text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Engineering (ENG)
Chemical, Bioengineering, Environmental, and Transport Systems (CBET)
design element
About CBET
Funding Opportunities
Career Opportunities
View CBET Staff
ENG Organizations
Chemical, Bioengineering, Environmental, and Transport Systems (CBET)
Civil, Mechanical and Manufacturing Innovation (CMMI)
Electrical, Communications and Cyber Systems (ECCS)
Engineering Education and Centers (EEC)
Emerging Frontiers and Multidisciplinary Activities (EFMA)
Industrial Innovation and Partnerships (IIP)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Merit Review
NSF Outreach
Policy Office
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page

Cyber-Physical Systems  (CPS)


Name Email Phone Room
David  Corman dcorman@nsf.gov (703) 292-8754  1175  
Radhakisan  Baheti rbaheti@nsf.gov (703) 292-8339  525  
Sankar  Basu sabasu@nsf.gov (703) 292-7843   
Bruce  Hamilton bhamilto@nsf.gov (703) 292-7066  565  
Bruce  Kramer bkramer@nsf.gov (703) 292-5348  545  
Anita  Nikolich anikolic@nsf.gov (703) 292-4551   
Phillip  Regalia pregalia@nsf.gov (703) 292-8910  1115  
Gurdip  Singh gsingh@nsf.gov (703) 292-8061   
Sylvia  Spengler sspengle@nsf.gov (703) 292-8930  1125  
Ralph  Wachter rwachter@nsf.gov (703) 292-8950  1175  


Solicitation  15-541

Important Information for Proposers

A revised version of the NSF Proposal & Award Policies & Procedures Guide (PAPPG) (NSF 16-1), is effective for proposals submitted, or due, on or after January 25, 2016. Please be advised that, depending on the specified due date, the guidelines contained in NSF 16-1 may apply to proposals submitted in response to this funding opportunity.


Cyber-physical systems (CPS) are engineered systems that are built from, and depend upon, the seamless integration of computational algorithms and physical components. Advances in CPS will enable capability, adaptability, scalability, resiliency, safety, security, and usability that will far exceed the simple embedded systems of today. CPS technology will transform the way people interact with engineered systems -- just as the Internet has transformed the way people interact with information. New smart CPS will drive innovation and competition in sectors such as agriculture, energy, transportation, building design and automation, healthcare, and manufacturing.

The December 2010 report of the President's Council of Advisors on Science and Technology (PCAST) titled Designing a Digital Future: Federally Funded Research and Development in Networking and Information Technology calls for continued investment in CPS research because of its scientific and technological importance as well as its potential impact on grand challenges in a number of sectors critical to U.S. security and competitiveness such as the ones noted above. These challenges and technology gaps are further described in a CPS Vision Statement published in 2012 by the federal Networking and Information Technology Research and Development (NITRD) CPS Senior Steering Group.

Tremendous progress has been made in advancing CPS technology over the last five-plus years. We have explored foundational technologies that have spanned an ever-growing set of application domains, enabling breakthrough achievements in many of these fields. At the same time, the demand for innovation in these domains continues to grow, and is driving the need to accelerate fundamental research to keep pace. 

Despite significant inroads into CPS technology in recent years, we do not yet have a mature science to support systems engineering of high-confidence CPS, and the consequences are profound. Traditional analysis tools are unable to cope with the full complexity of CPS or adequately predict system behavior. For example, minor events that trip the current electric power grid -- an ad hoc system -- can escalate with surprising speed into widespread power failures. This scenario exemplifies the lack of appropriate science and technology to conceptualize and design for the deep interdependencies among engineered systems and the natural world. The challenges and opportunities for CPS are thus significant and far-reaching. New relationships between the cyber and physical components require new architectural models that redefine form and function. They integrate the continuous and discrete, compounded by the uncertainty of open environments. Traditional real-time performance guarantees are insufficient for CPS when systems are large and spatially, temporally, or hierarchically distributed in configurations that may rapidly change. With the greater autonomy and cooperation possible with CPS, greater assurances of safety, security, scalability, and reliability are demanded, placing a high premium on open interfaces, modularity, interoperability, and verification.

The goal of the CPS program is to develop the core system science needed to engineer complex cyber-physical systems which people can use or interact with and depend upon. Some of these may require high-confidence or provable behaviors. The program aims to foster a research community committed to advancing research and education in CPS and to transitioning CPS science and technology into engineering practice. By abstracting from the particulars of specific systems and application domains, the CPS program seeks to reveal cross-cutting fundamental scientific and engineering principles that underpin the integration of cyber and physical elements across all application sectors. To expedite and accelerate the realization of cyber-physical systems in a wide range of applications, the CPS program also supports the development of methods, tools, and hardware and software components based upon these cross-cutting principles, along with validation of the principles via prototypes and testbeds. We have also seen a convergence of CPS technologies and research thrusts that underpin "Smart Cities" and the Internet of Things (IoT). These domains offer new and exciting challenges for foundational research and provide opportunities for maturation at multiple time horizons.

In 2015, NSF is working closely with multiple agencies of the federal government, including the U.S. Department of Homeland (DHS) Security Science and Technology Directorate (S&T), U.S. Department of Transportation (DOT) Federal Highway Administration (FHWA), U.S. DOT Intelligent Transportation Systems (ITS) Joint Program Office (JPO), National Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate (ARMD), and several National Institutes of Health (NIH) institutes and centers [including the National Institute of Biomedical Imaging and Bioengineering (NIBIB), Office of Behavioral and Social Sciences Research (OBSSR), National Cancer Institute (NCI), and National Center for Advancing Translational Sciences (NCATS)], to identify basic research needs in CPS common across multiple application domains, along with opportunities for accelerated transition to practice.

Three classes of research and education projects -- differing in scope and goals -- will be considered through this solicitation:

  • Breakthrough projects must offer a significant advance in fundamental CPS science, engineering and/or technology that has the potential to change the field. This category focuses on new approaches to bridge computing, communication, and control. Funding for Breakthrough projects may be requested for a total of up to $500,000 for a period of up to 3 years.
  • Synergy projects must demonstrate innovation at the intersection of multiple disciplines, to accomplish a clear goal that requires an integrated perspective spanning the disciplines. Funding for Synergy projects may be requested for a total of $500,001 to $1,000,000 for a period of 3 to 4 years.
  • Frontier projects must address clearly identified critical CPS challenges that cannot be achieved by a set of smaller projects. Funding may be requested for a total of $1,000,001 to $7,000,000 for a period of 4 to 5 years.



What Has Been Funded (Recent Awards Made Through This Program, with Abstracts)

Map of Recent Awards Made Through This Program



Email this pagePrint this page
Back to Top of page