text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Mathematical & Physical Sciences (MPS)
Mathematical & Physical Sciences (MPS)
design element
MPS Home
About MPS
Funding Opportunities
Advisory Committee
Career Opportunities
2013-2014 Distinguished Lecture Series
View MPS Staff
MPS Organizations
Astronomical Sciences (AST)
Chemistry (CHE)
Materials Research (DMR)
Mathematical Sciences (DMS)
Physics (PHY)
Office of Multidisciplinary Activities (OMA)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Merit Review
NSF Outreach
Policy Office
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page

Nuclear Physics - Experiment


Name Email Phone Room
Kenneth  Hicks khicks@nsf.gov (703) 292-8095  1015 N  
Allena  K. Opper aopper@nsf.gov (703) 292-8958  1015 N  


15-579  Program Solicitation

Important Information for Proposers

A revised version of the NSF Proposal & Award Policies & Procedures Guide (PAPPG) (NSF 16-1), is effective for proposals submitted, or due, on or after January 25, 2016. Please be advised that, depending on the specified due date, the guidelines contained in NSF 16-1 may apply to proposals submitted in response to this funding opportunity.


Full Proposal Deadline Date:  November 11, 2016

Second Friday in November, Annually Thereafter


Nuclear physics ranges from the very tiny kernel at the center of all matter to gigantic stars burning throughout the universe, as understood through the strong and electroweak interactions.  It seeks to answer questions such as: 

·          What are the phases of strongly interacting matter and what roles do they play in the cosmos?

·          What is the internal structure of hadrons in terms of quarks and gluons?

·          What is the role of gluons in mesons, nucleons and nuclei? 

·          What is the nature of the nuclear force that binds protons and neutrons into stable nuclei and rare isotopes? 

·          How much mass do neutrinos have and could they be their own anti-particle? Could neutrinos help us understand why there is more matter than anti-matter in the universe?

Responding to these fundamental questions is part of human nature and leads students as well as other researchers to develop both innovative and incremental advances in nuclear physics and other fields.


The experimental nuclear physics program supports research at the frontiers of nuclear science, including: properties and behavior of nuclei and nuclear matter under extreme conditions, and/or as they relate to astrophysical phenomena; the quark-gluon basis for the structure and dynamics of hadrons and nuclei; phase transitions of nuclear matter from normal nuclear density and temperature to the predicted high-temperature quark-gluon plasma; basic interactions and fundamental symmetries; and neutrino properties as determined through neutrino-less double beta decay.  This research involves many venues, including low-energy to multi-GeV electrons and photons; intermediate-energy light ions; low-energy to relativistic heavy ions, including radioactive beams; cold and ultra-cold neutrons; weakly decaying nuclei; as well as non-accelerator-based experiments.  Proposals that include scientific scope outside the program may be co-reviewed with other programs within the Physics Division and/or other Divisions.  Proposals submitted to the program that are determined to be more complex may, at the discretion of the Program Officer, be subjected to an additional level of review.


 The program supports university user groups executing experiments at a large number of laboratories and facilities in the United States and abroad, and a national user facility: the National Superconducting Cyclotron Laboratory, a superconducting, heavy-ion cyclotron facility at Michigan State University. The program also supports smaller accelerator facilities, such as those at Florida State University and the University of Notre Dame. Some awards are co-funded with other programs in the Physics Division and in other divisions.


Proposals to the Physics Division must be submitted through the Division of Physics: Investigator-Initiated Research Projects solicitation.

The solicitation follows most of the requirements in the Grant Proposal Guide, but has additional requirements that relate primarily to proposers who anticipate having multiple sources of support, and proposals involving significant instrumentation development, and proposals with letters of collaboration. The solicitation also has deadlines instead of target dates.


All proposals submitted to the Physics Division that are not governed by another solicitation (such as CAREER) should be submitted to this solicitation; otherwise they will be returned without review.



* Petascale Computing Resource Allocations (PRAC) [preparing for Blue Waters]

* NSF-DOE Nuclear Science Advisory Committee

* American Physical Society Division of Nuclear Physics


What Has Been Funded (Recent Awards Made Through This Program, with Abstracts)

Map of Recent Awards Made Through This Program



Email this pagePrint this page
Back to Top of page