Europa, which is closer to the Sun and likely to have a subsurface ocean of water.

After Cassini and the successful landing of the piggyback European Space Agency Huygens probe on Titan's surface in 2005, the scientific community is already thinking about the next mission to explore Titan. Exotic concepts have been proposed, such as balloons or boats to study the lakes, as part of a so-called Titan Saturn System Mission.

Read more and watch a webcast about the findings in the related press release. Listen to the winds of Titan here.

-- Marc Neveu, National Science Foundation, nifiou@gmail.com

This Behind the Scenes article was provided to LiveScience in partnership with the National Science Foundation.

Investigators
Emily Schaller
Henry Roe

Related Institutions/Organizations
AURA/National Optical Astronomy Observatories
California Institute of Technology
Gemini Observatory
Lowell Observatory
University of Arizona
University of Hawaii Institute of Astronomy

Locations
Arizona
California
Hawaii

Related Programs
Gemini Observatory
NSF Astronomy and Astrophysics Postdoctoral Fellowships

Related Awards
#0401559 Titan's Methane Meteorological Cycle
#0647970 Management and Operations of the Gemini Observatory
#0525280 AURA Management and Operation of the Gemini Observatory
#0307929 Robotic and Adaptive Optics Monitoring of Clouds on Titan

Total Grants
$368,084

Related Agencies
NASA

Related Websites
LiveScience.com: Behind the Scenes: Titan: A Climate Out Of This World: http://www.livescience.com/space/091211-bts-Saturn-Titan-weather.html
NSF Press Release: Storm Clouds Over Titan: http://www.nsf.gov/news/news_summ.jsp?cntn_id=115388&org=NSF&from=news
NSF Discovery: Methane Clouds Observed Near Titan's Equator May Explain Presence of Riverbeds on the Surface: http://www.nsf.gov/discoveries/disc_summ.jsp?cntn_id=115421&org=NSF
University of Hawaii Press Release: Huge Storm Detected on Titan: http://www.ifa.hawaii.edu/info/press-releases/SchallerTitanAug09/

Image shows Titan at the top emerging from behind Saturn and Tethys at the bottom left.
Titan (top) emerges from behind its parent planet, Saturn. Tethys is visible at the bottom left.
Credit and Larger Version

Image showing a composite visible/infrared view of Titan's North Pole as seen by Cassini.
Composite visible/ infrared view of Titan's North Pole as seen by the Cassini spacecraft.
Credit and Larger Version

Image showing the tropical cloud observed by Emily Schaller from the ground in April 2008.
The tropical cloud observed by Emily Schaller from the ground in April 2008.
Credit and Larger Version

Image shows largest of Titan's northern lakes on left compared to Lake Superior on right.
On left, is largest of Titan's northern lakes. It has a larger area than Lake Superior (right).
Credit and Larger Version



Email this pagePrint this page
Back to Top of page