text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Biological Sciences (BIO)
Molecular and Cellular Biosciences (MCB)
design element
MCB Home
About MCB
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Career Opportunities
Examples of Broader Impacts
Supplements & Other Opportunities
See Additional MCB Resources
View MCB Staff
BIO Organizations
Biological Infrastructure (DBI)
Environmental Biology (DEB)
Emerging Frontiers (EF)
Integrative Organismal Systems (IOS)
Molecular and Cellular Biosciences (MCB)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Additional MCB Resources
BIO Reports
BIO Dear Colleague Letters
Interdisciplinary Research
Merit Review
Merit Review Broader Impacts Criterion: Representative Activities
Image Credits
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page

Discovery
Scientists Eavesdrop on Bacteria Conversation

The discovery of how bacteria communicate may lead to new types of antibiotics and ways of improving actions of good bacteria

Photo showing a petri dish swabbed with a culture of bioluminiscent marine bacteria.

Left side of this petri dish shows four RNA molecules that control quorum sensing in these bacteria.
Credit and Larger Version

June 30, 2010

Bonnie Bassler spends her days listening to bacteria talk to one another, and what she has overheard may surprise you.

It turns out that these tiny, single-celled organisms are taking roll call. Each whispered conversation is an attempt to count how many of their own kind are present before they try to mount an attack on their host organism, which might very well be your body.

As Bassler explains it, bacteria "are too small to have an impact on the environment if they simply act as individuals." What they lack in size, though, they make up for in numbers. While each of our bodies contains about a trillion of our own cells, we also play host to 10 trillion bacterial cells, residing either on our skin or inside our organs.

While not all of these bacteria are bad for us, some are invaders who mean us harm, and when the numbers of, say, cholera bacteria increase to a certain critical level, watch out--those whispered conversations can turn into a coordinated attack as the mass of cholera bacteria begin to release toxin all at once.

Bacteria communicate using a chemical language, releasing small molecules into the surrounding medium that can be detected through receptors on the surfaces of other bacterial cells. When a critical number of signaling molecules is reached, each individual bacterium knows that enough of its friends are now nearby to launch into action. This process is known as quorum sensing.

Bassler's work in bacterial communication grew from her interest in determining how information flows between cells in our own body. "If we can understand the rules or paradigms governing the process in bacteria," she said, "what we learn could hold true in higher organisms."

While quorum sensing is used by virulent bacteria to infect their hosts, it is also used by other microbes for more benign coordinated actions. A vivid example occurs in the Hawaiian Bobtail Squid, which hunts at night while producing light with its own body. The light is actually created not by the squid, but by a mass of bioluminescent, marine microorganisms, known as Vibrio fischeri, that the squid carries within its body.

Each V. fischeri bacterium can produce light on its own, but the glow would be so feeble as to be undetectable, so the microbe shuts down its light-producing machinery when only small numbers of bacteria are present. In this way, it can reserve its stores of light-producing molecules until sufficient numbers of its brethren exist to make a bright, visible light.

The squid's packet of light-producing bacteria grow and divide throughout the day, multiplying within the squid's body and sending out chemical signals now and then to take a census. Just about the time nightfall occurs, the population reaches a significant enough size that total light production would be detectable. When that point is reached, the population of V. fischeri bacteria simultaneously switches on their light-producing apparatus and the glowing squid swims off to begin its hunt.

Since virulent microbes, such as the Vibrio cholerae bacterium that causes the disease cholera, rely on quorum sensing to coordinate their attack on our bodies, Bassler's work is helping scientists devise new types of antibiotics.

The new drugs would work by blocking either the release of the quorum signaling molecule or by plugging up its receptors--in other words, blocking the ability of the bacteria to either speak or hear. In this way, the bacteria never know if enough of their numbers are present to release toxin, so infection is averted.

This method of interfering with bacterial communication would constitute an entire new class of antibiotics, which could be of help in dealing with antibiotic-resistant strains of bacteria that have developed in recent years.

In addition to stopping bad bacteria such as V. cholerae, Bassler suggests that her insights about quorum sensing could help improve the action of the good bacteria in our bodies, such as those in our intestines that help us digest food. She also believes that understanding the mechanism by which bacteria communicate can lead to even more profound insights, such as determining how the vast array of cells within our bodies works as an integrated whole.

Our cells use a communication mechanism that is very similar to quorum sensing. Some of our body's cells release chemical signals, such as hormones or neurotransmitters, that are detected by other types of cells via a process strikingly similar to that used by quorum sensing bacteria. This chemical communication is, in fact, used by our cells to keep them organized--we never see heart cells becoming confused and acting like skin cells or kidney cells, for example.

And, it is the lowliest of organisms--bacteria--to whom we owe thanks for this complex symphony of chemical signals that keep our body's cells sorted out and in their proper places. Our body functions as one integrated whole thanks to a simple chemical communication process developed long ago by the tiny creatures for one simple reason: to count "noses" and see how many of their friends were there.

-- Raima Larter, National Science Foundation, rlarter@nsf.gov

This Behind the Scenes article was provided to LiveScience in partnership with the National Science Foundation.

Investigators
Bonnie Bassler

Related Institutions/Organizations
Princeton University
Howard Hughes Medical Institution

Locations
New Jersey

Related Programs
Cellular Systems Cluster
Genes and Genome Systems Cluster

Related Awards
#0948112 Intercellular Signaling in Vibrio Harveyi
#0639855 Intercellular Signaling in Vibrio Harveyi

Total Grants
$546,817

Related Websites
LiveScience.com: Behind the Scenes: Scientists Eavesdrop on Bacteria Conversation: http://www.livescience.com/health/bacteria-communiation-bts-100618.html
NSF Current Newsletter, April 2010: http://www.nsf.gov/news/newsletter/apr_10/index.jsp#faces
YouTube Video: http://www.youtube.com/watch?v=TVfmUfr8VPA
Encyclopedia of Life: http://www.eol.org/pages/973240

Scanning electron micrograph depictintg two Vibrio cholerae bacteria about to separate.
Scanning electron micrograph depicting two Vibrio cholerae bacteria about to separate.
Credit and Larger Version

Photo of Bonnie Bassler who discovered the quorum sensing process by which bacteria communicate.
Bonnie Bassler who discovered the quorum sensing process by which bacteria communicate.
Credit and Larger Version



Email this pagePrint this page
Back to Top of page