

Improving Teacher Professional Development

(a.k.a. Tough Love for State Policymakers)

Heather C. Hill Harvard University Graduate School of Education National Governor's Association Meeting January 16, 2008

The Setting

- 99% of teachers attend professional development in a given year
 - Mandated by your state's re-licensure requirements, and by most districts
- Requirements = we know what works, right?
 - # Math PD studies meeting "rigorous" standard in past two decades:
 - 8
 - Science PD studies meeting such standards:
 - 7

The Problem

- An inefficient system
 - Most professional development locally provided
 - No rigorous evaluation
 - Teachers, schools, districts cannot say "what works" to improve instruction and student achievement
 - Quality tremendously variable

Skewed incentive structure

- While math/science master's related to student achievement
- <u>General</u> master's degree has NO relationship to student achievement
- Yet districts reward master's degrees with an 11% pay bump (Goldhaber & Brewer, 1999)
- Most professional development undertaken to fulfill requirements
- Meanwhile, more substantial and focused learning opportunities ignored

Solving the problem

- Public administration approaches:
 - More bureaucracy (e.g., licensing for PD, centralization)
 - Change teacher incentive structure (e.g., toward better forms of PD)
- Increase professional control
 - Similar to medicine
- "Market" approaches
 - "Voting with feet"
 - Provide better information to consumers
- But where do we get the information?

New Tools

- Studies involving student achievement as outcome notoriously difficult
- Need for new tools to capture teacher knowledge and skills proximate to student outcomes
- Use these new tools to identify effective vs. ineffective professional development

Example: Learning Mathematics for Teaching Instruments

- Math tests for teachers in specific content domains
- Can be used as pre/post test evaluating PD
- But not typical mathematics tests
 - Composed of items meant to represent problems that occur in teaching

Knowing Multiplication Multiply: 35 x 25

Knowing multiplication for teaching

Which of these students is using a method that could be used to multiply any two whole number

Student A	Student B	Student C
35 <u>×25</u> 125 <u>+75</u> 875	35 <u>×25</u> 175 <u>+700</u> 875	35 <u>×25</u> 25 150 100 +600
		875

Representing operations

Which model <u>cannot</u> be used to show that 1 1/2 x 2/3= 1?

Measures Uses

- Pre/post evaluations of:
 - Teacher professional development
 - Pre-service teacher education
 - Principal coursework
 - State officials?

- Research
 - NCLB's middle school teacher quality effort
 - Links to student achievement
 - Links to quality of classroom instruction
 - Validation efforts

Pre/post Evaluation: Tracking Teacher Growth

- Items piloted in California's Mathematics Professional Development Institutes (MPDI)
 - Instructors: Mathematicians and mathematics educators
 - 40-120 hours of professional development
 - Focus is squarely on mathematics content
 - Summer 2001
 - Pre/post assessment format (parallel forms)

MPDI Teacher Growth

- Teachers gained roughly ¹/₂ standard deviation
- Translates to 2-3 item increase on assessment
- Considered substantial gain

MPDI Evaluation: Findings

- Significant variation in performance on our measure by institute
- Length of institute predicts teacher gains
 - 120-hour institutes most effective, on average
 - But some 40-hour institutes very effective
- Focus on mathematical analysis, proof, and communication leads to higher gains

Research: NCLB Middle School

Research: Equity

Are teachers of low-socioeconomic status students...

- Less prepared?
 - Less experienced (r = -0.09)
 - Less likely to have a math credential
 - (r = -0.11)
 - More likely to be elementary teachers (r = 0.07)

- Less knowledgeable?
 - Math assessment score and SES:

r = -0.19

Policy question: Does this help explain the achievement gap?

Conclusion

- Efforts to revise system must be *statewide*
- Must build capacity in state to perform proper research/evaluation
- Make use of new tools for evaluating efficacy of professional development
- Make use of new tools to answer pressing policy questions