Stimulating Collaborative Advances Leveraging Expertise in the Mathematical and Scientific Foundations of Deep Learning  (SCALE MoDL)

Name Email Phone Room
Huixia  Wang (703) 292-2279   
Aranya  Chakrabortty (703) 292-8113   
Wei  Ding (703) 292-8017   
Funda  Ergun (703) 292-8910   
Eun Heui  Kim (703) 292-2091   
Tracy  Kimbrel (703) 292-7924   
Phillip  A. Regalia (703) 292-2981   
Christopher  W. Stark (703) 292-4869   
Zhengdao  Wang (703) 292-7823   
Kenneth  C. Whang (703) 292-5149   
Joseph  M. Whitmeyer (703) 292-7808   


Solicitation  21-561

Important Information for Proposers

A revised version of the NSF Proposal & Award Policies & Procedures Guide (PAPPG) (NSF 20-1), is effective for proposals submitted, or due, on or after June 1, 2020. Please be advised that, depending on the specified due date, the guidelines contained in NSF 20-1 may apply to proposals submitted in response to this funding opportunity.


Deep learning has met with impressive empirical success that has fueled fundamental scientific discoveries and transformed numerous application domains of artificial intelligence. Our incomplete theoretical understanding of the field, however, impedes accessibility to deep learning technology by a wider range of participants. Confronting our incomplete understanding of the mechanisms underlying the success of deep learning should serve to overcome its limitations and expand its applicability. The National Science Foundation Directorates for Mathematical and Physical Sciences (MPS), Computer and Information Science and Engineering (CISE), Engineering (ENG), and Social, Behavioral and Economic Sciences (SBE) will jointly sponsor new research collaborations consisting of mathematicians, statisticians, electrical engineers, and computer scientists. Research activities should be focused on explicit topics involving some of the most challenging theoretical questions in the general area of Mathematical and Scientific Foundations of Deep Learning. Each collaboration should conduct training through research involvement of recent doctoral degree recipients, graduate students, and/or undergraduate students from across this multi-disciplinary spectrum. This program complements NSF's National Artificial Intelligence Research Institutes and Harnessing the Data Revolution programs by supporting collaborative research focused on the mathematical and scientific foundations of Deep Learning through a different modality and at a different scale.

When responding to this solicitation, even though proposals must be submitted through the Directorate for Mathematical and Physical Sciences, Division of Mathematical Sciences (MPS/DMS), once received, the proposals will be managed by a cross-disciplinary team of NSF Program DirectorsPI teams must collectively possess appropriate expertise in three disciplines - computer science, electrical engineering, and mathematics/statistics. Each project must clearly demonstrate substantial collaborative contributions from members of their respective communities; projects that increase diversity and broaden participation are encouraged.

A wide range of scientific themes on theoretical foundations of deep learning may be addressed in these proposals. Likely topics include but are not limited to geometric, topological, Bayesian, or game-theoretic formulations, to analysis approaches exploiting optimal transport theory, optimization theory, approximation theory, information theory, dynamical systems, partial differential equations, or mean field theory, to application-inspired viewpoints exploring efficient training with small data sets, adversarial learning, and closing the decision-action loop, not to mention foundational work on understanding success metrics, privacy safeguards, causal inference, and algorithmic fairness.  


What Has Been Funded (Recent Awards Made Through This Program, with Abstracts)

Map of Recent Awards Made Through This Program