Environmental Assessment of a Low-Energy Marine Geophysical Survey by the R/V Thompson in the Western Tropical Pacific Ocean, November–December 2011

Prepared for

Scripps Institution of Oceanography
8602 La Jolla Shores Drive
La Jolla, CA. 92037

and

National Science Foundation
Division of Ocean Sciences
4201 Wilson Blvd., Suite 725
Arlington, VA 22230

by

LGL Ltd., environmental research associates
22 Fisher St., POB 280
King City, Ont. L7B 1A6

26 May 2011
Revised 16 August 2011
LGL Report TA8009-1
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF ACRONYMS</td>
<td>viii</td>
</tr>
<tr>
<td>I. PURPOSE AND NEED</td>
<td>1</td>
</tr>
<tr>
<td>II. ALTERNATIVES INCLUDING PROPOSED ACTION</td>
<td>2</td>
</tr>
<tr>
<td>Proposed Action</td>
<td>2</td>
</tr>
<tr>
<td>(1) Project Objectives and Context</td>
<td>2</td>
</tr>
<tr>
<td>(2) Proposed Activities</td>
<td>2</td>
</tr>
<tr>
<td>(3) Monitoring and Mitigation Measures</td>
<td>6</td>
</tr>
<tr>
<td>Alternative Action: Another Time</td>
<td>11</td>
</tr>
<tr>
<td>No Action Alternative</td>
<td>11</td>
</tr>
<tr>
<td>III. AFFECTED ENVIRONMENT</td>
<td>12</td>
</tr>
<tr>
<td>Oceanography</td>
<td>12</td>
</tr>
<tr>
<td>Protected Areas</td>
<td>13</td>
</tr>
<tr>
<td>Marine Mammals</td>
<td>13</td>
</tr>
<tr>
<td>(1) Mysticetes</td>
<td>13</td>
</tr>
<tr>
<td>(2) Odontocetes</td>
<td>19</td>
</tr>
<tr>
<td>(3) Pinniped</td>
<td>28</td>
</tr>
<tr>
<td>Sea Turtles</td>
<td>29</td>
</tr>
<tr>
<td>(1) Leatherback Turtle</td>
<td>29</td>
</tr>
<tr>
<td>(2) Green Turtle</td>
<td>30</td>
</tr>
<tr>
<td>(3) Loggerhead Turtle</td>
<td>31</td>
</tr>
<tr>
<td>(4) Hawksbill Turtle</td>
<td>32</td>
</tr>
<tr>
<td>(5) Olive Ridley Turtle</td>
<td>32</td>
</tr>
<tr>
<td>Seabirds</td>
<td>34</td>
</tr>
<tr>
<td>(1) Black-footed Albatross</td>
<td>34</td>
</tr>
<tr>
<td>(2) Hawaiian Petrel</td>
<td>34</td>
</tr>
<tr>
<td>(3) Newell's Shearwater</td>
<td>34</td>
</tr>
<tr>
<td>IV. ENVIRONMENTAL CONSEQUENCES</td>
<td>34</td>
</tr>
<tr>
<td>Proposed Action</td>
<td>34</td>
</tr>
<tr>
<td>(1) Direct Effects on Marine Mammals and Sea Turtles and Their Significance</td>
<td>34</td>
</tr>
<tr>
<td>(2) Mitigation Measures</td>
<td>49</td>
</tr>
<tr>
<td>(3) Potential Numbers of Marine Mammals Exposed to Received Sound Levels ≥160 dB</td>
<td>49</td>
</tr>
<tr>
<td>(4) Conclusions for Marine Mammals and Sea Turtles</td>
<td>52</td>
</tr>
<tr>
<td>(5) Direct Effects on Fish, Fisheries, and EFH and Their Significance</td>
<td>54</td>
</tr>
<tr>
<td>(6) Direct Effects on Invertebrates and Their Significance</td>
<td>57</td>
</tr>
<tr>
<td>(7) Direct Effects on Seabirds and Their Significance</td>
<td>59</td>
</tr>
<tr>
<td>(8) Indirect Effects on Marine Mammals, Sea Turtles, and Their Significance</td>
<td>60</td>
</tr>
<tr>
<td>(9) Cumulative Effects</td>
<td>60</td>
</tr>
</tbody>
</table>

Environmental Assessment for SIO Western Pacific Cruise, 2011
Table of Contents

(10) Unavoidable Impacts .. 66
(11) Coordination with Other Agencies and Processes ... 66

Alternative Action: Another Time .. 66
No Action Alternative .. 67

V. LIST OF PREPARERS .. 68

VI. LITERATURE CITED .. 69

Marine Mammals and Acoustics ... 69
Sea Turtles, Fish, and Other .. 90

APPENDIX A: REVIEW OF THE EFFECTS OF AIRGUN SOUNDS ON MARINE MAMMALS 99

1. Categories of Noise Effects ... 99
2. Hearing Abilities of Marine Mammals .. 99
 2.1 Toothed Whales ... 100
 2.2 Baleen Whales ... 101
 2.3 Seals and Sea Lions ... 101
 2.4 Manatees and Dugong ... 102
 2.5 Sea Otter and Polar Bear .. 102
3. Characteristics of Airgun Sounds ... 102
4. Masking Effects of Airgun Sounds ... 104
5. Disturbance by Seismic Surveys ... 106
 5.1 Baleen Whales ... 107
 5.2 Toothed Whales ... 113
 5.3 Pinnipeds ... 119
 5.4 Sirenians, Sea Otter and Polar Bear ... 121
6. Hearing Impairment and Other Physical Effects of Seismic Surveys 121
 6.1 Temporary Threshold Shift (TTS) ... 122
 6.2 Permanent Threshold Shift (PTS) .. 127
 6.3 Strandings and Mortality .. 129
 6.4 Non-Auditory Physiological Effects .. 131
7. Literature Cited ... 131

APPENDIX B: REVIEW OF THE EFFECTS OF AIRGUN SOUNDS ON SEA TURTLES 147

1. Sea Turtle Hearing .. 147
2. Effects of Airgun Pulses on Behavior and Movement ... 149
3. Possible Effects of Airgun Sounds on Distribution .. 152
4. Possible Impacts of Airgun Sounds on Hearing ... 153
5. Other Physical Effects ... 155
6. Conclusions ... 155
7. Literature Cited .. 155

APPENDIX C: REVIEW OF THE EFFECTS OF AIRGUN SOUNDS ON FISHES 160

1. Acoustic Capabilities .. 160
Table of Contents

2. Potential Effects on Fishes .. 162
 2.1 Marine Fishes ... 162
 2.2 Freshwater Fishes ... 165
 2.3 Anadromous Fishes .. 166

3. Indirect Effects on Fisheries .. 166

4. Literature Cited .. 167

APPENDIX D: REVIEW OF THE EFFECTS OF AIRGUN SOUNDS ON MARINE INVERTEBRATES 171
 1. Sound Production .. 171
 2. Sound Detection .. 172
 3. Potential Seismic Effects .. 172
 4. Literature Cited .. 176
ABSTRACT

The Scripps Institution of Oceanography (SIO), with funding from the National Science Foundation (NSF), and in collaboration with the University of Washington (UW), Woods Hole Oceanographic Institution (WHOI), Texas A&M University (TAMU), and Kutztown University, plans to conduct a magnetic and seismic study of the Hawaiian Jurassic crust with the R/V Thomas G. Thompson in the western tropical Pacific Ocean north of the Marshall Islands for ~32 days in November–December 2011. The seismic survey will occur in water depths ranging from ~2000 m to ~6000 m. This project will be conducted partly in International Waters and partly in the Exclusive Economic Zone (EEZ) of Wake Island (U.S.), and possibly partly in the EEZ of the Republic of the Marshall Islands. On behalf of UW, the U.S. State Department will seek authorization from the Republic of the Marshall Islands for clearance to work in its EEZ.

SIO is requesting an Incidental Harassment Authorization (IHA) from the National Marine Fisheries Service (NMFS) to authorize the incidental, i.e., not intentional, harassment of small numbers of marine mammals should this occur during the seismic survey. The information in this Environmental Assessment (EA) supports the IHA application process and provides information on marine species that are not addressed by the IHA application, notably sea turtles, which are listed under the U.S. Endangered Species Act (ESA). The EA addresses the requirements of the National Environmental Policy Act (NEPA) and Executive Order 12114, “Environmental Effects Abroad of Major Federal Actions”. Alternatives addressed in this EA consist of a corresponding program at a different time, along with issuance of an associated IHA; and the no action alternative, with no IHA and no seismic survey.

Numerous species of cetaceans and pinnipeds inhabit the western tropical Pacific. Several of these species are listed as endangered under the ESA, including the humpback, sei, fin, blue, and sperm whales, and the Hawaiian monk seal. Other species of special concern that could occur in the survey area are the endangered leatherback and hawksbill turtles and threatened loggerhead, green, and olive ridley turtles. Listed seabirds that could be encountered in the area include the endangered Hawaiian petrel and the threatened Newell’s shearwater; the black-footed albatross is a candidate species for listing.

Potential impacts of the seismic survey on the environment would be primarily a result of the operation of the GI airguns. A multibeam echosounder and sub-bottom profiler will also be operated. Impacts would be associated with increased underwater noise, which could result in avoidance behavior of marine mammals, sea turtles, and fish, and other forms of disturbance. An integral part of the planned survey is a monitoring and mitigation program designed to minimize potential impacts of the proposed activities on marine animals present during the proposed research, and to document as much as possible the nature and extent of any effects. Injurious impacts to marine mammals and sea turtles have not been proven to occur as a result of airgun arrays, and also are not likely to be caused by the other types of sound sources to be used. The planned monitoring and mitigation measures would minimize the possibility of such effects.

Protection measures designed to mitigate the potential environmental impacts to marine mammals and turtles will include the following: ramp ups; typically two, but a minimum of one dedicated observer maintaining a visual watch during all daytime seismic operations; two observers 30 min before and during ramp ups during the day and at night; no start ups during poor visibility or at night unless at least one airgun has been operating; and shut downs when marine mammals or sea turtles are detected in or about to enter designated exclusion zones. SIO and its contractors are committed to applying these measures in order to minimize effects on marine mammals and other environmental impacts.
With the planned monitoring and mitigation measures, unavoidable impacts to each species of marine mammal and turtle that could be encountered are expected to be limited to short-term, localized changes in behavior and distribution near the seismic vessel. At most, effects on marine mammals may be interpreted as falling within the U.S. Marine Mammal Protection Act (MMPA) definition of “Level B Harassment” for those species managed by NMFS. No long-term or significant effects are expected on individual marine mammals, sea turtles, or the populations to which they belong, or on their habitats.
LIST OF ACRONYMS

~ approximately
AMVER Atlantic Merchant Vessel Emergency Reporting
AUV Autonomous Underwater Vehicle
CITES Convention on International Trade in Endangered Species
CNMI Commonwealth of the Northern Mariana Islands
CPA Closest Point of Approach
CPUE Catch per Unit Effort
DFO Fisheries and Oceans Canada
DoN Department of the Navy
E east
EA Environmental Assessment
EEZ Exclusive Economic Zone
EFH Essential Fish Habitat
ESA (U.S.) Endangered Species Act
ETP eastern tropical Pacific Ocean
EZ Exclusion Zone
FM frequency modulated
GI Generator-Injector
GIS Geographic Information System
h hour
hp horsepower
IAGC International Association of Geophysical Contractors
IHA Incidental Harassment Authorization (under MMPA)
in inch
IUCN International Union for the Conservation of Nature
IWC International Whaling Commission
kt knot
L-DEO Lamont-Doherty Earth Observatory
m meter
MBES Multibeam echosounder
min minute
MIME Marshall Island Marine Ecoregion
MIRC Mariana Islands Range Complex
MISTCS Mariana Islands Sea Turtle Cetacean Survey
MMPA (U.S.) Marine Mammal Protection Act
ms millisecond
MTTS Masked Temporary Threshold Shift
n.mi. nautical mile
NEPA (U.S.) National Environmental Policy Act
NMFS (U.S.) National Marine Fisheries Service
NOAA National Oceanographic and Atmospheric Administration
NRC (U.S.) National Research Council
NSF National Science Foundation
NVD Night Vision Device
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODEC</td>
<td>Ocean Data Equipment Corporation</td>
</tr>
<tr>
<td>ONR</td>
<td>(U.S.) Office of Naval Research</td>
</tr>
<tr>
<td>PAM</td>
<td>Passive Acoustic Monitoring</td>
</tr>
<tr>
<td>PI</td>
<td>Principal Investigator</td>
</tr>
<tr>
<td>PIFSC</td>
<td>Pacific Island Fisheries Science Center</td>
</tr>
<tr>
<td>pk</td>
<td>peak</td>
</tr>
<tr>
<td>ppt</td>
<td>parts per thousand</td>
</tr>
<tr>
<td>PRINMM</td>
<td>Pacific Remote Islands National Marine Monument</td>
</tr>
<tr>
<td>psi</td>
<td>pounds per square inch</td>
</tr>
<tr>
<td>PTS</td>
<td>Permanent Threshold Shift</td>
</tr>
<tr>
<td>PSO</td>
<td>Protected Species Observer</td>
</tr>
<tr>
<td>RMI</td>
<td>Republic of the Marshall Islands</td>
</tr>
<tr>
<td>rms</td>
<td>root-mean-square</td>
</tr>
<tr>
<td>rpm</td>
<td>rotations per minute</td>
</tr>
<tr>
<td>s</td>
<td>second</td>
</tr>
<tr>
<td>SBP</td>
<td>sub-bottom profiler</td>
</tr>
<tr>
<td>SE</td>
<td>southeast</td>
</tr>
<tr>
<td>SEL</td>
<td>sound energy level</td>
</tr>
<tr>
<td>SIO</td>
<td>Scripps Institution of Oceanography</td>
</tr>
<tr>
<td>SL</td>
<td>source level</td>
</tr>
<tr>
<td>SPL</td>
<td>sound pressure level</td>
</tr>
<tr>
<td>SOSUS</td>
<td>Sound Surveillance System</td>
</tr>
<tr>
<td>SWFSC</td>
<td>Southwest Fisheries Science Center</td>
</tr>
<tr>
<td>TAMU</td>
<td>Texas A&M University</td>
</tr>
<tr>
<td>TEU</td>
<td>twenty-foot equivalent unit</td>
</tr>
<tr>
<td>Thompson</td>
<td>R/V Thomas G. Thompson</td>
</tr>
<tr>
<td>TTS</td>
<td>Temporary Threshold Shift</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environment Programme</td>
</tr>
<tr>
<td>U.S.</td>
<td>United States of America</td>
</tr>
<tr>
<td>USCG</td>
<td>United States Coast Guard</td>
</tr>
<tr>
<td>USFWS</td>
<td>U.S. Fish and Wildlife Service</td>
</tr>
<tr>
<td>USN</td>
<td>U.S. Navy</td>
</tr>
<tr>
<td>vs.</td>
<td>versus</td>
</tr>
<tr>
<td>W</td>
<td>west</td>
</tr>
<tr>
<td>WCMC</td>
<td>World Conservation Monitoring Centre</td>
</tr>
<tr>
<td>WHOI</td>
<td>Woods Hole Oceanographic Institution</td>
</tr>
</tbody>
</table>

List of Acronyms
I. PURPOSE AND NEED

The oceanographic research vessel R/V Thomas G. Thompson is operated by the University of Washington (UW) under a charter agreement with the U.S. Office of Naval Research (ONR). The title of the vessel is held by the U.S. Navy. Scripps Institution of Oceanography (SIO), a part of the University of California, in collaboration with UW, Woods Hole Oceanographic Institution (WHOI), Texas A&M University (TAMU), and Kutztown University, plans to conduct a magnetic and seismic study of the Hawaiian Jurassic crust onboard the R/V Thompson in the western tropical Pacific Ocean north of the Marshall Islands for ~32 days in November–December 2011. The National Science Foundation (NSF) is the agency of the U.S. Government that is providing the funding to support the research to be undertaken on this research cruise. The marine magnetic and seismic survey will take place in water depths ranging from ~2000 m to 6000 m partly in International Waters and partly in the Exclusive Economic Zone (EEZ) of Wake Island (U.S.), and possibly partly in the EEZ of the Republic of the Marshall Islands. On behalf of UW, the U.S. State Department will seek authorization from the Republic of the Marshall Islands for clearance to work in its EEZ.

The goal of the proposed research is to define the global nature and significance of variations in intensity and direction of the Earth’s magnetic field during the Jurassic time period (~145–180 million years ago), which appears to have been a period of sustained low intensity and rapid directional changes or polarity reversals compared to other periods in Earth’s magnetic field history. Access to Jurassic-aged crust with good magnetic signals is very limited, with the best continuous records in ocean crust, but only one area of the ocean floor has been measured to date: the western Pacific Japanese magnetic lineations. To properly assess the global significance of the variations and to eliminate local crustal and tectonic complications, it is necessary to measure Jurassic magnetic signals in a different area of the world. The proposed study will attempt to verify the unusual behavior of the Jurassic geomagnetic field and test whether it was behaving in a globally coherent way by conducting a near-bottom marine magnetic field survey of Pacific Hawaiian Jurassic crust located between Hawaii and Guam.

Widespread, younger, Cretaceous-aged (65–140 million years ago) volcanism overprinted much of the western Pacific, so it is important to know the extent of Cretaceous-aged volcanic crust. This will be assessed by carrying out a seismic reflection and refraction survey of the Hawaiian Jurassic crust. First, the autonomous underwater vehicle (AUV) SENTRY and a simultaneously deployed deep-towed magnetometer system will acquire two parallel profiles of the near-bottom crustal magnetic field 10 km apart and ~800 km long. Second, the seismic survey will be conducted using airguns, a hydrophone streamer, and sonobuoys directly over the same profile as the AUV magnetic survey.

Numerous species of cetaceans and pinnipeds occur in the western tropical Pacific Ocean. Several of these species are listed as endangered under the U.S. Endangered Species Act (ESA), including the humpback, sei, fin, blue, and sperm whales, and the Hawaiian monk seal. Other species of concern that could occur in the survey area are the endangered leatherback and hawksbill turtles, and the threatened loggerhead, green, and olive ridley turtles. Listed seabirds that could be encountered in the area include the endangered Hawaiian petrel and the threatened Newell’s shearwater; the black-footed albatross is a candidate species for listing.

The purpose of this Environmental Assessment (EA) is to provide the information needed to assess the potential environmental impacts associated with the use of the GI airguns during the proposed survey. The EA was prepared under the National Environmental Policy Act (NEPA) and Executive Order 12114, “Environmental Effects Abroad of Major Federal Actions”. The EA addresses potential impacts of the
proposed seismic survey on marine mammals, as well as other species of concern in the survey area, notably sea turtles. The EA also provides useful information in support of an application for an Incidental Harassment Authorization (IHA) from the National Marine Fisheries Service (NMFS). The requested IHA would, if issued, allow the non-intentional, non-injurious “take by harassment” of small numbers of marine mammals during the proposed seismic survey by SIO during November–December 2011.

To be eligible for an IHA, the proposed “taking” (with mitigation measures in place) must not cause serious physical injury or death of marine mammals, must have negligible impacts on the species and stocks, must “take” no more than small numbers of those species or stocks, and must not have an unmitigable adverse impact on the availability of the species or stocks for legitimate subsistence uses.

Protection measures designed to mitigate the potential environmental impacts are also described in this EA as an integral part of the planned activities. With these mitigation measures in place, any impacts on marine mammals and sea turtles are expected to be limited to short-term, localized changes in behavior of small numbers of animals. No long-term or significant effects are expected on individual mammals, turtles, or populations.

II. ALTERNATIVES INCLUDING PROPOSED ACTION

Three alternatives are evaluated: (1) the proposed seismic survey and issuance of an associated IHA, (2) a corresponding seismic survey at an alternative time, along with issuance of an associated IHA, and (3) no action alternative.

Proposed Action

The project objectives and context, activities, and mitigation measures for SIO’s planned seismic survey are described in the following subsections.

(1) Project Objectives and Context

The Principal Investigators (PIs) plan to conduct a seismic survey in the western tropical Pacific as part of an integrated magnetic and seismic study of the Hawaiian Jurassic crust. The variations in intensity and direction of the Earth’s magnetic field during the Jurassic time period (~145–180 million years ago) will be studied using a near-bottom marine magnetic field survey using the autonomous underwater vehicle (AUV) Sentry. A subsequent seismic reflection and refraction survey over the magnetic profiles will assess the amount of Cretaceous volcanic overprint of the Hawaiian Jurassic crust.

(2) Proposed Activities

(a) Location of the Activities

The survey will encompass the area ~13°N–23°N, ~158–172°E, just north of the Marshall Islands (Fig. 1). Water depths in the survey area generally range from ~2000 m to ~6000 m; Wake Island is included in the survey area. The seismic survey will be conducted partly in International Waters and partly in the EEZ of Wake Island (U.S.), and possibly partly in the EEZ of the Republic of the Marshall Islands, and is scheduled to occur for ~32 days between 5 November and 17 December 2011. Some minor deviation from these dates is possible, depending on logistics and weather.

(b) Description of the Activities

The survey will involve one source vessel, the R/V Thompson. For the seismic component of the research program, the source vessel will deploy a pair of low-energy Generator-Injector (GI) airguns as an
energy source (each with a discharge volume of 45–105 in³), an 800-m, 48-channel hydrophone streamer, and sonobuoys. The energy to the airguns is compressed air supplied by compressors on board the source vessel. As the airguns are towed along the survey lines, the hydrophone streamer and sonobuoys will receive the returning acoustic signals and transfer the data to the on-board processing system. During the seismic operations, 50 Ultra Electronics AN/SSQ-53D(3) directional, passive sonobuoys will be deployed from the vessel. The sonobuoys consist of a hydrophone, electronics, and a radio transmitter. The seismic signal is measured by the hydrophone and transmitted by radio back to the source vessel. The sonobuoys are expendable, and after a pre-determined time (usually 8 h), they self-scuttle and sink to the ocean bottom.
The program will consist of ~1600 km of surveys (Fig. 1). Water depths within the seismic survey area are ~2000–6000 m. The GI airguns will be operated along two parallel lines 10 km apart and 800 km long that are also the lines along which magnetic profiles will be acquired using the autonomous underwater vehicle (AUV) Sentry. More information about the AUV Sentry is available at http://www.whoi.edu/page.do?pid=38098. The survey lines will be within the area enclosed by red lines in Figure 1, but the exact locations of the survey lines will be determined during transit after observing the location of the appropriate magnetic lineation by surface-towed magnetometer. Magnetic and seismic data acquisition will alternate on a daily basis; seismic surveys will take place while the AUV used to collect magnetic data is on deck to recharge its batteries. There will be additional seismic operations associated with equipment testing, startup, and possible line changes or repeat coverage of any areas where initial data quality is sub-standard. In our calculations (see § IV(3)), 25% has been added for these contingency operations.

In addition to the GI airguns, a multibeam echosounder (MBES) and a sub-bottom profiler (SBP) will be used throughout the cruise. All planned geophysical data acquisition activities will be conducted by technicians provided by SIO with on-board assistance by the scientists who have proposed the study. The Principal Investigators are Drs. Masako Tominaga, Maurice A. Tivey, and Daniel Lizarralde of WHOI, William W. Sager of TAMU, and Adrienne Oakley of Kutztown University. The vessel will be self-contained, and the crew will live aboard the vessel for the entire cruise.

(c) Schedule

The R/V Thompson is expected to depart Honolulu, HI, on 5 November 2011 and spend ~7 days in transit to the proposed survey area, 32 days alternating between acquiring magnetic and seismic data, and ~3 days in transit, arriving at Apra Harbor, Guam, on 17 December 2011. Seismic operations will be conducted for a total of ~16 days. The exact dates of the activities depend on logistics, weather conditions, and the need to repeat some lines if data quality is substandard.

(d) Source Vessel Specifications

The R/V Thompson has a length of 83.5 m, a beam of 16 m, and a full load draft of 5.8 m. It is equipped with twin 360°-azimuth stern thrusters each powered by a 3000-hp DC motor and a water-jet bow thruster powered by a 1600-hp DC motor. The motors are driven by up to three 1500-kW and three 715-kW generators; normal operations use two 1500-kW and one 750-kW generator, but this changes with ship speed, sea state, and other variables. An operation speed of 7.4 km/h (4 kt) will be used during seismic acquisition. When not towing seismic survey gear, the R/V Thompson cruises at 22 km/h (12 kt) and has a maximum speed of 26.9 km/h (14.5 kt). It has a normal operating range of ~24,400 km.

The R/V Thompson will also serve as the platform from which vessel-based protected species observers (PSOs) will watch for marine mammals and sea turtles before and during airgun operations. The characteristics of the vessel that make it suitable for visual monitoring are described in § II(3)(b).

Other details of the R/V Thompson include the following:

- **Owner:** U.S. Navy
- **Operator:** University of Washington
- **Flag:** United States of America
- **Launch Date:** 8 July 1991
- **Gross Tonnage:** 3250 LT
- **Compressors for Airguns:** 2 x LMF DC, capable of 175 scfm at 2000 psi
- **Accommodation Capacity:** 60 including 36 scientists
(e) Airgun Description

The R/V Thompson will tow a pair of 45–105-in3 Sercel GI airguns and a streamer containing hydrophones along predetermined lines. Seismic pulses will be emitted at intervals of 5 or 10 seconds. At speeds of \sim7.4 km/h, the 5–10-s spacing corresponds to shot intervals of \sim10–20 m.

The generator chamber of each GI airgun, the one responsible for introducing the sound pulse into the ocean, is either 45 in3 or 105-in3, depending on how it is configured. The injector chamber injects air into the previously-generated bubble to maintain its shape, and does not introduce more sound into the water. The two GI airguns will be towed 8 m apart side by side, 21 m behind the R/V Thompson, at a depth of 3 m. Depending on configuration, the total effective volume will be 90 in3 or 210 in3. As a precautionary measure, we assume that the larger volume will be used.

As the GI airgun is towed along the survey line, the towed hydrophone array in the streamer and the sonobuoys receive the reflected signals and transfer the data to the on-board processing system. Given the relatively short streamer length behind the vessel, the turning rate of the vessel while the gear is deployed is much higher than the limit of five degrees per minute for a seismic vessel towing a streamer of more typical length (\gg1 km). Thus, the maneuverability of the vessel is not limited much during operations.

GI Airgun Specifications

<table>
<thead>
<tr>
<th>Energy Source</th>
<th>Two GI airguns of 105 in3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source output (downward)</td>
<td>0-pk is 5.5 bar-m (234.4 dB re 1 μPa · m); pk-pk is 9.8 bar-m (239.8 dB re 1 μPa · m)</td>
</tr>
<tr>
<td>Towing depth of energy source</td>
<td>3 m</td>
</tr>
<tr>
<td>Air discharge volume</td>
<td>\sim210 in3</td>
</tr>
<tr>
<td>Dominant frequency components</td>
<td>0–188 Hz</td>
</tr>
<tr>
<td>Gun positions used</td>
<td>Two side by side airguns 8 m apart</td>
</tr>
<tr>
<td>Gun volumes at each position (in3)</td>
<td>105, 105</td>
</tr>
</tbody>
</table>

The nominal downward-directed source levels indicated above do not represent actual sound levels that can be measured at any location in the water. Rather, they represent the level that would be found 1m from a hypothetical point source emitting the same total amount of sound as is emitted by the combined GI airguns. The actual received level at any location in the water near the GI airguns will not exceed the source level of the strongest individual source. In this case, that will be about 234.4 dB re 1 μPa · m peak, or 239.8 dB re 1μPa · m peak-to-peak. Actual levels experienced by any organism more than 1 m from either GI airgun will be significantly lower.

A further consideration is that the rms1 (root mean square) received levels that are used as impact criteria for marine mammals are not directly comparable to the peak (p or 0–p) or peak to peak (p–p) values normally used to characterize source levels of airgun arrays. The measurement units used to describe airgun sources, peak or peak-to-peak decibels, are always higher than the rms decibels referred to in biological literature. A measured received level of 160 dB re 1 μPa$_{\text{rms}}$ in the far field would typically correspond to \sim170 dB re 1 μPa$_{\text{p}}$, and to \sim176–178 dB re 1 μPa$_{\text{p-p}}$, as measured for the same pulse received at the same location (Greene 1997; McCauley et al. 1998, 2000a). The precise difference between rms and peak or

1 The rms (root mean square) pressure is an average over the pulse duration.
peak-to-peak values depends on the frequency content and duration of the pulse, among other factors. However, the rms level is always lower than the peak or peak-to-peak level for an airgun-type source.

Additional discussion of the characteristics of airgun pulses is included in Appendix A (3).

(f) Multibeam Echosounder and Sub-bottom Profiler Descriptions

Along with the seismic operations, two additional acoustical data acquisition systems will be operated continuously during the cruise.

Kongsberg EM300 Multibeam Echosounder.—The Kongsberg EM300 MBES has a hull-mounted transducer within a transducer pod that is located amidships. The system’s normal operating frequency is ~30 kHz. The transmit fan-beam is split into either three or nine narrower beam sectors with independent active steering to correct for vessel yaw. Angular coverage is 36° (in Extra Deep Mode, for use in water depths 3000 to 6000 m) or 150° (in shallower water). The total angular coverage of 36° or 150° consists of the 3 or 9 beams transmitted at slightly different frequencies. The sectors are frequency coded between 30 and 34 kHz and they are transmitted sequentially at each ping. Except in very deep water where the total beam is 36° × 1°, the composite fan beam is 150° × 1°, 150° × 2° or 150° × 4° depending on water depth. The 9 beams making up the composite fan beam will overlap slightly if the vessel yaw is less than the fore-aft width of the beam (1, 2, or 4°, respectively). Achievable swath width on a flat bottom will normally be ~5× the water depth. The maximum source level is 237 dB re 1 μPa·m rms (Hammerstad 2005). In deep water (500–3000 m), a pulse length of 5 ms is normally used, and the ping rate is mainly limited by the round trip travel time in the water.

ODEC Bathy-2000 Sub-bottom Profiler.—The Ocean Data Equipment Corporation (ODEC) Bathy-2000 has a maximum 7-kW transmit capacity into the underhull array. The energy from the sub-bottom profiler is directed downward from a 3-kHz transducer in the transducer array mounted in the hull of the vessel. Pulse duration ranges from 1.5 to 24 ms and the interval between pulses is controlled automatically by the system or manually by an operator depending on water depth and reflectivity of the bottom sediments. The system produces one sound pulse and then waits for its return before transmitting again. The swept (chirp) frequency ranges from 3 kHz to 6 kHz. The maximum source output (downward) is 221 dB re 1μPa, but in practice, the system is rarely operated above 80% power level.

(3) Monitoring and Mitigation Measures

Marine mammals and sea turtles are known to occur in the proposed survey area. However, the number of individual animals expected to be approached closely during the proposed activities will be relatively small in relation to regional population sizes. With the proposed monitoring and mitigation provisions, potential effects on most if not all individuals are expected to be limited to minor behavioral disturbance. Those potential effects are expected to have negligible impacts both on individual marine mammals and on the associated species and stocks.

To minimize the likelihood that potential impacts could occur to the species and stocks, airgun operations will be conducted in accordance with all applicable U.S. federal regulations and IHA requirements. The proposed seismic activities will take place in International Waters and in the EEZ of Wake Island (U.S.), and possibly in the EEZ of the Republic of the Marshall Islands. The U.S. State Department will seek authorization from the Republic of the Marshall Islands for clearance to work in its EEZ. All national and international environmental regulations identified through these processes will be met.
The following subsections provide more detailed information about the monitoring and mitigation measures that are an integral part of the planned activities. The procedures described here are based on protocols used during previous SIO seismic research cruises as approved by NMFS, and on best practices recommended in Richardson et al (1995), Pierson et al. (1998), and Weir and Dolman (2007).

(a) Planning Phase

The PIs worked with SIO and NSF to identify potential time periods to carry out the survey taking into consideration key factors such as environmental conditions (i.e., the seasonal presence of marine mammals, sea turtles, and seabirds), weather conditions, and equipment. Most marine mammal species are expected to occur in the area year-round, so altering the timing of the proposed project likely would result in no net benefits for those species. After considering the optimal energy source level necessary to achieve the research goals, the PIs determined that the use of a pair of GI airguns would be sufficient to meet the research needs.

(b) Visual Monitoring

Vessel-based PSO observations will take place during daytime airgun operations and nighttime startups of the airguns. Airgun operations will be suspended when marine mammals or turtles are observed within, or about to enter, designated exclusion zones [see subsection (e) below] where there is concern about potential effects on hearing or other physical effects. PSOs will also watch for marine mammals and turtles around the seismic vessel for at least 30 minutes prior to the start of seismic operations after an extended shutdown. When feasible, PSOs will also make observations during daytime periods when the seismic system is not operating for comparison of animal abundance and behavior.

Three PSOs will be appointed by SIO, with NMFS Office of Protected Resources concurrence. At least one PSO will monitor the EZ during seismic operations. PSOs will normally work in shifts of 4-hour duration or less. The vessel crew will also be instructed to assist in detecting marine mammals and turtles.

The Thompson will serve as the platform from which PSOs will watch for mammals and sea turtles before and during GI airgun operations. Two locations are likely as observation stations onboard the Thompson. At one station on the bridge, the eye level will be ~13.8 m above sea level and the location will offer a good view around the vessel (~310° for one observer and a full 360° when two observers are stationed at different vantage points). A second observation site is the 03 deck where the observer's eye level will be ~10.8 m above sea level. The 03 deck offers a view of 330° for two observers.

Standard equipment for marine mammal observers will be 7 x 50 reticule binoculars and optical range finders. At night, night-vision equipment will be available. The observers will be in wireless communication with ship’s officers on the bridge and scientists in the vessel’s operations laboratory, so they can advise promptly of the need for avoidance maneuvers or seismic source shut down.

(c) PSO Data and Documentation

PSOs will record data to estimate the numbers of marine mammals and turtles exposed to various received sound levels and to document apparent disturbance reactions or lack thereof. Data will be used to estimate numbers of animals potentially ‘taken’ by harassment (as defined in the MMPA). They will also provide information needed to order a shutdown of the seismic source when a marine mammal or sea turtle is within or near the EZ.

When a sighting is made, the following information about the sighting will be recorded:
1. Species, group size, age/size/sex categories (if determinable), behavior when first sighted and after initial sighting, heading (if consistent), bearing and distance from seismic vessel, sighting cue, apparent reaction to the seismic source or vessel (e.g., none, avoidance, approach, paralleling, etc.), and behavioral pace.

2. Time, location, heading, speed, activity of the vessel, sea state, visibility, and sun glare.

The data listed under (2) will also be recorded at the start and end of each observation watch, and during a watch whenever there is a change in one or more of the variables.

All observations, as well as information regarding seismic source shutdown, will be recorded in a standardized format. Data accuracy will be verified by the PSOs at sea, and preliminary reports will be prepared during the field program and summaries forwarded to the operating institution’s shore facility and to NSF weekly or more frequently. PSO observations will provide the following information:

1. The basis for decisions about shutting down the seismic source.

2. Information needed to estimate the number of marine mammals and sea turtles potentially ‘taken by harassment’. These data will be reported to NMFS and/or USFWS per terms of MMPA authorizations or regulations.

3. Data on the occurrence, distribution, and activities of marine mammals and turtles in the area where the seismic survey is conducted.

4. Data on the behavior and movement patterns of marine mammals and turtles seen at times with and without seismic activity.

(d) Reporting

A report will be submitted to NMFS within 90 days after the end of the cruise. The report will describe the operations that were conducted and sightings of marine mammals and turtles near the operations. The report will be submitted to NMFS, providing full documentation of methods, results, and interpretation pertaining to all monitoring. The 90-day report will summarize the dates and locations of seismic operations, and all marine mammal and turtle sightings (dates, times, locations, activities, associated seismic survey activities). The report will also include estimates of the amount and nature of any potential “take” of marine mammals and sea turtles by harassment or in other ways. After acceptance by NMFS, the report will be publicly available on the NSF website.

(e) Proposed Exclusion Zones

Received sound levels have been modeled by Lamont-Doherty Earth Observatory of Columbia University (L-DEO) for a number of airgun configurations, including two 105-in \(^3\) GI Guns, in relation to distance and direction from the airguns (Fig. 2). The model does not allow for bottom interactions, and is most directly applicable to deep water. Based on the modeling, estimates of the maximum distances from the GI airguns where sound levels of 190, 180, and 160 dB re 1 \(\mu\)Pa\text{rms} are predicted to be received in deep (>1000-m) water are shown in Table 1.

Empirical data concerning the 190-, 180-, 170- and 160-dB distances were acquired for various airgun arrays based on measurements during the acoustic verification studies conducted by L DEO in the northern Gulf of Mexico in 2003 (6-, 10-, 12-, and 20-airgun arrays, and 2 GI airguns; Tolstoy et al. 2004) and 2007–2008 (36-airgun array; Tolstoy et al. 2009). Results for the 36-airgun array are not relevant for the 2 GI airguns to be used in the proposed survey. The empirical data for the 6-, 10-, 12-, and 20-airgun arrays indicate that, for deep water (>1000 m), the L-DEO model tends to overestimate the
FIGURE 2. Modeled received sound levels from two 105-in3 GI airguns that will be used during the SIO survey in the western tropical Pacific Ocean during November–December 2011. Model results provided by the Lamont-Doherty Earth Observatory of Columbia University (L-DEO).
TABLE 1. Distances to which sound levels ≥190, 180, and 160 dB re 1 μPa_{rms} could be received from two 105-in³ GI airguns that will be used during the proposed seismic survey in the western tropical Pacific Ocean during November–December 2011. Distances are based on model results provided by L-DEO.

<table>
<thead>
<tr>
<th>Water depth</th>
<th>190 dB</th>
<th>180 dB</th>
<th>160 dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>>1000 m</td>
<td>20</td>
<td>70</td>
<td>670</td>
</tr>
</tbody>
</table>

received sound levels at a given distance (Tolstoy et al. 2004). Measurements were not made for the 2 GI airgun array in deep water, however, we propose to use the safety radii predicted by L-DEO’s model for the proposed GI airgun operations in deep water, although they are likely conservative given the empirical results for the other arrays. Table 1 shows the distances at which three rms sound levels are expected to be received from the GI airguns. The 180- and 190-dB re 1 μPa_{rms} distances are the safety criteria as specified by NMFS (2000) and are applicable to cetaceans and pinnipeds, respectively. The 180-dB distance will also be used as the exclusion zone for sea turtles, as required by NMFS in most other recent seismic projects (e.g., Smultea et al. 2004; Holst et al. 2005a; Holst and Beland 2008; Holst and Smultea 2008; Hauser et al. 2008). If marine mammals or sea turtles are detected within or about to enter the appropriate exclusion zone, the airguns will be shut down immediately. Southall et al. (2007) made detailed recommendations for new science-based noise exposure criteria. SIO will be prepared to revise its procedures for estimating numbers of mammals “taken”, exclusion zones, etc., as may be required by any new guidelines that result. However, currently the procedures are based on best practices noted by Pierson et al. (1998) and Weir and Dolman (2007). As yet, NMFS has not specified a new procedure for determining exclusion zones.

(e) Mitigation During Operations

In addition to marine mammal monitoring, the following mitigation measures will be adopted during the proposed seismic program, provided that doing so will not compromise operational safety requirements. Although power-down procedures are often standard operating practice for seismic surveys, they will not be used here because powering down from two airguns to one airgun would make only a small difference in the 180- or 190-dB radius—probably not enough to allow continued one-airgun operations if a mammal or turtle came within the safety radius for two airguns. Mitigation measures that will be adopted are

1. speed or course alteration;
2. shut-down procedures; and
3. ramp-up procedures.

Speed or course alteration

If a marine mammal or sea turtle is detected outside the exclusion zone and, based on its position and the relative motion, is likely to enter the exclusion zone, the vessel’s speed and/or direct course could be changed. This would be done if operationally practicable while minimizing the effect on the planned science objectives. The activities and movements of the marine mammal or sea turtle (relative to the seismic vessel) will then be closely monitored to determine whether the animal is approaching the applicable exclusion zone. If the animal appears likely to enter the exclusion zone, further mitigative actions will be taken, i.e., either further course alterations or a shut down of the seismic source. Typically, during
seismic operations, the source vessel is unable to change speed or course and one or more alternative mitigation measures (see below) will need to be implemented.

Shut-down procedures

If a marine mammal or turtle is detected outside the exclusion zone but is likely to enter the exclusion zone, and if the vessel’s speed and/or course cannot be changed to avoid having the animal enter the exclusion zone, the GI airguns will be shut down before the animal is within the exclusion zone. Likewise, if a mammal or turtle is already within the safety zone when first detected, the seismic source will be shut down immediately.

Following a shut down, seismic activity will not resume until the marine mammal or turtle has cleared the exclusion zone. The animal will be considered to have cleared the exclusion zone if it

- is visually observed to have left the exclusion zone, or
- has not been seen within the zone for 15 min in the case of small odontocetes, pinnipeds, and sea turtles; or
- has not been seen within the zone for 30 min in the case of mysticetes and large odontocetes, including sperm, pygmy sperm, dwarf sperm, and beaked whales.

Ramp-up procedures

A ramp-up procedure will be followed when the GI airguns begin operating after a specified period without GI airgun operations. It is proposed that, for the present cruise, this period would be 15 min. Ramp up will begin with a single GI airgun (105 in³). The second GI airgun (105 in³) will be added after 5 min. During ramp up, the PSOs will monitor the exclusion zone, and if marine mammals or turtles are sighted, a shut down will be implemented as though both GI airguns were operational.

If the complete exclusion zone has not been visible for at least 30 min prior to the start of operations in either daylight or nighttime, ramp up will not commence. If one GI airgun has operated, ramp up to full power will be permissible at night or in poor visibility, on the assumption that marine mammals and turtles will be alerted to the approaching seismic vessel by the sounds from the single GI airgun and could move away if they choose. A ramp up from a shut down may occur at night, but only where the safety radius is small enough to be visible. Ramp up of the GI airguns will not be initiated if a sea turtle or marine mammal is sighted within or near the applicable exclusion zones during day or night.

Alternative Action: Another Time

An alternative to issuing the IHA for the period requested and to conducting the project then, is to issue the IHA for another time and to conduct the project at that alternative time. The proposed time for the cruise in November–December 2011 is the most suitable time logistically for the R/V Thompson and the participating scientists. If the IHA is issued for another period, it could result in significant delay and disruption not only of this cruise, but of additional studies that are planned on the R/V Thompson for 2011 and beyond. An evaluation of the effects of this alternative action is given in § IV.

No Action Alternative

An alternative to conducting the proposed activities is the “No Action” alternative, i.e., do not issue an IHA and do not conduct the research operations. If the research is not conducted, the “No Action” alternative would result in no disturbance to marine mammals due to the proposed activities.
The goal of the proposed research is to define the global nature and significance of variations in intensity and direction of the Earth’s magnetic field during the Jurassic time period (~145–180 million years ago), which appears to have been a period of sustained low intensity and rapid directional changes or polarity reversals compared to other periods in Earth’s magnetic field history. Access to Jurassic-aged crust with good magnetic signals is very limited, with the best continuous records in ocean crust, but only one area of the ocean floor has been measured to date: the western Pacific Japanese magnetic lineations. To properly assess the global significance of the variations and to eliminate local crustal and tectonic complications, it is necessary to measure Jurassic magnetic signals in a different area of the world. The proposed study will attempt to verify the unusual behavior of the Jurassic geomagnetic field and test whether it was behaving in a globally coherent way by conducting a near-bottom marine magnetic field survey of Pacific Hawaiian Jurassic crust located between Hawaii and Guam.

The “No Action” alternative could also, in some circumstances, result in significant delay of other studies that are planned on the R/V Thompson for 2011 and beyond, depending on the timing of the decision. Not conducting this cruise (no action) would result in less data and support for the academic institutions involved. Data collection is an essential first step for a much greater effort to analyze and report information for the significant topics indicated. The field effort provides material for years of analyses involving multiple professors, students, and technicians. The lost opportunity to collect valuable scientific information is compounded by lost opportunities for support of research infrastructure, training, and professional career growth.

III. AFFECTED ENVIRONMENT

Oceanography

The proposed survey is located in deep oceanic waters of the western central Pacific, ~2700 km east of the Mariana Trench and ~200 km northeast of Wake Island, the northernmost of the Marshall Islands claimed by the United States and administered as an air force station. The area is part of the Marshall Island Marine Ecoregion (MIME). Very little data exist on the oceanographic current patterns around Wake Island (Lobel and Lobel 2008). A 90-day sea-level oscillation has been intermittently observed at Wake Island over a two-decade study period (Mitchum 1995). The oscillations were recorded to have amplitudes of 10–15 cm, occurred approximately 1.5 years after El-Niño events, and persisted for about one year. Mitchum (1995) suggested that the energy source, generated by eddies, originates off the Big Island of Hawaii. These ocean eddies ultimately result in a westward ocean current from Hawaii that intermittently impinge on Wake Island.

Wake Island Passage connects the Northwest Pacific Basin with the Central Pacific Basin (Uchida et al. 2007). A supply of cold, salty, oxygen-rich and silicate-poor abyssal water is supplied into the Northwest Pacific Basin through the Wake Island Passage after passing through the Samoan Passage coming from the Southwest Pacific Basin (Mantyla and Reid 1983). Uchida et al. (2007) observed close linear relationships between potential temperature and salinity, dissolved oxygen, and silicate below a potential temperature of 1.1°C (at ~4000 m depth). Above a potential temperature of 1.1°C, the relationships were scattered and divided into salty, oxygen-rich, silicate-poor water to the south and brackish, oxygen-poor and silicate-rich to the north. This led the authors to suggest that there was a boundary in the deep passage between water masses at a potential temperature of 1.1°C (Uchida et al. 2007). The high seas of the western central Pacific region are nutrient poor with an overall primary productivity rate of 222 mgCm⁻²day⁻¹ (Sea Around Us Project 2010a).
Sea surface temperatures in the Pacific Islands are relatively warm throughout the year, with water south of New Caledonia dropping to 22°C in austral winter, and the waters north of the Marianas remain ~24°C in the northern winter (Miller 2009). The majority of tropical cyclones occur in the area from late summer to autumn (Lobel and Lobel 2008).

Protected Areas

One Marine Protected Area, the Pacific Remote Islands National Marine Monument (PRINMM), occurs near the proposed survey area. The PRINMM was proclaimed a national monument on 6 January 2009 by U.S. President George W. Bush under Presidential Proclamation 8336 (USFWS 2011). The monument covers ~224,000 km², including Wake Island (Fig. 1). The land area at Wake Atoll remains under the jurisdiction of the U.S. Air Force, but the waters out to 22 km from shore are protected as units of the National Wildlife Refuge System. Fishery-related activities seaward from the 22-km refuge boundary out to the 93-km boundary are managed by the National Oceanic and Atmospheric Administration (NOAA).

Marine Mammals

Twenty-six marine mammal species are known to occur in the MIME, including 19 odontocetes (dolphins and toothed whales), 6 mysticetes (baleen whales), and one pinniped (seals and sea lions). Information on the occurrence, distribution, population size, and conservation status for each of the 26 marine mammal species that could occur in the proposed survey area is given in Table 2. The status of these species is based on the ESA, the International Union for the Conservation of Nature (IUCN) Red List of Threatened Species, and the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). Six species are listed under the ESA as Endangered: sperm, humpback, fin, sei, and blue whales, and the Hawaiian monk seal. The North Pacific right whale, listed as Endangered, was historically distributed throughout the North Pacific Ocean north of 35ºN and occasionally occurred as far south as 20ºN. Whaling records indicate that the MIME was not part of its range (Townsend 1935).

The dugong (Dugong dugon), also listed under the ESA as Endangered, is distributed in shallow coastal waters throughout most of the Indo-Pacific region between ~27º north and south of the Equator (Marsh 2008). It’s historical range extended to the Marshall Islands (Nair et al. 1975). However, the dugong is declining or extinct in at least 1/3 of its range and no longer occurs in the MIME (Marsh 2008) and is therefore not discussed further in this analysis.

(1) Mysticetes

Humpback Whale (Megaptera novaeangliae)

The humpback whale is found throughout all of the oceans of the world (Clapham 2002). The species is listed as Endangered under the ESA, Least Concern on the 2010 IUCN Red List of Threatened Species (IUCN 2010), and is listed in CITES Appendix I (UNEP-WCMC 2010) (Table 2). The worldwide population of humpback whales is divided into northern and southern ocean populations, but genetic analyses suggest some gene flow (either past or present) between the North and South Pacific oceans (e.g., Baker et al. 1993; Caballero et al. 2001). The North Pacific stock has been recently estimated at 18,302 whales, excluding calves (Calambokidis et al. 2008; IUCN 2010). Barlow et al. (2009) provided a bias-corrected abundance estimate of 20,800.
Table 2. The habitat, regional population sizes, and conservation status of marine mammals that could occur in or near the proposed seismic survey area.

<table>
<thead>
<tr>
<th>Species</th>
<th>Habitat</th>
<th>Regional pop’n size</th>
<th>U.S. ESA</th>
<th>IUCN</th>
<th>CITES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mysticetes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humpback whale</td>
<td>Mainly nearshore waters and banks</td>
<td>20,800</td>
<td>EN</td>
<td>LC</td>
<td>I</td>
</tr>
<tr>
<td>Minke whale</td>
<td>Pelagic and coastal</td>
<td>25,000</td>
<td>NL</td>
<td>LC</td>
<td>I</td>
</tr>
<tr>
<td>Bryde’s whale</td>
<td>Pelagic and coastal</td>
<td>20,000–30,000</td>
<td>NL</td>
<td>DD</td>
<td>I</td>
</tr>
<tr>
<td>Sei whale</td>
<td>Primarily offshore, pelagic</td>
<td>7260–12,620</td>
<td>EN</td>
<td>EN</td>
<td>I</td>
</tr>
<tr>
<td>Fin whale</td>
<td>Continental slope, mostly pelagic</td>
<td>13,620–18,680</td>
<td>EN</td>
<td>EN</td>
<td>I</td>
</tr>
<tr>
<td>Blue whale</td>
<td>Pelagic and coastal</td>
<td>N.A.</td>
<td>EN</td>
<td>EN</td>
<td>I</td>
</tr>
<tr>
<td>Odontocetes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sperm whale</td>
<td>Usually pelagic and deep seas</td>
<td>29,674</td>
<td>EN</td>
<td>VU</td>
<td>I</td>
</tr>
<tr>
<td>Pygmy sperm whale</td>
<td>Deep waters off the shelf</td>
<td>N.A.</td>
<td>NL</td>
<td>DD</td>
<td>II</td>
</tr>
<tr>
<td>Dwarf sperm whale</td>
<td>Deep waters off the shelf</td>
<td>11,200</td>
<td>NL</td>
<td>DD</td>
<td>II</td>
</tr>
<tr>
<td>Cuvier’s beaked whale</td>
<td>Pelagic</td>
<td>20,000</td>
<td>NL</td>
<td>LC</td>
<td>II</td>
</tr>
<tr>
<td>Longman’s beaked whale</td>
<td>Deep water</td>
<td>N.A.</td>
<td>NL</td>
<td>DD</td>
<td>II</td>
</tr>
<tr>
<td>Blainville’s beaked whale</td>
<td>Pelagic</td>
<td>25,300</td>
<td>NL</td>
<td>DD</td>
<td>II</td>
</tr>
<tr>
<td>Ginkgo-toothed beaked whale</td>
<td>Pelagic</td>
<td>N.A.</td>
<td>NL</td>
<td>DD</td>
<td>II</td>
</tr>
<tr>
<td>Rough-toothed dolphin</td>
<td>Deep water</td>
<td>146,000</td>
<td>NL</td>
<td>LC</td>
<td>II</td>
</tr>
<tr>
<td>Common bottlenose dolphin</td>
<td>Coastal and oceanic, shelf break</td>
<td>243,500</td>
<td>NL</td>
<td>LC</td>
<td>II</td>
</tr>
<tr>
<td>Pantropical spotted dolphin</td>
<td>Coastal and pelagic</td>
<td>800,000</td>
<td>NL</td>
<td>LC</td>
<td>II</td>
</tr>
<tr>
<td>Spinner dolphin</td>
<td>Coastal and pelagic</td>
<td>800,000</td>
<td>NL</td>
<td>DD</td>
<td>II</td>
</tr>
<tr>
<td>Striped dolphin</td>
<td>Off continental shelf</td>
<td>1 million</td>
<td>NL</td>
<td>LC</td>
<td>II</td>
</tr>
<tr>
<td>Fraser’s dolphin</td>
<td>Waters >1000 m</td>
<td>289,000</td>
<td>NL</td>
<td>LC</td>
<td>II</td>
</tr>
<tr>
<td>Risso’s dolphin</td>
<td>Waters >1000 m, seamounts</td>
<td>176,000</td>
<td>NL</td>
<td>LC</td>
<td>II</td>
</tr>
<tr>
<td>Melon-headed whale</td>
<td>Oceanic</td>
<td>45,000</td>
<td>NL</td>
<td>LC</td>
<td>II</td>
</tr>
<tr>
<td>Pygmy killer whale</td>
<td>Deep, pantropical waters</td>
<td>39,000</td>
<td>NL</td>
<td>DD</td>
<td>II</td>
</tr>
<tr>
<td>False killer whale</td>
<td>Pelagic</td>
<td>40,000</td>
<td>NL</td>
<td>DD</td>
<td>II</td>
</tr>
<tr>
<td>Killer whale</td>
<td>Widely distributed</td>
<td>8500</td>
<td>NL</td>
<td>DD</td>
<td>II</td>
</tr>
<tr>
<td>Short-finned pilot whale</td>
<td>Mostly pelagic, high-relief topography</td>
<td>500,000</td>
<td>NL</td>
<td>DD</td>
<td>II</td>
</tr>
<tr>
<td>Pinniped</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hawaiian monk seal</td>
<td>Coastal and pelagic</td>
<td>1129</td>
<td>EN</td>
<td>CR</td>
<td>I</td>
</tr>
</tbody>
</table>

N.A. - Data not available or species status not assessed. ? indicates uncertainty.

1. Eastern Tropical Pacific or ETP in 1986–1990 (Wade and Gerrodette 1993) unless otherwise indicated
2. U.S. Endangered Species Act; EN = Endangered, NL = Not listed
3. Codes for IUCN classifications (IUCN 2010): CR = Critically Endangered; EN = Endangered; VU = Vulnerable; LC = Least Concern; DD = Data Deficient.
4. CITES (UNEP-WCMC 2010): Appendix I = Threatened with extinction; Appendix II = not necessarily now threatened with extinction but may become so unless trade is closely controlled.
5. North Pacific (Barlow et al. 2009)
6. Northwest Pacific and Okhotsk Sea (IWC 2007a)
7. North Pacific (Jefferson et al. 2008)
8. North Pacific (Tillman 1977)
10. Western North Pacific (Whitehead 2002a)
11. ETP; all *Mesoplodon* spp. (Wade and Gerrodette 1993)
14. ETP (Jefferson et al. 2008)
15. Entire species (Carretta et al. 2010)
Although considered to be mainly a coastal species, humpback whales often traverse deep pelagic areas while migrating. Humpback whales spend spring through fall on mid- or high-latitude feeding grounds, and winter on low-latitude breeding grounds, with limited interchange between regions (Baker et al. 1998; Clapham 2002; Garrigue et al. 2002). On winter breeding grounds, humpback dives have been recorded at depths >100 m (Baird et al. 2000). In summer feeding areas, humpbacks typically forage in the upper 120 m of the water column, with a maximum recorded dive depth of 500 m (Dolphin 1987; Dietz et al. 2002). Humpback whales are often sighted singly or in groups of two or three; however, while on their breeding and feeding ranges, they can occur in groups of up to 15 (Leatherwood and Reeves 1983; Donoghue 1996).

North Pacific humpback whales migrate between summer feeding grounds along the Pacific Rim and the Bering and Okhotsk Seas, and winter calving and breeding areas in subtropical and tropical waters (Pike and MacAskie 1969; Rice 1978). North Pacific humpback whales are known to assemble in three different winter breeding areas: (1) the eastern North Pacific along the coast of Mexico and central America, and near the Revillagigedo Islands; (2) around the main Hawaiian Islands; and (3) in the west Pacific, particularly around Ogasawara and Ryukyu Islands in southern Japan and the northern Philippines (Perry et al. 1999a; Calambokidis et al. 2008). In other breeding areas during the winter, humpback whales are most often found in insular shelf waters, but are also detected in deeper waters. For example, calls of humpback whales have been detected in an area northeast and east of the Puerto Rican Trench, >6000 m deep and far from banks or islands (Swartz et al. 2002).

There is potential for the mixing of the western and eastern North Pacific humpback populations, as several individuals have been seen in the wintering areas of Japan and Hawaii in separate years (Darling and Cerchio 1993; Salden et al. 1999; Calambokidis et al. 2001). Whales from these wintering areas have been shown to travel to summer feeding areas in British Columbia, Canada, and Kodiak Island, Alaska (Darling et al. 1996; Calambokidis et al. 2001), but feeding areas in Russian waters may be most important (Calambokidis et al. 2008). There appears to be a very low level of interchange between Asian wintering or feeding areas and those in the eastern and central Pacific (Calambokidis et al. 2008).

Whaling charts indicate a historical concentration of humpbacks in the Commonwealth of the Northern Mariana Islands (CNMI) and the occurrence of humpback whales in the region of the Marshall Islands (Townsend 1935; Kellogg 1928 in Miller 2009). At least five sightings of humpback whales from 1978 to 1996 near Guam, Saipan, or Rota were described in Eldredge (2003). Calambokidis et al. (2008) included the waters of the Mariana Islands as part of the humpback winter range. One humpback whale was sighted (off-effort) near Saipan during the January–April 2007 survey in the waters of Guam and the CNMI and 11 humpbacks were detected acoustically, in both deep and shallow water around and north of Tinian and Saipan (~15–16°N; 146–147°E), most (10) during 6–25 February (SRS-Parsons et al. 2007). Acoustic detections of singing humpback whales suggest a small wintering population in the region. There were no humpback sightings during the January–February 2010 survey from Oahu to Guam via Wake Island (PIFSC 2010a) or during the return April–May 2010 survey from Guam to Oahu (PIFSC 2010b). Given their low abundance regionally, humpback whales sightings likely would be rare during the proposed seismic survey.

Minke Whale (*Balaenoptera acutorostrata*)

The minke whale has a cosmopolitan distribution that spans polar, temperate, and tropical regions (Jefferson et al. 2008). In the Northern Hemisphere, minke whales are usually seen in coastal areas, but can also be seen in pelagic waters during northward migration in spring and summer, and southward migration in autumn (Stewart and Leatherwood 1985).
The minke whale is a small baleen whale and tends to be solitary or in groups of 2–3, but can occur in much larger aggregations around prey resources (Jefferson et al. 2008). The small size, inconspicuous blows, and brief surfacing times of minke whales mean that they are easily overlooked in heavy sea states, although they are known to approach vessels in some circumstances (Stewart and Leatherwood 1985). Little is known about the diving behavior of minke whales, but they are not known to make prolonged deep dives (Leatherwood and Reeves 1983).

In the North Pacific, three stocks of minke whales are currently recognized: the Sea of Japan/East China Sea, the rest of the western Pacific west of 180ºN, and the remainder of the Pacific (Donovan 1991). During the January–April 2007 survey in the waters of Guam and the CNMI, the minke whale was not sighted (Fulling et al. in press), but was the baleen whale species most frequently detected acoustically; there were 29 acoustic detection ranging from ~12–18ºN; 143–148ºE; SRS-Parsons 2007). Minke whales sightings have been reported for the Marshall Islands (Miller 2009). One minke whale sighting was recorded during the January–February 2010 survey from Oahu to Guam via Wake Island (specific location unreported; PIFSC 2010a). Despite a lack of visual detections, minke whales were the baleen whale species most frequently detected acoustically during the April–May 2010 survey from Guam to Oahu; there were 23 acoustic detections on the towed array and 31 acoustic detections on sonobuoys. Eight of the acoustic sightings occurred between 160ºE and 170ºE (PIFSC 2010b).

Bryde’s Whale (Balaenoptera edeni/brydei)

Bryde’s whale is found in tropical and subtropical waters throughout the world between 40ºN and 40ºS, generally in waters warmer than 16.3ºC (Reeves et al. 1999; Kanda et al. 2007; Kato and Perrin 2009). Long confused with sei whales, *Balaenoptera edeni* was named in 1913 and *B. brydei* was named in 1950, although it is still uncertain whether the two are distinct species or subspecies. Populations in the western North Pacific, western South Pacific, eastern South Pacific, and eastern Indian Ocean currently show low levels of genetic interchange (Kanda et al. 2007). Here, we follow Kato and Perrin (2009) in recognizing the uncertainty and using *Balaenoptera edeni/brydei*.

Bryde’s whales are known to occur in both shallow coastal and deeper offshore waters (Jefferson et al. 2008). Some populations show a general pattern of movement toward the equator in winter and toward higher latitudes in summer, though the locations of actual winter breeding grounds are unknown (Reeves et al. 1999; Kanda et al. 2007; Kato and Perrin 2009). Bryde’s whales are usually solitary or in pairs, although groups of 10–20 are known from feeding grounds (Jefferson et al. 2008). Fulling et al. (in press) reported a mean group size of 1.4 for Guam and the CNMI. The durations of Bryde’s whale dives are 1–20 min (Cummings 1985).

During summer, Bryde’s whale are considered the most common baleen whale in the Marianas region, typically occurring from May to July and possibly August (Eldredge 2003; Miyashita et al. 1996). During winter, Bryde’s whales occur throughout the western North Pacific, including the Mariana Islands (Ohizumi et al. 2002). Records of Bryde’s-like whales having been reported in the Marshall Islands (Patterson and Alverson 1986 in Miller 2009). Three *Balaenoptera edeni/brydei* sightings were reported during the January–February 2010 survey from Oahu to Guam via Wake Island (specific location unreported; PIFSC 2010a). During April–May visual surveys in 2010, one *Balaenoptera edeni/brydei* was sighted within Wake Island EEZ waters (PIFSC 2010b). There were no acoustic detections of Bryde’s whales during the survey. During the January–April 2007 survey in the waters of Guam and the CNMI, there were 18 sightings of Bryde’s whales (Fulling et al. in press).
Sei Whale (Balaenoptera borealis)

The distribution of the sei whale is not well known, but it is found in all oceans and appears to prefer mid-latitude, temperate waters (Jefferson et al. 2008). The species is poorly known because of confusion with Bryde’s whale and unpredictable distribution patterns, such that it may be common in an area for several years and then seemingly disappear (Schilling et al. 1992; Jefferson et al. 2008). It is listed as Endangered under the U.S. ESA and on the 2010 IUCN Red List of Threatened Species (IUCN 2010), and is listed in CITES Appendix I (UNEP-WCMC 2010) (Table 2). Sei whale populations were depleted by whaling, and their current status is generally uncertain (Horwood 1987). The global population is thought to be ~80,000 (Horwood 2002), with up to ~12,620 in the North Pacific (Tillman 1977).

The sei whale is pelagic and generally not found in coastal waters (Harwood and Wilson 2001). It is found in deeper waters characteristic of the continental shelf edge region (Hain et al. 1985) and in other regions of steep bathymetric relief such as seamounts and canyons (Kenney and Winn 1987; Gregr and Trites 2001). On feeding grounds, they associate with oceanic frontal systems (Horwood 1987) such as the cold eastern currents in the North Pacific (Perry et al. 1999a). Sei whales are frequently seen in groups of 2–5 (Jefferson et al. 2008), although larger groups sometimes form on feeding grounds (Gambell 1985a). Fulling et al. (in press) reported a mean group size of 1.3 for Guam and the CNMI. Sei whales generally do not dive deeply, and dive durations are 15 min or longer (Gambell 1985a). Sei whales migrate from temperate zones occupied in winter to higher latitudes in the summer, where most feeding takes place (Gambell 1985a).

Sei whale migrations are less extensive than those of other baleen whales. In the North Pacific, the sei whale can be found across the Bering Sea and off the coasts of Japan and Korea in the summer. Its winter distribution is concentrated at about 20°N. Sei whales are generally considered uncommon in the Marianas region, although during the January–April 2007 survey in the waters of Guam and the southern CNMI (Fulling at al. in press), Bryde’s and sei whales were the most frequently encountered baleen whales (18 and 16 sighted, respectively), and another 3 undifferentiated Bryde’s or sei whales were also sighted. All sightings were south of Saipan in water >1000 m deep, with a number of sightings directly over the Mariana Trench. There were four acoustic detections of sei whales during the survey, two occurring at ~147.5°E (SRS-Parsons et al. 2007). Reese (1984 in Miller 2009) reported a group of sei whales in the waters of the Marshall Islands. However, they were later believed to likely be Bryde's whales (Miller 2009). Three sei whale sightings were reported during the January–February 2010 survey from Oahu to Guam via Wake Island (specific location unreported, PIFSC 2010a). An additional three undifferentiated Bryde’s or sei whales were also reported during the survey (PIFSC 2010a). During April–May surveys in 2010, one undifferentiated Bryde’s or sei whale sighting was reported in the Wake Island EEZ (PIFSC 2010b). There were seven acoustic detections of probable sei whales on the towed array during the survey, and two acoustic detections on sonobuoys occurred ~ 400 km east of the proposed survey area (PIFSC 2010b).

Fin Whale (Balaenoptera physalus)

The fin whale is widely distributed in all the world’s oceans (Gambell 1985b), but typically occurs in temperate and polar regions from 20° to 70° north and south of the equator (Perry et al. 1999b). It is listed as Endangered under the U.S. ESA and on the 2010 IUCN Red List of Threatened Species (IUCN 2010), and is listed in CITES Appendix I (UNEP-WCMC 2010) (Table 2). Northern and southern fin whale populations are distinct, and are sometimes recognized as different subspecies (Aguilar 2002). The current distribution of fin whales in the western North Pacific is largely unknown.
Fin whales occur in coastal, shelf, and oceanic waters. Sergeant (1977) suggested that fin whales tend to follow steep slope contours, either because they detect them readily or because biological productivity is high along steep contours because of tidal mixing and perhaps current mixing. They can be found as individuals or groups of 2–7, but can form much larger feeding aggregations, sometimes with humpback and minke whales (Jefferson et al. 2008). Foraging fin whales have mean dive depths and times of 98 m and 6.3 min, and non-foraging fin whales have mean dive depths and times of 59 m and 4.2 min (Croll et al. 2001). Dive depths of >150 m coinciding with the diel migration of krill were reported by Panigada et al. (1999).

Fin whales migrate in the open oceans and their winter breeding areas are uncertain. However, they are known to winter in the Yellow, East China, and South China seas (Parsons et al. 1995; Rudolph and Smeenk 2002). A recent review of fin whale distribution in the North Pacific noted the lack of sightings across the pelagic waters between eastern and western winter areas (Mizroch et al. 2009). Records of fin whales exist for the Marshall Islands (Miller 2009), but no fin whales were sighted or detected acoustically during the January–April 2007 survey in the waters of Guam and the CNMI (Fulling et al. in press) or in the January–February and April–May 2010 surveys in the waters between Guam and Oahu (PIFSC 2010a,b). However, the survey area is within the known distribution range for this species (Reilly et al. 2008).

Blue Whale (Balaenoptera musculus)

The blue whale has a cosmopolitan distribution, and tends to be pelagic, only coming nearshore to feed and possibly to breed (Jefferson et al. 2008). It is listed as **Endangered** under the U.S. ESA and on the 2010 IUCN Red List of Threatened Species (IUCN 2010), and is listed in CITES Appendix I (UNEP-WCMC 2010) (Table 2). All blue whale populations have been exploited commercially, and many have been severely depleted as a result. The worldwide population has been estimated at 15,000, with 10,000 in the Southern Hemisphere (Gambell 1976), 3500 in the eastern North Pacific, and up to 1400 in the North Atlantic (NMFS 1998). Blue whale calls monitored from the U.S. Navy Sound Surveillance System (SOSUS) and other offshore hydrophones suggest that separate populations occur in the eastern and western North Pacific (Stafford et al. 1999, 2001, 2007; Watkins et al. 2000a; Stafford 2003).

Blue whales are typically found singly or in groups of two or three (Yochem and Leatherwood 1985; Jefferson et al. 2008). Wade and Gerrodette (1993) reported a mean group size of 1.5 for the ETP. Croll et al. (2001) reported mean dive depths and times of 140 m and 7.8 min for foraging blue whales, and 68 m and 4.9 min for non-foraging individuals. Dives of up to 300 m were recorded for tagged blue whales (Calambokidis et al. 2003).

Generally, blue whales are seasonal migrants between high latitudes in the summer, where they feed, and low latitudes in the winter, where they mate and give birth (Lockyer and Brown 1981). Some individuals may stay in low or high latitudes throughout the year (Reilly and Thayer 1990; Watkins et al. 2000b). Moore et al. (2002) reported that blue whale calls are received in the North Pacific year-round. Little information is available on blue whale wintering areas (Perry et al. 1999a).

The current distribution of blue whales in the western North Pacific is largely unknown. The North Pacific stock of blue whales is reported to winter off Taiwan, Japan, and Korea. There is almost no information on the occurrence of blue whales in Micronesia, other than near the Solomon Islands (Reeves et al. 1999). There have been blue whale calls recorded at Wake Island during January 1997 suggesting that blue whales occur within several hundred kilometers of the island during winter (NMFS 1998; Stafford et al. 1999, 2001).
No blue whales were sighted or detected acoustically during the January–April 2007 survey in the waters of Guam and the CNMI (Fulling et al. in press) or in the January–February and April–May 2010 surveys in the waters between Guam and Oahu (PIFSC 2010a,b). Given their overall low abundance, blue whales sightings likely would be rare during the proposed seismic surveys.

(2) Odontocetes

Sperm Whale (*Physeter macrocephalus*)

The sperm whale is the largest of the toothed whales, with an extensive worldwide distribution (Rice 1989). The species is listed as *Endangered* under the U.S. ESA, but on a worldwide basis it is abundant and not biologically endangered. It is listed as *Vulnerable* on the 2010 IUCN Red List of Threatened Species (IUCN 2010), and is listed in CITES Appendix I (UNEP-WCMC 2010) (Table 2).

Sperm whale distribution is linked to social structure: mixed groups of adult females and juveniles of both sexes generally occur in tropical and subtropical waters, whereas adult males are commonly found alone or in same-sex aggregations, often occurring in higher latitudes outside the breeding season (Best 1979; Watkins and Moore 1982; Arnbom and Whitehead 1989; Whitehead and Waters 1990). There currently is no accurate estimate for the size of any sperm whale population (Whitehead 2002b). Best estimates probably are those of Whitehead (2002a), who provided a sperm whale population size estimate of 29,674 for the western North Pacific.

Mature male sperm whales migrate to warmer waters to breed when they are in their late twenties (Best 1979). They spend periods of at least months on the breeding grounds, moving between mixed groups of 20–30 on average (Whitehead 1993, 2003). Fulling et al. (in press) reported a mean group size of 5.1 for Guam and the CNMI. In the Southern Hemisphere, mating occurs from July to March, with a peak from September to December, and most calves are born between November and March (Rice 1989).

Sperm whales generally are distributed over large areas that have high secondary productivity and steep underwater topography, in waters at least 1000 m deep (Jaquet and Whitehead 1996; Whitehead 2002b). They are often found far from shore, but can be found closer to oceanic islands that rise steeply from deep ocean waters (Whitehead 2002b). They can dive as deep as ~2 km and possibly deeper on rare occasions for periods of over 1 h; however, most of their foraging occurs at depths of ~300–800 m for 30–45 min (Whitehead 2003). During a foraging dive, sperm whales typically travel ~3 km horizontally and 0.5 km vertically (Whitehead 2003). Whales in the Galápagos Islands typically dove for ~40 min and then spent 10 min at the surface (Papastavrou et al. 1989).

The sperm whale was the most frequently sighted cetacean (23 sightings) during the January–April 2007 survey in the waters of Guam and the southern CNMI (Fulling et al. in press), and acoustic detections were three times higher than visual detections (SRS-Parsons et al. 2007). Sperm whales were observed in waters ~800 to 10,000 m deep throughout most of the survey area. During the survey, there were multiple sightings of groups that included calves (SRS-Parsons et al. 2007), and Eldredge (2003) reported a sighting of a group of sperm whales including a newborn calf off the west coast of Guam. Observations were made during the January–April 2007 survey of several large bulls with fresh tooth marks (one male rammed the survey ship), which suggests that these males were engaged in competition for mates (Fulling and Salinas Vega 2009). Hence, there is evidence that this area is used for breeding and calving by sperm whales.

Whaling records confirm sperm whales occurrence in the Marshall Islands and near Wake Island (Townsend 1935). Three sperm whale sightings were reported during the January–February 2010 survey
from Oahu to Guam via Wake Island (specific location unreported, PIFSC 2010a). During April–May surveys from Guam to Oahu in 2010, four sperm whales were reported > 850 km east of the proposed survey area (PIFSC 2010b). During the survey, sperm whales were the most common odontocete species detected acoustically. There were 37 and 8 acoustic detections of sperm whales on the towed array and sonobuoys, respectively. One acoustic detection occurred near the proposed survey area at 19.0°N, 166.7°E on 26 April (PIFSC 2010b). Female and immature sperm whales could occur in the survey area at any time of the year, and large male sperm whales could be found in the area during the winter breeding season.

Pygmy and Dwarf Sperm Whales (Kogia breviceps and K. sima)

Pygmy sperm whales and dwarf sperm whales are distributed widely throughout tropical and temperate seas, but their precise distributions are unknown as most information on these species comes from strandings (McAlpine 2002). They are difficult to sight at sea, perhaps because of their avoidance reactions to ships and behavior changes in relation to survey aircraft (Würsig et al. 1998). The two species are difficult to distinguish from one another when sighted (McAlpine 2002). During sighting surveys, thus in population and density estimates, the two species are most often categorized together as *Kogia* spp.

Pygmy sperm whales may inhabit waters beyond the continental shelf edge, whereas dwarf sperm whales are thought to inhabit the shelf edge and slope waters (Rice 1998). Also, the dwarf sperm whale could prefer warmer waters than the pygmy sperm whale (McAlpine 2002). Pygmy sperm whales feed mainly on various squid in the deep zones of the continental shelf and slope (McAlpine et al. 1997). Pygmy sperm whales occur in small groups of up to six, and dwarf sperm whales can form groups of up to 10 (Caldwell and Caldwell 1989). Wade and Gerrodette (1993) reported a mean group size of 1.7 for the dwarf sperm whale in the ETP.

Although there are few useful estimates of abundance for pygmy or dwarf sperm whales anywhere in their range, they are thought to be fairly common in some areas. There are no sightings records of either *Kogia* species in the Marshall Islands (Miller 2009) and the southern CNMI (Fulling et al. in press), but there are strandings records for Guam, including five strandings of dwarf sperm whales and one stranding of a pygmy sperm whale (Kami and Lujan 1976; Reeves et al. 1999; Eldredge 1991, 2003). There were no sightings of either species during the January–February and April–May 2010 surveys in the waters between Guam and Oahu via Wake Island (PIFSC 2010a,b). However, the MIME is considered to be within the known range for both species (Taylor et al. 2008a,b).

Cuvier’s Beaked Whale (Ziphius cavirostris)

Cuvier’s beaked whale is probably the most widespread of the beaked whales, although it is not found in polar waters (Heyning 1989). It is rarely observed at sea and is mostly known from strandings. It strands more commonly than any other beaked whale (Heyning 1989). Its inconspicuous blows, deep-diving behavior, and tendency to avoid vessels all help to explain the infrequent sightings (Barlow and Gisiner 2006).

Adult males of this species usually travel alone, but Cuvier’s whale can be seen in groups of up to 15, with a mean group size of 2.3 (MacLeod and D’Amico 2006). Wade and Gerrodette (1993) reported a mean group size of 2.2 for the ETP. Cuvier’s beaked whale is an offshore, deep-diving species that feeds on fish and squid (Heyning 2002). Its dives generally last 30–60 min, but dives of 85 min have been recorded (Tyack et al. 2006). The maximum dive depth recorded by Baird et al. (2006) was 1450 m.
In the western Pacific, Cuvier’s beaked whales are known to occur in the waters of Japan (Nishiwaki and Oguro 1972 in Wang et al. 1995) and parts of SE Asia (Heyning 1989). Cuvier’s beaked whales occur in bycatch in the Philippines (Perrin et al. 2005). Cuvier’s beaked whale has been reported in the Mariana and Bonin islands area (Masaki 1972 in Eldredge 2003), and there was a live stranding at Piti, Guam, in August 2007 (NMFS 2007a). One ziphiid whale not identified to species level was observed in deep water (~145.5°E) during the January–April 2007 survey in the waters of Guam and the southern CNMI (Fulling et al. in press). There are no sightings or stranding records for the Marshall Islands (Miller 2009) but the species is thought to occur at Wake Island (WPRFMC 2005). There were no sightings of Cuvier’s beaked whale during the January–February and April–May 2010 surveys in the waters between Guam and Oahu via Wake Island (PIFSC 2010a,b). However, the survey area is considered to be within the known range for this species (Taylor et al. 2008c).

Longman’s Beaked Whale (Indopacetus pacificus)

Initially, Longman’s beaked whale was thought to be extremely rare, and was known only from two skulls (Pitman et al. 1987). Subsequent morphometric and genetic analyses of those two original specimens and an additional four specimens have allowed a more detailed characterization of the species (Dalebout et al. 2003). It seems likely that it is, in fact, the cetacean that has been seen in Indo-Pacific waters and called the “tropical bottlenose whale”. Some authorities place the species in the genus *Mesoplodon*, but there now seems to be sufficient information to afford it status as a separate genus (Dalebout et al. 2003). Records of this species exist within an area from 10°S to 40°N.

Longman’s beaked whales have been sighted in waters with temperatures 21–31°C and have been seen in the tropics every month of the year except June, indicating year-round residency (Pitman et al. 1999; Jefferson et al. 2008). Although widespread throughout the tropical Pacific, the species must still be considered rare because of a scarcity of sightings despite a great deal of survey effort (Pitman et al. 1999). Longman’s beaked whale has been seen alone, but more commonly in groups of at least 10 and up to 100, with an average group size of 15–20 (Jefferson et al. 2008). Pitman et al. (1999) reported a mean group size of 18.5 in the tropics. Dives are thought to last 18–33 min (Jefferson et al. 2008).

Sightings of Longman’s beaked whale have occurred at many locations in tropical waters of the Indo-Pacific region (Rudolph and Smeenk 2002; Jefferson et al. 2008). In SE Asia and the surrounding area, records for this species exist for Japan (Yamada et al. 2004), the Philippines (Acebes et al. 2005), and Taiwan (Yang et al. 2008). There are no records of Longman’s beaked whale for the Marshall Islands (Miller 2009) or in the Marianas, and there were no sightings during the January–April 2007 survey in the waters of Guam and the southern CNMI (Fulling et al. in press) or during the January–February and April–May 2010 surveys in the waters between Guam and Oahu via Wake Island (PIFSC 2010a,b). However, the MIME is considered to be within the known range for this species (Taylor et al. 2008d).

Mesoplodont Beaked Whales

Two species of mesoplodont whales likely occur in the deep waters of the MIME: Blainville’s beaked whale (*Mesoplodon densirostris*) and the gingko-toothed beaked whale (*Mesoplodon ginkgodens*). No population estimates exist for either of these species in the western Central Pacific.

Almost everything that is known regarding most mesoplodont species has come from stranded animals (Pitman 2002). The different mesoplodont species are difficult to distinguish in the field, and are most often categorized during sighting surveys, thus in density and population estimates, as *Mesoplodon*.
spp. They are all thought to be deep-water animals, only rarely seen over the continental shelf. Typical group sizes range from one to six (Pitman 2002). Because of the scarcity of sightings, most are thought to be rare.

One *Mesoplodon* not identified to the species level was sighted during the January–April 2007 survey in the waters of Guam and the CNMI (Fulling et al. in press) and in the January–February 2010 survey in the waters from Oahu to Guam via Wake Island (PIFSC 2010a).

Blainville’s beaked whale.—This species is found in tropical and temperate waters of all oceans (Jefferson et al. 2008). Blainville’s beaked whale has the widest distribution throughout the world of all *Mesoplodon* species (Mead 1989). There is no evidence that Blainville’s beaked whales undergo seasonal migrations. Blainville’s beaked whales are most often found in singles or pairs, but also in groups of 3–7 (Jefferson et al. 2008).

Like other beaked whales, Blainville’s beaked whales are generally found in water 200–1400 m deep (Gannier 2000; Jefferson et al. 2008). Maximum dive depths have been reported as 1251 m (Tyack et al. 2006) and 1408 m (Baird et al. 2006), and dives have lasted as long as 54 min (Baird et al. 2006) to 57 min (Tyack et al. 2006). However, they also can occur in coastal areas and have been known to spend long periods of time at depths <50 m (Jefferson et al. 2008).

Sighting records exist for Blainville’s beaked whale for the East China Sea off mainland China and for the Philippines (Perrin et al. 2005). They are also known to occur off Taiwan (Zhou et al. 1995; Chou 2004; Perrin et al. 2005). There are no occurrence records for this species in the MIME (Miller 2009), but the MIME is within its known distribution range (Taylor et al. 2008e).

Ginkgo-toothed beaked whale.—This species is only known from a few stranding records and captures and is hypothesized to occupy tropical and warm temperate waters of the Indian and Pacific oceans (Mead 1989; Pitman 2002; Taylor et al. 2008f). In the eastern Pacific Ocean, it has stranded in the Galápagos Islands and California (Taylor et al. 2008f). In the South Pacific, strandings have been reported in New South Wales, Australia, and the North Island and Chatham Islands, New Zealand (Mead 1989; Baker and van Helden 1999).

There are no occurrence records for this species in the MIME (Miller 2009), but the MIME is within its known distribution range (Taylor et al. 2008f). The occurrence of the species in the proposed survey area would be rare.

Rough-toothed Dolphin (*Steno bredanensis*)

The rough-toothed dolphin is widely distributed around the world, mainly in tropical and warm temperate waters (Miyazaki and Perrin 1994). Rough-toothed dolphins generally occur in deep, oceanic waters, but can be found in shallower coastal waters in some regions (Jefferson et al. 2008). Rough-toothed dolphins are deep divers and can dive for up to 15 min (Jefferson et al. 2008). They usually form groups of 10–20, but aggregations of hundreds have been seen (Jefferson et al. 2008). Wade and Gerrodette (1993) reported a mean group size of 14.7 for the ETP.

Rough-toothed dolphins are known to occur in the CNMI. Two rough-toothed dolphin sightings were reported during the January–April 2007 survey in the waters of Guam and the CNMI. The sightings were in deep (1000–4500 m) water, one at ~17°N and the other at ~10°N (Fulling et al. in press).

There is a single record of a rough-toothed dolphin skull collected from a northern atoll in the Marshall Islands (Rongerik Atoll) in 1946 (Reeves et al. 1999 in Miller 2009). There were no sightings
rough-toothed dolphins during the January–February and April–May 2010 surveys in the waters between Guam and Oahu via Wake Island (PIFSC 2010a,b). The MIME is considered to be within the known range for this species (Hammond et al. 2008a).

Common Bottlenose Dolphin (Tursiops truncatus)

The bottlenose dolphin is distributed worldwide. It is found mainly where surface temperatures are 10–32°C (Reeves et al. 2002). Generally, there are two distinct bottlenose dolphin types: a shallow-water type, mainly found in coastal waters, and a deep-water type, mainly found in oceanic waters (Duffield et al. 1983; Hoelzel et al. 1998; Walker et al. 1999). As well as inhabiting different areas, these ecotypes differ in their diving abilities (Klatsky 2004) and prey types (Mead and Potter 1995). Bottlenose dolphins have been reported to regularly dive to depths >450 m for periods of >5 min (Klatsky 2004), and even down to depths of 600–700 m for up to 12 min (Klatsky et al. 2005).

Mean group size in the ETP has been estimated at 24 (Smith and Whitehead 1999) and 22.7 (Wade and Gerrodette 1993). The average group size off the Marquesas Islands was 8.2 (Gannier 2002).

Bottlenose dolphins are known to occur in Guam and the CNMI (Fulling et al. in press). Two bottlenose dolphin sightings during the January–April 2007 survey were in the vicinity of Challenger Deep (~10–12°N; 143°E), and the other was east of Saipan near the Mariana Trench in water depths 4200–5000 m (~15°N; 147°E). One of the sightings near the Challenger Deep was a mixed-species aggregation that included sperm whales (with calves) logging at the surface. Another mixed-species aggregation involved bottlenose dolphins with short-finned pilot whales and rough-toothed dolphins. Bottlenose dolphin group sizes were 3–10, and calves were seen.

Sightings of bottlenose dolphins have been reported for the Marshall Islands (Miller 2009) and bottlenose dolphins are thought to occur at Wake Island (WPRFMC 2005). There were no sightings of bottlenose dolphins during the January–February and April–May 2010 surveys in the waters between Guam and Oahu via Wake Island (PIFSC 2010a,b). The MIME is considered to be within the known range for this species (Hammond et al. 2008b).

Pantropical Spotted Dolphin (Stenella attenuata)

The pantropical spotted dolphin can be found throughout tropical and some subtropical oceans of the world (Perrin and Hohn 1994). The southernmost limit of its range is ~40°S (Perrin 2002). In the ETP, this dolphin is associated with warm (>25°C), tropical surface water (Au and Perryman 1985; Reilly 1990; Reilly and Fiedler 1994; Reeves et al. 1999). There are two forms of pantropical spotted dolphin, coastal and offshore forms, although the coastal form occurs mainly in the ETP from Baha California to South America (Jefferson et al. 2008). The offshore form inhabits tropical, equatorial, and southern subtropical water masses (Perrin 2002). This species is found primarily in deeper waters, and rarely over the continental shelf or continental shelf edge (Davis et al. 1998).

Pantropical spotted dolphins are extremely gregarious, forming groups of hundreds or even thousands. Wade and Gerrodette (1993) reported a mean group size of 149 for the western/southern stock in the ETP, and Fulling et al. (in press) reported a mean group size of 64 for Guam and the CNMI. Pantropical spotted and spinner dolphins are commonly seen together in mixed-species groups, e.g., in the ETP (Au and Perryman 1985), off Hawaii (Psarakos et al. 2003), and off the Marquesas Archipelago (Gannier 2002).

In the western Pacific, pantropical spotted dolphins occur from Japan south to Australia. They are known to occur in the Marshall Islands (Miller 2009) and in the southern CNMI (Fulling et al. in
During the January–April 2007 survey in Guam and the CNMI, pantropical spotted dolphins were sighted throughout the survey area and in waters with a variable bottom depth, ranging from ~100 to 5600 m. Most (11 of 17) sightings were in deep (>3000 m) water (Fulling et al. in press). Group size was 1–115, and there were multiple sightings that included calves, one mixed-species aggregation with melon-headed whales, and another with an unidentified rorqual. The pantropical spotted dolphins encountered during that survey were identified as the offshore morphotype (Fulling et al. in press).

Pantropical spotted dolphins were not sighted during the January–February 2010 survey from Oahu to Guam (PIFSC 2010a). Five pantropical spotted dolphin sightings were reported during the return April–May 2010 survey, four near Oahu and one near the Marianas Islands (PIFSC 2010b).

Spinner Dolphin (Stenella longirostris)

The spinner dolphin is distributed in oceanic and coastal tropical waters between 40ºN and 40ºS (Jefferson et al. 2008). In Southeast Asian, spinner dolphins are known to occur in the Philippines and in the East and South China seas off China and Taiwan (Perrin et al. 2005), and in Hong Kong (Parsons et al. 1995; Jefferson and Hung 2007). Two subspecies of spinner dolphin occur in the western Pacific: the widespread, offshore spinner dolphin (Stenella longirostris longirostris) and the dwarf spinner dolphin (S. l. roseiventris). There is little or no genetic interchange between the two subspecies (Dizon et al. 1991). S. l. longirostris feeds on small mesopelagic fish and squid, whereas S. l. roseiventris preys on benthic and coral reef fishes and invertebrates (Perrin et al. 1999). S. l. longirostris occurs in the deep inner waters of the Philippines as well as Japan, whereas S. l. roseiventris inhabits the shallow waters of inner SE Asia (Perrin et al. 1999).

Spinner dolphins travel among the Mariana island chain (Trianni and Kessler 2002) and have been seen at Farallon de Medinilla (Trianni and Kessler 2002), Guam (Trianni and Kessler 2002), and Rota (Jefferson et al. 2006). Spinner dolphin have been reported in the Marshall Islands (Miller 2009) and at Wake Island (WPRFMC 2005). There was one sighting of spinner dolphins during the January–April 2007 survey in the waters of Guam and the southern CNMI (Fulling et al. in press). The school was encountered northeast of Saipan in 425 m of water, and was estimated to contain 98 individuals. Spinner dolphins were not sighted during the January–February 2010 survey from Oahu to Guam (PIFSC 2010a). One spinner dolphin sighting was reported near Oahu during the return survey in April–May 2010 (PIFSC 2010b).

Striped Dolphin (Stenella coeruleoalba)

The striped dolphin has a cosmopolitan distribution in tropical to warm temperate waters (Perrin et al. 1994a) and is generally seen below 43ºN (Archer 2002). It is typically found in waters outside the continental shelf and is often associated with convergence zones and areas of upwelling (Archer 2002). Striped dolphins are fairly gregarious (groups of 20 or more are common) and active at the surface (Whitehead et al. 1998). Wade and Gerrodette (1993) reported a mean group size of 61 in the ETP, and Fulling et al. (in press) reported a mean group size of 27 for Guam and the CNMI.

In the western Pacific, two areas of concentration of striped dolphins have been identified: one located between 30ºN and 40ºN and another between 20ºN and 30ºN (Hammond et al. 2008c). The putative population south of 30ºN has been estimated to number about 52,600 (Miyashita 1993), and any animals in the MIME are probably part of that population.

Striped dolphins were sighted 10 times during the January–April 2007 survey in the waters of Guam and the southern CNMI (Fulling et al. in press), in water depths ~2350–7600 m. Group sizes were
7–44, and several groups contained calves. Sightings were throughout the northern (>13°N) part of the survey area. Striped dolphins sightings are reported for the Marshall Islands (Miller 2009). One striped dolphin was sighted during the January–February 2010 survey from Oahu to Guam via Wake Island (specific location unreported; PIFSC 2010a).

Fraser’s Dolphin (Lagenodelphis hosei)

Fraser’s dolphin is a tropical species found between 30°N and 30°S (Dolar 2002). It only occurs rarely in temperate regions, and then only in relation to temporary oceanographic anomalies such as El Niño events (Perrin et al. 1994b). The species typically occurs in deep, oceanic waters. In the ETP, most sightings were 45–100 km from shore in waters 1500–2500 m deep (Dolar 2002). Off Huahine and Tahiti (Society Islands), it was observed in waters 500–1500 m deep (Gannier 2000).

Fraser’s dolphins travel in groups ranging from just a few animals to 100 or even 1000 (Perrin et al. 1994b). Wade and Gerrodette (1993) reported a mean group size of 395 for the ETP.

There are no records for Fraser’s dolphin in the CNMI (Fulling et al. in press) or the Marshall Islands (Miller 2009), and there were no sightings during the January–February or April–May 2010 surveys in the waters between Guam and Oahu (PIFSC 2010a,b). However, the MIME is within the distributional range of this species (Hammond et al. 2008d).

Risso’s Dolphin (Grampus griseus)

Risso’s dolphin is primarily a tropical and mid-temperate species distributed worldwide. It occurs between 60°N and 60°S, where surface water temperatures are at least 10°C (Kruse et al. 1999). Water temperature appears to be an important factor affecting its distribution (Kruse et al. 1999; see also Becker 2007). Off the U.S. west coast, Risso’s dolphin is believed to make seasonal north-south movements related to water temperature, spending colder winter months off California and moving north to waters off Oregon–Washington during the spring and summer as northern waters begin to warm (Green et al. 1992, 1993; Buchanan et al. 2001; Barlow 2003; Becker 2007).

In the northern Gulf of Mexico, Risso’s dolphin usually occurs over steeper sections of the upper continental slope (Baumgartner 1997) in waters 150–2000 m deep (Davis et al. 1998). In Monterey Bay, California, it is most numerous where there is steep bottom topography (Kruse et al. 1999). Risso’s dolphins occur individually or in small to moderate-sized groups, normally ranging from 2 to <250. The majority of groups consist of <50 individuals (Kruse et al. 1999). Mean group sizes were reported as 15 for Hawaii (Barlow 2006) and 9–19 for the ETP (Wade and Gerrodette 1993; Ferguson et al. 2006; Jackson et al. 2008).

In the western Pacific, Risso’s dolphins range from the Kuril Islands to New Zealand and Australia. No Risso’s dolphins were sighted during the January–April 2007 survey in the waters of Guam and the southern CNMI (Fulling et al. in press) or during the January–February 2010 or April–May surveys between Guam and Oahu (PIFSC 2010a,b), but the MIME is within the distributional range of this species (Taylor et al. 2008g).

Melon-headed Whale (Peponocephala electra)

The melon-headed whale is a pantropical and pelagic species that occurs mainly between 20°N and 20°S in offshore waters (Perryman et al. 1994). Melon-headed whales tend to occur in groups of 100–500, but have also been seen in groups of up to 2000 (Jefferson et al. 2008). For the ETP, Wade and Gerrodette (1993) and Ferguson et al. (2006) reported mean group sizes of 199 and 258, respectively.
Melon-head whales are commonly seen in mixed groups with other cetaceans (Jefferson and Barros 1997). Most sightings are from the continental shelf seaward, and around oceanic islands (Taylor et al. 2008h). In the ETP, the species is primarily found in the upwelling-modified and equatorial waters (Perryman et al. 1994).

Melon-headed whales are known to occur off mainland China in the East and South China seas, off Taiwan, and in the Philippines and the CNMI (Perrin et al. 2005; Fulling et al. in press). There was a live stranding on the beach at Inarajan Bay, Guam, in April 1980 (Kami and Hosmer 1982; Donaldson 1983). There have been sightings at Rota and Guam (DoN 2005), including a sighting at Rota of an estimated 500–700 melon-headed whales and an undetermined smaller number of rough-toothed dolphins in water ~75 m deep at Sasanhayan Bay (Jefferson et al. 2006). During the January–April 2007 survey in the waters of Guam and the southern CNMI, two groups of melon-headed whales were sighted in water depths ~3200–3900 m, both southwest of Guam (Fulling et al. in press). One melon-headed whale was detected acoustically in the same area.

There have been sighting reports of melon-headed whales at the Marshall Islands (Miller 2009). There was one sighting of melon-headed whales during the January–February 2010 survey from Oahu to Guam (specific location unreported; PIFSC 2010a) and three sightings on the return trip from Guam to Oahu April–May, two at ~170.5°W and one at ~180°W (PIFSC 2010b). One melon-headed whale was also acoustically detected on the towed array during the survey.

Pygmy Killer Whale (*Feresa attenuata*)

The pygmy killer whale is distributed throughout tropical and subtropical oceans worldwide (Ross and Leatherwood 1994; Donahue and Perryman 2002). Little is known about the species in most of its range, but it is sighted frequently in the ETP, off Hawaii, and off Japan (Donahue and Perryman 2002). In warmer water, it is usually seen close to the coast (Wade and Gerrodette 1993), but it is also found in deep oceanic waters. In the Marquesas, it was sighted in water 100 m deep (Gannier 2002). Pygmy killer whales tend to travel in groups of 15–50, although herds of a few hundred have been sighted (Ross and Leatherwood 1994). Mean group sizes have been reported as 14 for Hawaii (Barlow 2006) and 25–30 for the ETP (Wade and Gerrodette 1993; Ferguson et al. 2006; Jackson et al. 2008).

There was one sighting of a group of six pygmy killer whales during the January–April 2007 survey in the waters of Guam and the southern CNMI (Fulling et al. in press), south of Guam (~12°N) where the bottom depth was ~4400 m. This is consistent with the known habitat preferences of the species for deep, oceanic waters. No pygmy killer whales were sighted or detected acoustically during the January–February or April–May 2010 surveys in the waters between Guam and Oahu (PIFSC 2010a,b). However, the MIME is considered to be within the known range for this species (Taylor et al. 2008i).

False Killer Whale (*Pseudorca crassidens*)

The false killer whale is found in all tropical and warmer temperate oceans, especially in deep, offshore waters (Odell and McClune 1999). It is also known to occur in nearshore areas (e.g., Stacey and Baird 1991). In the ETP, it is usually seen far offshore (Wade and Gerrodette 1993). False killer whales travel in pods of 20–100 (Baird 2002), although groups of several hundred are sometimes observed. Mean group sizes have been reported as 10 for Hawaii (Barlow 2006) and 11–12 for the ETP (Wade and Gerrodette 1993; Ferguson et al. 2006; Jackson et al. 2008).
In the west Pacific, the false killer whale is distributed from Japan to Australia. Nothing is known of the stock structure of false killer whales in the North Pacific Ocean. However, there are estimated to be about 6000 false killer whales in the area surrounding the Mariana Islands (Miyashita 1993). Ten sightings of false killer whales were made during the January–April 2007 survey in the waters of Guam and the southern CNMI (Fulling et al. in press). Group sizes were 2–26, including some groups that contained calves. False killer whales were sighted in water depths of ~3000–8000 m, and several sightings were made southeast of the Mariana Islands at ~148°E in water depths >5000 m (Fulling et al. in press).

The distribution range of the false killer whale includes the Marshall Islands (Taylor et al. 2008j). One sighting of false killer whales was reported during the January–February 2010 survey from Oahu to Guam (PIFSC 2010a). One sighting was reported during the April–May 2010 survey from Guam to Oahu near Wake Island EEZ waters (~175°W), and one false killer whale was detected acoustically during the survey (PIFSC 2010b).

Killer Whale (Orcinus orca)

The killer whale is cosmopolitan and globally fairly abundant; it has been observed in all oceans of the world (Ford 2002). It is very common in temperate waters, and also frequents tropical waters, at least seasonally (Heyning and Dahlheim 1988; Reeves et al. 1999). High densities of the species occur in high latitudes, especially in areas where prey is abundant. Although resident in some parts of its range, the killer whale can also be transient. Killer whale movements generally appear to follow the distribution of their prey, which includes marine mammals, fish, and squid.

Killer whales are large and conspicuous, often traveling in close-knit matrilineal groups of a few to tens of individuals (Dahlheim and Heyning 1999). Mean group sizes have been reported as 6.5 for Hawaii (Barlow 2006) and 5.4–8.1 for the ETP (Wade and Gerrodette 1993; Ferguson et al. 2006; Jackson et al. 2008). The maximum depth to which seven tagged free-ranging killer whales dove off B.C. was 228 m, but only an average of 2.4% of their time was spent below 30-m depth (Baird et al. 2003).

There are a few sightings (most unconfirmed) of killer whales off Guam (Eldredge 1991), including a sighting ~25 km west of Tinian during January 1997 reported to the NMFS Platforms of Opportunity Program. There was also a badly decomposed killer whale found stranded on Guam in August 1981 (Kami and Hosmer 1982). No killer whales were sighted during the January–April 2007 survey in the waters of Guam and the southern CNMI (Fulling et al. in press). Killer whales are known to occur in the Marshall Islands (Miller 2009). No killer whales were sighted or detected acoustically during the January–February or April–May 2010 surveys in the waters between Guam and Oahu (PIFSC 2010a,b). However, the MIME is within the known distribution range for this species (Taylor et al. 2008k).

Short-finned Pilot Whales (Globicephala macrorhynchus)

The short-finned pilot whale is found in tropical and warm temperate waters (Olson and Reilly 2002); it is seen as far south as ~40°S, but is more common north of ~35°S (Olson and Reilly 2002). Pilot whales occur on the shelf break, over the slope, and in areas with prominent topographic features, and are usually seen in groups of 20–90 (Olson and Reilly 2002). Mean group sizes have been reported as 22.5 for Hawaii (Barlow 2006) and 18.0–18.3 for the ETP (Wade and Gerrodette 1993; Ferguson et al. 2006; Jackson et al. 2008). Long-finned pilot whales outfitted with time-depth recorders dove to depths up to
828 m, although most of their time was spent above depths of 7 m (Heide-Jørgensen et al. 2002). The species’ maximum recorded dive depth is 971 m (Baird pers. comm. in DoN 2005).

Short-finned pilot whales are known to occur in the Philippines and off mainland China in the South China Sea (Perrin et al. 2005) and off Taiwan (e.g., Chou 2004). Prior to 2007, there were a small number of occurrence records for the short-finned pilot whale around the Mariana Islands. Miyashita et al. (1996) reported sightings in the vicinity of the CNMI during February–March 1994, but did not provide the sighting coordinates. A group of more than 30 was sighted in late April 1977 off the northwest coast of Guam (Birkeland 1977), and a stranding occurred on Guam in July 1980 (Schulz 1980; Kami and Hosmer 1982; Donaldson 1983).

There were five sightings of short-finned pilot whales during the January–April 2007 survey in the waters of Guam and the southern CNMI (Fulling et al. in press), three of which were at ~147.5°E, over the West Mariana Ridge (an area of seamounts). Short-finned pilot whales were sighted in water depths of ~900–4500 m. Group sizes were 5–43, and no calves were observed. One of the groups was in a mixed-species aggregation of bottlenose dolphins, short-finned pilot whales, and rough-toothed dolphins (SRS-Parsons et al. 2007). Short-finned pilot whales are known to occur in the Marshall Islands (Miller 2009). One short-finned pilot whale sighting was reported at ~170°W during the April–May 2010 survey from Guam to Oahu, and there was one acoustic detection of short-finned pilot whale on the towed array during the survey (PIFSC 2010b).

(3) Pinniped

Only one species of pinniped has the potential to occur within the MIME: the Hawaiian monk seal. The Hawaiian monk seal is listed as Endangered under the ESA and Critically Endangered on the 2010 IUCN Red List of Threatened Species (IUCN 2010), and is listed in CITES Appendix I (UNEP-WCMC 2010). The Hawaiian monk seal occurs throughout the Hawaiian Island chain, mostly in six main breeding locations in the northwestern Hawaiian Islands, with a small but increasing number of births documented in the main Hawaiian Islands (Lowry and Aguilar 2008). It is estimated that the population has declined by 68% in 49 years. Since 1999 the population has declined at a rate of ~4% per year (Lowry and Aguilar 2008). The best estimate for the population is 1129 (Carretta et al. 2010).

Monk seals are benthic foragers that feed on marine terraces of atolls and banks, generally to depths <40 m but occasionally to depths >500m (Parrish et al. 2000; Stewart et al. 2006). Stewart et al. (2006) used satellite tracking to examine the foraging behavior of monk seals at the six main breeding colonies in the northwestern Hawaiian Islands. Foraging trips varied by sex and by age and ranged from <1 km up to 217 km from haul-out sites. Satellite tracking of Hawaiian monk seals in the main Hawaiian Islands revealed home ranges of 34 to 800 km². The home ranges for monk seals in the northwestern Hawaiian Islands were much greater (163–7400 km²; NMFS 2007b).

Hawaiian monk seals are seen occasionally at Johnston Atoll (~16.8°N; 169.5°W), 1390 km west of Hawaii, and at least one birth has occurred at the atoll (NMFS 2007b). In addition, twelve males were translocated to Johnston Atoll over the past 20 years. In the late 1980s two Hawaiian monk seal sightings were reported at Palmyra Atoll (~6°N; 162.5W°), and one tagged seal was observed near Wake Island (Westlake and Gilmartin 1990).

Given the very low population abundance and that the proposed survey area is >3500 km from their most common coastal habitat, sightings in the proposed survey area are not expected.
Sea Turtles

Five species of sea turtle occur within the MIME, including the leatherback (*Dermochelys coriacea*), green (*Chelonia mydas*), loggerhead (*Caretta caretta*), hawksbill (*Eretmochelys imbricata*), and olive ridley turtles (*Lepidochelys olivacea*). The green turtle and the hawksbill turtle are the most commonly seen in the Marshall Islands (McCoy 2004 in Project Global 2011). The occurrence of the other three species is considered rare in the area.

(1) Leatherback Turtle

The leatherback turtle is listed as *Endangered* under the U.S. ESA and *Critically Endangered* on the 2010 IUCN Red List of Threatened Species (IUCN 2010), and is listed in CITES Appendix I (UNEP-WCMC 2010). The most recent estimate of the worldwide population is 35,860 females (Spotila 2004). A significant decline in the numbers of nesting leatherbacks in the Pacific has been reported (Dutton et al. 2007) with possible extirpation of some nesting groups in the eastern Pacific (Spotila et al. 2000).

The leatherback is the largest and most widely distributed sea turtle, ranging far from its tropical and subtropical breeding grounds (Plotkin 2003). Leatherbacks have been reported from 71°N to 47°S in the Pacific Ocean (Eckert 1995). They are highly pelagic, spending the majority of their time in waters >1000 m deep and swimming more than 10,000 km in a year (Eckert 1998). Female leatherbacks approach coastal waters only during the reproductive season, whereas males are rarely observed near nesting sites (NMFS 2002).

Leatherbacks are highly migratory, feeding in convergence zones and upwelling areas in the open ocean, along continental margins, and in archipelagic waters (Morreale et al. 1994). Hatching leatherbacks are pelagic, but nothing is known about their distribution for the first four years (Musick and Limpus 1997). Post-nesting adult leatherbacks appear to migrate along bathymetric contours from 200 to 3500 m (Morreale et al. 1994). There is evidence that leatherbacks are associated with oceanic front systems, such as shelf breaks and the edges of oceanic gyre systems where their prey is concentrated (Lutcavage 1996). Leatherbacks feed mainly on jellyfish, tunicates, and other epipelagic soft-bodied invertebrates (Davenport and Balazs 1991).

The leatherback turtle is one of the deepest divers in the ocean, with dives deeper than 4000 m (Spotila 2004). The leatherback dives continually and spends short periods of time on the surface between dives (Eckert et al. 1986; Southwood et al. 1998). Off Playa Grande, Costa Rica, six inter-nesting female leatherbacks spent 57–68% of their time underwater, diving to a mean depth of 19 m for 7.4 min (Southwood et al. 1998). Off St. Croix, six inter-nesting females dove to a mean depth of 61.6 m for an average of 9.9 min, and post-dive surfacing intervals averaged 4.9 min (Eckert et al. 1989). During shallow-water diving in the South China Sea, typical dive durations averaged 6.9–14.5 min, with a maximum of 42 min (Eckert et al. 1996). Off central California, leatherbacks dove to 20–30 m with a maximum of 92 m, corresponding to the vertical distribution if their prey, and mean dive and surface durations were 2.9 and 2.2 min, respectively (Harvey et al. 2006). During migrations or long distance movements, leatherbacks maximize swimming efficiency by traveling within 5 m of the surface (Eckert 2002).

In the eastern Pacific, leatherbacks nest along the west coast of Mexico and Central America from November to February (NMFS and USFWS 1998a). In the western Pacific, they mainly nest in Papua New Guinea, the Solomon Islands, and Vanuatu, with fewer nesting in Fiji, Malaysia, and Australia (NMFS and USFWS 2007a). Leatherbacks are not known to nest in the Marshall Islands, but are
occasionally encountered in the pelagic waters of the MIME (Project Global 2011). Migrating or foraging leatherbacks could be encountered during the proposed seismic survey.

(2) Green Turtle

The green turtle is listed as *Threatened* under the ESA throughout its Pacific range, except for the *Endangered* population nesting on the Pacific coast of Mexico. The green turtle is listed as *Endangered* on the 2010 IUCN Red List of Threatened Species (IUCN 2010), and is listed in CITES Appendix I (UNEP-WCMC 2010). The worldwide green turtle population was estimated at 88,520 nesting females by Spotila (2004) and 110,000–150,000 by NMFS and USFWS (2007b). The worldwide population has declined 50–70% since 1900 (Spotila 2004).

The green turtle is widely distributed in tropical and subtropical waters near continental coasts and around islands (NMFS and USFWS 1998b). Green turtles typically migrate along coastal routes from rookeries to feeding grounds, although some populations conduct trans-oceanic migrations (EuroTurtle 2006). Females typically show nest-site fidelity, and nest repeatedly in the same spot, or at least on the same beach from which they hatched. Hatchlings are epipelagic (surface dwelling in the open sea) for ~1–3 years. Subsequently, most green turtles live in bays and along protected shorelines, and feed during the day on seagrass and algae (Bjorndal 1982). Juvenile and sub-adult green turtles can travel thousands of kilometers before they return to breeding and nesting grounds (Carr et al. 1978). Juveniles have been observed by research vessels operating thousands of miles from land in the southeastern Pacific Ocean (NMFS and USFWS 1998b). It has been suggested that some green turtles remain in oceanic habitats, foraging on jellyfish and other pelagic prey, and possibly never inhabit coastal foraging sites (NMFS and USFWS 2007b).

Green turtles typically make dives shallower than 30 m (Hochscheid et al. 1999; Hays et al. 2000), although they have been observed diving to 73–110 m in the eastern Pacific Ocean (Berkson 1967 in Lutcavage and Lutz 1997). Green turtles spend most of their time feeding or resting underwater (Rice et al. 2000). Three subadult green turtles tagged in Hawaii spent averages of 9, 14, and 19 h/day foraging at depths <2 m, and 12, 10, and 5 h/day in resting dives at mean depths of 7–13 m (maximum depths were 16–40 m). Foraging dive durations were <10 min, and resting dive durations were 59, 44, and 24 min (Davis et al. 2000; Rice et al. 2000). Six green turtles tagged in the Gulf of California spent 6% of their time within 2 m of the surface, 39% of their time in resting dives to a mean of 10 m, and the remainder diving to depths up to ~50 m (Seminoff et al. 2005).

The green turtle is the most common turtle species reported in the Marshall Islands (Project Global 2011). Nesting occurs mostly on beaches on the uninhabited northern atolls. Bikar Atoll supports the largest numbers with 100–500 nesting females. Other nesting sites include Erikub, Jemo, Eniwetak, and Bikini atolls (NMFS and USFWS 2007b). Nesting occurs between May and November, with a peak between mid July and mid September (McCoy 2004 in Project Global 2011). Very little information exists on the range of green turtles foraging in the Marshall Islands. Arno Atoll provides an important feeding area for turtles of various size classes (NMFS and USFWS 2007b). Green turtles are believed to be present in the nearshore waters of Wake Island (WPRFMC 2005).

Green turtles are the most widespread sea turtle species in the MIME. Of the five sea turtles species that occur there, they are the most likely to be encountered during the proposed seismic survey.
(3) Loggerhead Turtle

The loggerhead turtle is listed as **Threatened** under the U.S. ESA throughout its range, primarily because of direct take, incidental capture in various fisheries, and the alteration and destruction of its habitat (NMFS 2002). The loggerhead is listed as **Endangered** on the 2010 IUCN Red List of Threatened Species (IUCN 2010), and is listed in CITES Appendix I (UNEP-WCMC 2010). The global population of loggerhead turtles was estimated at 43,320–44,560 nesting females (Spotila 2004).

The loggerhead is a widely distributed species, occurring in coastal tropical and subtropical waters around the world. Migrating loggerhead turtles have been found to spend 89–96% of their time underwater, and loggerheads on feeding grounds spend ~85% of their time underwater (Byles 1988 in Lutcavage and Lutz 1997; Musick et al. 1994). In the North Pacific Ocean, two loggerheads tagged with satellite-linked depth recorders spent about 40% of their time in the top meter and virtually all their time shallower than 100 m; 70% of the dives were no deeper than 5 m (Polovina et al. 2003). Post-nesting female loggerheads off Japan made routine dives to 9–22 m for 17–30 min, with maximum depths of 211–233 m (Sakamoto et al. 1990, 1993 in Lutcavage and Lutz 1997). Small juvenile loggerheads live at or near the surface; for the 6–12 years spent at sea as juveniles, loggerheads spend 75% of their time in the top 5 m of water (Spotila 2004). Juveniles spend more time on the surface in deep, offshore areas than in shallow, nearshore waters (Lutcavage and Lutz 1997). Ten juvenile pelagic-stage loggerheads tagged off Madeira Island generally made shallow dives, spending most of the time near the surface, and ~20% of their time was spent at 10–25 m. Occasionally, dives were deep for long periods; maximum depths for the 10 turtles were 86–196 m, and maximum times were 90–240 min (Dellinger and Freitas 2000).

Nesting in the Pacific Ocean basin is restricted to the western region; the two main nesting stocks in Japan and Australia/New Caledonia have been identified as genetically distinct (NMFS and USFWS 2007c). There are very few records of loggerheads nesting on any of the main central Pacific Islands (NMFS and USFWS 2007c).

The size structure of loggerheads in coastal and nearshore waters of the eastern and western Pacific Ocean suggest that hatching loggerheads in the Pacific Ocean have a pelagic stage similar to that in the Atlantic (NMFS 2002), where they spend the first 2–6 years of their lives at sea. Telemetry studies, mark-recapture data, demographics, diet analysis, and oceanographic patterns suggest that North Pacific loggerhead turtles, mostly born in southern Japan, are transported as hatchlings and juveniles to the North Pacific by the Kuroshio Current. They spend the next 2–6 years moving from west to east, feeding along convergence and frontal zones. Loggerheads arrive at the U.S. west coast as juveniles, and feed along the Baha California coast on pelagic red crabs, which are extremely abundant there in spring and early summer. When mature, they migrate back to natal beaches in Japan and remain in the western Pacific, migrating annually between nesting beaches and feeding grounds in the South and East China seas (Nichols et al. 2000; Nichols 2005; Parker et al. 2005). Tagged loggerhead turtles, recovered as fisheries bycatch, showed that the East China Sea and the coastal waters off Japan are foraging grounds for loggerhead turtles nesting in Japan (Sato et al. 1997). The continental shelves of the South China Sea are also considered as foraging grounds for loggerhead turtles nesting in Japan (Zhu 2002).

There is no known sightings records for the waters of the Marshall Islands or Wake Island (NMFS and USFWS 1998c). The species is considered rare or vagrant in the region (NMFS and USFWS 2007c).
(4) Hawksbill Turtle

The hawksbill turtle is listed as **Endangered** under the U.S. ESA and **Critically Endangered** on the 2009 IUCN Red List of Threatened Species (IUCN 2010), and is listed in CITES Appendix I (UNEP-WCMC 2010). The hawksbill is a solitary nester, and population trends or estimates are difficult to determine. The worldwide hawksbill population was estimated by Spotila (2004) at 20,000–26,000 nesting females, <10% of the population a century ago, and by NMFS and USFWS (2007d) at 21,212–28,138 nesting females.

Hawksbill turtles are observed in shallow waters with seagrass or algal meadows, and are most common where reef formations are present. They live in clear, littoral waters of mainland and island shelves. Post-hatchlings are believed to be pelagic, taking shelter in weed lines around convergence zones, and they re-enter coastal waters once attaining a length of ~25–35 cm (NMFS and USFWS 1998d). In the Pacific, the pelagic habitat of hawksbill juveniles is still unknown (NMFS 2008a).

Hawksbill turtles appear to be specialist sponge carnivores (e.g., Vicente 1994) that move from shallow to deeper (<200 m) water as they grow (NMFS and USFWS 1998d). They nest on low- and high-energy beaches, often sharing high-energy locations with green turtles. Hawksbill turtles most commonly perform short-distance movements between nesting beaches and offshore feeding banks, although long-distance movements are also known (NMFS and USFWS 1998d, 2007d).

Hawksbills have very long routine dive times. For inter-nesting females in St. Croix, Starbird et al. (1999) reported dive times averaging 56 min, a maximum dive time of 73.5 min, and an average surface interval of ~2 min. Average day and night dive times were 34–65 and 42–74 min, respectively. Based on time-depth recorder studies in Puerto Rico, foraging dives of immature hawksbills were 8.6–14 min to a mean depth of 4.7 m (van Dam and Diez 1996).

Hawksbills are commonly sighted in the Marshall Islands (Project Global 2011). There is evidence of hawksbills nesting regularly on Wotje Atoll, and foraging populations are found at that and other northern atolls (NMFS and USFWS 1998d).

(5) Olive Ridley Turtle

The olive ridley turtle has a large range in tropical and subtropical regions of the Pacific, Indian, and South Atlantic oceans, and is generally found between 40ºN and 40ºS. The olive ridley is the most abundant sea turtle in the world, although its population is in serious decline worldwide (Spotila 2004). Olive ridley populations on the Pacific coast of Mexico are listed as **Endangered** under the U.S. ESA; all other populations are listed as **Threatened**. The olive ridley is listed as **Vulnerable** on the 2010 IUCN Red List of Threatened Species (IUCN 2010), and is listed in CITES Appendix I (UNEP-WCMC 2010). The worldwide population of olive ridley turtles is estimated at ~2 million nesting females (Spotila 2004).

Olive ridley turtles lead a primarily pelagic existence (NMFS 2008b). The Pacific population migrates throughout the Pacific Ocean, from nesting grounds in Mexico and Central America to the North Pacific Ocean (NMFS 2002). The post-nesting migration routes of olive ridleys tracked via satellite from Costa Rica traversed thousands of kilometers of deep oceanic waters ranging from Mexico to Peru, and more than 3000 km out into the central Pacific (Plotkin et al. 1994a). The olive ridley is the most abundant sea turtle in the open ocean waters of the ETP (Pitman 1990), where it forages, often in large groups or flotillas (NMFS 2002).
Olive ridleys can dive and feed at considerable depths (80–300 m), although ~90% of their time is spent at depths <100 m (Eckert et al. 1986; Polovina et al. 2003). In the ETP, at least 25% of their total dive time is spent in the permanent thermocline, located at 20–100 m (Parker et al. 2003). Olive ridleys spend considerable time at the surface basking, presumably in an effort to speed their metabolism and digestion after a deep dive (Spotila 2004). In the open ocean of the ETP, olive ridley turtles are often seen near flotsam, possibly feeding on associated fish and invertebrates (Pitman 1992). In the North Pacific Ocean, two olive ridleys tagged with satellite-linked depth recorders spent about 20% of their time in the top meter and about 10% of their time deeper than 100 m; 70% of the dives were no deeper than 5 m (Polovina et al. 2003).

Olive ridleys are uncommon in the western Pacific and eastern Indian oceans; in the western Pacific, solitary nesting populations producing 100–2000 nests/year occur in Australia, Brunei, Malaysia, Indonesia, and Vietnam (Spotila 2004). There are also reported nesting sites in Papua New Guinea (Spring 1995). In the eastern Pacific, the largest nesting concentrations occur in southern Mexico and northern Costa Rica, where most olive ridleys nest synchronously in huge colonies called “arribadas”, with several thousand females nesting at the same time; others nest alone, out of sequence with the arribada (Kalb and Owens 1994). The arribadas usually last from three to seven nights (April 1994). Most females lay two clutches of eggs with an inter-nesting period of 1–2 months (Plotkin et al. 1994b). Radio-tracking studies showed that females that nested in arribadas remain within 5 km of the beach most of the time during the inter-nesting period (Kalb and Owens 1994). Olive ridleys nest throughout the year in the eastern Pacific with the highest numbers nesting during September–December (NMFS and USFWS 1998e). Arribadas are not known to occur in the western Pacific (Spotila 2004).

Females and males begin to aggregate near their nesting beaches two months before the nesting season, and most mating likely occurs near the nesting beaches (NMFS 2002). However, Pitman (1990) observed olive ridleys mating at sea, as far as 1500 km from the nearest mainland, during every month of the year except March and December. There was a sharp peak in offshore mating activity during August and September, corresponding with peak breeding activity in mainland populations. Turtles observed during NMFS/SWFSC dolphin surveys during July–December 1998 and 1999 were captured; 50 of 324 were involved in mating (Kopitsky et al. 2000).

Outside of the breeding season, the turtles disperse, but little is known of their behavior. Neither males nor females migrate to one specific foraging area, but exhibit a nomadic movement pattern and occupy a series of feeding areas in the oceanic waters (Plotkin et al. 1994a,b). Aggregations of turtles2, sometimes >100 individuals, have been observed as far offshore as 120°W, ~3000 km from shore (Arenas and Hall 1991), however movements of turtles tagged in Central America were highly dissociated from each other, indicating that olive ridleys are “nomadic epipelagic foragers that prey on patchily distributed food” (Morreale et al. 2007:220).

The olive ridley is rare in the central Pacific, both at sea and around islands (NMFS and USFWS 1998e). There is no known nesting by olive ridleys on Marshall Island, and there are no known sighting records for the waters of the MIME. The olive ridley turtle likely is very rare in the proposed survey area.

2 Of sea turtles observed at sea, 75% were olive ridleys.
III. Affected Environment

Seabirds

Several seabird species of conservation concern could occur in the proposed survey area, including Newell’s shearwater (*Puffinus newelli*), the Hawaiian petrel (*Pterodroma sandwichensis*), and the black-footed albatross (*Phoebastria nigripes*). Two of these species are listed under the ESA, and one (black-footed albatross) is a candidate for listing under the ESA.

(1) Black-footed Albatross

The black-footed albatross has experienced a declining population trend over the last 15 years that is projected to continue, largely because of incidental catch by the longline fishing industry (BirdLife International 2011). It is designated as *Endangered* on the 2010 IUCN Red List of Threatened Species (IUCN 2010) and is currently designated as a species of Conservation Concern and is under review for listing under the ESA (Naughton et al. 2007). Black-footed albatrosses breed primarily in the northwest Hawaiian Islands but range widely across the Pacific (Awkerman et al. 2008), including the proposed survey area. Since the late 1990s there have been numerous reports of breeding attempts by black-footed albatross on Wake Atoll (Rauzon et al. 2008). The species was encountered at sea during the April–May 2010 transit from Guam to Oahu via Wake Island (PIFSC 2010b).

(2) Hawaiian Petrel

The Hawaiian petrel is currently listed as *Endangered* under the ESA and *Vulnerable* on the 2010 IUCN Red List of Threatened Species (IUCN 2010). This species is endemic to the Hawaiian Islands, and two of the five known breeding locations in the main Hawaiian islands are in jeopardy (IUCN 2010). Hawaiian petrel sightings were reported during the April–May 2010 transit from Guam to Oahu (PIFSC 2010b). The species has not been reported around Wake Atoll (Rauzon et al. 2008) and is likely to be rare in the proposed survey area.

(3) Newell's Shearwater

Newell’s shearwater is currently listed as *Threatened* under the ESA and *Endangered* on the 2010 IUCN Red List of Threatened Species (IUCN 2010). The species is endemic to the Hawaiian Islands and has experienced substantial population declines in recent decades (Ainley et al 1997). The only known breeding colonies are in Hawaii, and although Newell’s shearwater has been sighted around Wake Atoll, it is considered a rare visitor there (Rauzon et al. 2008). Newell's shearwater sightings were reported during the April–May 2010 transit from Guam to Oahu via Wake Island (PIFSC 2010b).

IV. ENVIRONMENTAL CONSEQUENCES

Proposed Action

(1) Direct Effects on Marine Mammals and Sea Turtles and Their Significance

The material in this section includes a summary of the anticipated potential effects (or lack thereof) on marine mammals and sea turtles of the airgun system to be used by SIO. A more detailed review of airgun effects on marine mammals appears in Appendix A. That Appendix is similar to corresponding parts of previous EAs and associated IHA applications concerning other SIO and L-DEO seismic surveys since 2003, but was updated in 2009. Appendix B contains a general review of the effects of seismic
pulses on sea turtles. This section also includes a discussion of the potential impacts of operations by SIO’s multi-beam echosounder (MBES) and sub-bottom profiler (SBP).

Finally, this section includes estimates of the numbers of marine mammals that could be affected by the proposed seismic survey scheduled to occur during November–December 2011. A description of the rationale for SIO’s estimates of the numbers of exposures to various received sound levels that could occur during the planned seismic program is also provided.

(a) Summary of Potential Effects of Airgun Sounds

The effects of sounds from airguns could include one or more of the following: tolerance, masking of natural sounds, behavioral disturbance, and at least in theory, temporary or permanent hearing impairment, or non-auditory physical or physiological effects (Richardson et al. 1995; Gordon et al. 2004; Nowacek et al. 2007; Southall et al. 2007). Permanent hearing impairment, in the unlikely event that it occurred, would constitute injury, but temporary threshold shift (TTS) is not an injury (Southall et al. 2007). Although the possibility cannot be entirely excluded, it is unlikely that the project would result in any cases of temporary or especially permanent hearing impairment, or any significant non-auditory physical or physiological effects. Some behavioral disturbance is expected, but this would be localized and short-term.

Tolerance.—Numerous studies have shown that pulsed sounds from airguns are often readily detectable in the water at distances of many kilometers. For a summary of the characteristics of airgun pulses, see Appendix A (3). Several studies have shown that marine mammals at distances more than a few kilometers from operating seismic vessels often show no apparent response—see Appendix A (5). That is often true even in cases when the pulsed sounds must be readily audible to the animals based on measured received levels and the hearing sensitivity of that mammal group. Although various baleen whales, toothed whales, and (less frequently) pinnipeds have been shown to react behaviorally to airgun pulses under some conditions, at other times mammals of all three types have shown no overt reactions. In general, pinnipeds usually seem to be more tolerant of exposure to airgun pulses than are cetaceans, with the relative responsiveness of baleen and toothed whales being variable. During active seismic surveys, sea turtles typically do not show overt reactions to airgun pulses.

Masking.—Masking effects of pulsed sounds (even from large arrays of airguns) on marine mammal calls and other natural sounds are expected to be limited, although there are very few specific data on this. Because of the intermittent nature and low duty cycle of seismic pulses, animals can emit and receive sounds in the relatively quiet intervals between pulses. However, in exceptional situations, reverberation occurs for much or all of the interval between pulses (e.g., Simard et al. 2005; Clark and Gagnon 2006) that could mask calls. Some baleen and toothed whales are known to continue calling in the presence of seismic pulses, and their calls usually can be heard between the seismic pulses (e.g., Richardson et al. 1986; McDonald et al. 1995; Greene et al. 1999a,b; Nieukirk et al. 2004; Smultea et al. 2004; Holst et al. 2005a,b, 2006; Dunn and Hernandez 2009). However, Clark and Gagnon (2006) reported that fin whales in the northeast Pacific Ocean went silent for an extended period starting soon after the onset of a seismic survey in the area. Similarly, there has been one report that sperm whales ceased calling when exposed to pulses from a very distant seismic ship (Bowles et al. 1994). However, more recent studies found that sperm whales continued calling in the presence of seismic pulses (Madsen et al. 2002; Tyack et al. 2003; Smultea et al. 2004; Holst et al. 2006; Jochens et al. 2008). Dolphins and porpoises commonly are heard calling while airguns are operating (e.g., Gordon et al. 2004; Smultea et al. 2004; Holst et al. 2005a,b; Potter et al. 2007). The sounds important to small odontocetes are predominantly at much higher frequencies than are the dominant components of airgun sounds, thus limiting the
IV. Environmental Consequences

potential for masking. In general, masking effects of seismic pulses are expected to be minor, given the normally intermittent nature of seismic pulses. Masking effects on marine mammals are discussed further in Appendix A (4). We are not aware of any information concerning masking of hearing in sea turtles.

Disturbance Reactions.—Disturbance includes a variety of effects, including subtle to conspicuous changes in behavior, movement, and displacement. Based on NMFS (2001, p. 9293), NRC (2005), and Southall et al. (2007), we assume that simple exposure to sound, or brief reactions that do not disrupt behavioral patterns in a potentially significant manner, do not constitute harassment or “taking”. By potentially significant, we mean “in a manner that might have deleterious effects to the well-being of individual marine mammals or their populations”.

Reactions to sound, if any, depend on species, state of maturity, experience, current activity, reproductive state, time of day, and many other factors (Richardson et al. 1995; Wartzok et al. 2004; Southall et al. 2007; Weilgart 2007). If a marine mammal does react briefly to an underwater sound by changing its behavior or moving a small distance, the impacts of the change are unlikely to be significant to the individual, let alone the stock or population. However, if a sound source displaces marine mammals from an important feeding or breeding area for a prolonged period, impacts on individuals and populations could be significant (e.g., Lusseau and Bejder 2007; Weilgart 2007). Given the many uncertainties in predicting the quantity and types of impacts of noise on marine mammals, it is common practice to estimate how many mammals would be present within a particular distance of industrial activities and/or exposed to a particular level of industrial sound. In most cases, this approach likely overestimates the numbers of marine mammals that would be affected in some biologically-important manner.

The sound criteria used to estimate how many marine mammals might be disturbed to some biologically-important degree by a seismic program are based primarily on behavioral observations of a few species. Detailed studies have been done on humpback, gray, bowhead, and sperm whales. Less detailed data are available for some other species of baleen whales, small toothed whales, and sea otters, but for many species there are no data on responses to marine seismic surveys.

Baleen Whales

Baleen whales generally tend to avoid operating airguns, but avoidance radii are quite variable. Whales are often reported to show no overt reactions to pulses from large arrays of airguns at distances beyond a few kilometers, even though the airgun pulses remain well above ambient noise levels out to much longer distances. However, as reviewed in Appendix A (5), baleen whales exposed to strong noise pulses from airguns often react by deviating from their normal migration route and/or interrupting their feeding and moving away. In the cases of migrating gray and bowhead whales, the observed changes in behavior appeared to be of little or no biological consequence to the animals. They simply avoided the sound source by displacing their migration route to varying degrees, but within the natural boundaries of the migration corridors.

Studies of gray, bowhead, and humpback whales have shown that seismic pulses with received levels of 160–170 dB re 1 µPa$_{rms}$ seem to cause obvious avoidance behavior in a substantial fraction of the animals exposed (Richardson et al. 1995). In many areas, seismic pulses from large arrays of airguns diminish to those levels at distances ranging from 4 to 15 km from the source. A substantial proportion of the baleen whales within those distances may show avoidance or other strong behavioral reactions to the airgun array. Subtle behavioral changes sometimes become evident at somewhat lower received levels, and studies summarized in Appendix A (5) have shown that some species of baleen whales, notably bowhead and humpback whales, at times show strong avoidance at received levels lower than 160–170 dB re 1 µPa$_{rms}$.

Environmental Assessment for SIO Western Pacific Cruise, 2011

Page 36
Responses of *humpback whales* to seismic surveys have been studied during migration, on summer feeding grounds, and on Angolan winter breeding grounds; there has also been discussion of effects on the Brazilian wintering grounds. McCauley et al. (1998, 2000a) studied the responses of humpback whales off Western Australia to a full-scale seismic survey with a 16-airgun, 2678-in3 array, and to a single 20-in3 airgun with source level 227 dB re 1 µPa·m$^{-p}$. McCauley et al. (1998) documented that avoidance reactions began at 5–8 km from the array, and that those reactions kept most pods ~3–4 km from the operating seismic boat. McCauley et al. (2000a) noted localized displacement during migration of 4–5 km by traveling pods and 7–12 km by more sensitive resting pods of cow-calf pairs. Avoidance distances with respect to the single airgun were smaller but consistent with the results from the full array in terms of the received sound levels. The mean received level for initial avoidance of an approaching airgun was 140 dB re 1 Pa$_{rms}$ for humpback pods containing females, and at the mean closest point of approach (CPA) distance the received level was 143 dB re 1 Pa$_{rms}$. The initial avoidance response generally occurred at distances of 5–8 km from the airgun array and 2 km from the single airgun. However, some individual humpback whales, especially males, approached within distances of 100–400 m, where the maximum received level was 179 dB re 1 Pa$_{rms}$.

Data collected by observers during several seismic surveys in the Northwest Atlantic showed that sighting rates of humpback whales were significantly greater during periods of no seismic compared with periods when a full array was operating (Moulton and Holst 2010). In addition, humpback whales were more likely to swim away and less likely to swim towards a vessel during seismic vs. non-seismic periods (Moulton and Holst 2010).

Humpback whales on their summer feeding grounds in SE Alaska did not exhibit persistent avoidance when exposed to seismic pulses from a 1.64-L (100-in3) airgun (Malme et al. 1985). Some humpbacks seemed “startled” at received levels of 150–169 dB re 1 µPa. Malme et al. (1985) concluded that there was no clear evidence of avoidance, despite the possibility of subtle effects, at received levels up to 172 re 1 µPa on an approximate rms basis. However, Moulton and Holst (2010) reported that humpback whales monitored during seismic surveys in the Northwest Atlantic had lower sighting rates and were most often seen swimming away from the vessel during seismic periods compared with periods when airguns were silent.

It has been suggested that South Atlantic humpback whales wintering off Brazil may be displaced or even strand upon exposure to seismic surveys (Engel et al. 2004). The evidence for this was circumstantial and subject to alternative explanations (IAGC 2004). Also, the evidence was not consistent with subsequent results from the same area of Brazil (Parente et al. 2006), or with direct studies of humpbacks exposed to seismic surveys in other areas and seasons. After allowance for data from subsequent years, there was “no observable direct correlation” between strandings and seismic surveys (IWC 2007b:236).

There are no data on reactions of *right whales* to seismic surveys, but results from the closely-related *bowhead whale* show that their responsiveness can be quite variable depending on their activity (migrating vs. feeding). Bowhead whales migrating west across the Alaskan Beaufort Sea in autumn, in particular, are unusually responsive, with substantial avoidance occurring out to distances of 20–30 km from a medium-sized airgun source at received sound levels of around 120–130 dB re 1 Pa$_{rms}$ [Miller et al. 1999; Richardson et al. 1999; see Appendix A (5)]. However, more recent research on bowhead whales (Miller et al. 2005; Harris et al. 2007) corroborates earlier evidence that, during the summer feeding season, bowheads are not as sensitive to seismic sources. Nonetheless, subtle but statistically significant changes in surfacing–respiration–dive cycles were evident upon analysis (Richardson et al.
Reactions of migrating and feeding (but not wintering) gray whales to seismic surveys have been studied. Malme et al. (1986, 1988) studied the responses of feeding eastern Pacific gray whales to pulses from a single 100-in³ airgun off St. Lawrence Island in the northern Bering Sea. They estimated, based on small sample sizes, that 50% of feeding gray whales stopped feeding at an average received pressure level of 173 dB re 1 μPa on an (approximate) rms basis, and that 10% of feeding whales interrupted feeding at received levels of 163 dB re 1 μPa. Those findings were generally consistent with the results of experiments conducted on larger numbers of gray whales that were migrating along the California coast (Malme et al. 1984; Malme and Miles 1985), and western Pacific gray whales feeding off Sakhalin Island, Russia (Würsig et al. 1999; Gailey et al. 2007; Johnson et al. 2007; Yazvenko et al. 2007a,b), along with data on gray whales off B.C., Canada (Bain and Williams 2006).

Various species of Balaenoptera (blue, sei, fin, and minke whales) have occasionally been seen in areas ensonified by airgun pulses (Stone 2003; MacLean and Haley 2004; Stone and Tasker 2006), and calls from blue and fin whales have been localized in areas with airgun operations (e.g., McDonald et al. 1995; Dunn and Hernandez 2009; Castellote et al. 2010). Sightings by observers on seismic vessels off the United Kingdom from 1997 to 2000 suggest that, during times of good sightability, sighting rates for mysticetes (mainly fin and sei whales) were similar when large arrays of airguns were shooting vs. silent (Stone 2003; Stone and Tasker 2006). However, these whales tended to exhibit localized avoidance, remaining significantly further (on average) from the airgun array during seismic operations compared with non-seismic periods (Stone and Tasker 2006). Castellote et al. (2010) reported that singing fin whales in the Mediterranean moved away from an operating airgun array.

Ship-based monitoring studies of baleen whales (including blue, fin, sei, minke, and humpback whales) in the Northwest Atlantic found that overall, this group had lower sighting rates during seismic vs. non-seismic periods (Moulton and Holst 2010). Baleen whales as a group were also seen significantly farther from the vessel during seismic compared with non-seismic periods, and they were more often seen to be swimming away from the operating seismic vessel (Moulton and Holst 2010). Blue and minke whales were initially sighted significantly farther from the vessel during seismic operations compared to non-seismic periods; the same trend was observed for fin whales (Moulton and Holst 2010). Minke whales were most often observed to be swimming away from the vessel when seismic operations were underway (Moulton and Holst 2010).

Data on short-term reactions by cetaceans to impulsive noises are not necessarily indicative of long-term or biologically significant effects. It is not known whether impulsive sounds affect reproductive rate or distribution and habitat use in subsequent days or years. However, gray whales have continued to migrate annually along the west coast of North America with substantial increases in the population over recent years, despite intermittent seismic exploration (and much ship traffic) in that area for decades (Appendix A in Malme et al. 1984; Richardson et al. 1995; Angliss and Allen 2010). The western Pacific gray whale population did not seem affected by a seismic survey in its feeding ground during a previous year (Johnson et al. 2007). Similarly, bowhead whales have continued to travel to the eastern Beaufort Sea each summer, and their numbers have increased notably, despite seismic exploration in their summer and autumn range for many years (Richardson et al. 1987; Angliss and Allen 2010).
Toothed Whales

Little systematic information is available about reactions of toothed whales to noise pulses. Few studies similar to the more extensive baleen whale/seismic pulse work summarized above and (in more detail) in Appendix A have been reported for toothed whales. However, there are recent systematic studies on sperm whales (e.g., Gordon et al. 2006; Madsen et al. 2006; Winsor and Mate 2006; Jochens et al. 2008; Miller et al. 2009). There is an increasing amount of information about responses of various odontocetes to seismic surveys based on monitoring studies (e.g., Stone 2003; Smultea et al. 2004; Moulton and Miller 2005; Bain and Williams 2006; Holst et al. 2006; Stone and Tasker 2006; Potter et al. 2007; Hauser et al. 2008; Holst and Smultea 2008; Weir 2008; Barkaszi et al. 2009; Richardson et al. 2009; Moulton and Holst 2010).

Seismic operators and marine mammal observers on seismic vessels regularly see dolphins and other small toothed whales near operating airgun arrays, but in general there is a tendency for most delphinids to show some avoidance of operating seismic vessels (e.g., Goold 1996a,b,c; Calambokidis and Osmeñ 1998; Stone 2003; Moulton and Miller 2005; Holst et al. 2006; Stone and Tasker 2006; Weir 2008; Barkaszi et al. 2009; Richardson et al. 2009; Moulton and Holst 2010). Some dolphins seem to be attracted to the seismic vessel and floats, and some ride the bow wave of the seismic vessel even when large arrays of airguns are firing (e.g., Moulton and Miller 2005). Nonetheless, small toothed whales more often tend to head away, or to maintain a somewhat greater distance from the vessel, when a large array of airguns is operating than when it is silent (e.g., Stone and Tasker 2006; Weir 2008; Barry et al. 2010; Moulton and Holst 2010). In most cases the avoidance radii for delphinids appear to be small, on the order of 1 km less, and some individuals show no apparent avoidance. The beluga is a species that (at least at times) shows long-distance avoidance of seismic vessels. Aerial surveys conducted in the southeastern Beaufort Sea during summer found that sighting rates of beluga whales were significantly lower at distances 10–20 km compared with 20–30 km from an operating airgun array, and observers on seismic boats in that area rarely see belugas (Miller et al. 2005; Harris et al. 2007).

Captive bottlenose dolphins and beluga whales exhibited changes in behavior when exposed to strong pulsed sounds similar in duration to those typically used in seismic surveys (Finneran et al. 2000, 2002, 2005). However, the animals tolerated high received levels of sound before exhibiting aversive behaviors.

Results for porpoises depend on species. The limited available data suggest that harbor porpoises show stronger avoidance of seismic operations than do Dall’s porpoises (Stone 2003; MacLean and Koski 2005; Bain and Williams 2006; Stone and Tasker 2006). Dall’s porpoises seem relatively tolerant of airgun operations (MacLean and Koski 2005; Bain and Williams 2006), although they too have been observed to avoid large arrays of operating airguns (Calambokidis and Osmeñ 1998; Bain and Williams 2006). This apparent difference in responsiveness of these two porpoise species is consistent with their relative responsiveness to boat traffic and some other acoustic sources (Richardson et al. 1995; Southall et al. 2007).

Most studies of sperm whales exposed to airgun sounds indicate that the sperm whale shows considerable tolerance of airgun pulses (e.g., Stone 2003; Stone and Tasker 2006; Weir 2008; Moulton and Holst 2010). In most cases the whales do not show strong avoidance, and they continue to call (see Appendix A for review). However, controlled exposure experiments in the Gulf of Mexico indicate that foraging behavior was altered upon exposure to airgun sound (Jochens et al. 2008; Miller et al. 2009; Tyack 2009).
IV. Environmental Consequences

There are almost no specific data on the behavioral reactions of beaked whales to seismic surveys. However, some northern bottlenose whales remained in the general area and continued to produce high-frequency clicks when exposed to sound pulses from distant seismic surveys (Gosselin and Lawson 2004; Laurinolli and Cochrane 2005; Simard et al. 2005). Most beaked whales tend to avoid approaching vessels of other types (e.g., Würsig et al. 1998). They may also dive for an extended period when approached by a vessel (e.g., Kasuya 1986), although it is uncertain how much longer such dives may be as compared to dives by undisturbed beaked whales, which also are often quite long (Baird et al. 2006; Tyack et al. 2006). In any event, it is likely that most beaked whales would also show strong avoidance of an approaching seismic vessel, although this has not been documented explicitly. In fact, Moulton and Holst (2010) reported 15 sightings of beaked whales during seismic studies in the Northwest Atlantic; seven of those sightings were made at times when at least one airgun was operating. There was little evidence to indicate that beaked whale behavior was affected by airgun operations; sighting rates and distances were similar during seismic and non-seismic periods (Moulton and Holst 2010).

There are increasing indications that some beaked whales tend to strand when naval exercises involving mid-frequency sonar operation are ongoing nearby (e.g., Simmonds and Lopez-Jurado 1991; Frantzis 1998; NOAA and USN 2001; Jepson et al. 2003; Hildebrand 2005; Barlow and Gisiner 2006; see also the “Strandings and Mortality” subsection, later). These strandings are apparently at least in part a disturbance response, although auditory or other injuries or other physiological effects may also be involved. Whether beaked whales would ever react similarly to seismic surveys is unknown (see “Strandings and Mortality”, below). Seismic survey sounds are quite different from those of the sonars in operation during the above-cited incidents.

Odontocete reactions to large arrays of airguns are variable and, at least for delphinids and Dall’s porpoises, seem to be confined to a smaller radius than has been observed for the more responsive of the mysticetes, belugas, and harbor porpoises (Appendix A). A ≥170 dB re 1 μPa disturbance criterion (rather than ≥160 dB) is considered appropriate for delphinids (and pinnipeds), which tend to be less responsive than the more responsive cetaceans.

Pinnipeds

Pinnipeds are not likely to show a strong avoidance reaction to the airgun array. Visual monitoring from seismic vessels has shown only slight (if any) avoidance of airguns by pinnipeds, and only slight (if any) changes in behavior—see Appendix A (5). In the Beaufort Sea, some ringed seals avoided an area of 100 m to (at most) a few hundred meters around seismic vessels, but many seals remained within 100–200 m of the trackline as the operating airgun array passed by (e.g., Harris et al. 2001; Moulton and Lawson 2002; Miller et al. 2005). Ringed seal sightings averaged somewhat farther away from the seismic vessel when the airguns were operating than when they were not, but the difference was small (Moulton and Lawson 2002). Similarly, in Puget Sound, sighting distances for harbor seals and California sea lions tended to be larger when airguns were operating (Calambokidis and Osmeñ 1998). Previous telemetry work suggests that avoidance and other behavioral reactions may be stronger than evident to date from visual studies (Thompson et al. 1998). Even if reactions of any pinnipeds that might be encountered in the proposed survey area are as strong as those evident in the telemetry study, reactions are expected to be confined to relatively small distances and durations, with no long-term effects on pinniped individuals or populations. As for delphinids, a ≥170 dB disturbance criterion is considered appropriate for pinnipeds, which tend to be less responsive than many cetaceans.
IV. Environmental Consequences

Sea Turtles

The limited available data indicate that sea turtles will hear airgun sounds and sometimes exhibit localized avoidance (see Appendix B). Based on available data, it is likely that sea turtles will exhibit behavioral changes and/or avoidance within an area of unknown size near a seismic vessel (e.g., Holst et al. 2005a, 2006; Holst and Smultea 2008). Observed responses of sea turtles to airguns are reviewed in Appendix B. To the extent that there are any impacts on sea turtles, seismic operations in or near areas where turtles concentrate are likely to have the greatest impact. There are no specific data that demonstrate the consequences to sea turtles if seismic operations with large or small arrays of airguns occur in important areas at biologically important times of year.

Additional details on the behavioral reactions (or the lack thereof) by all types of marine mammals to seismic vessels can be found in Appendix A (5). Corresponding details for sea turtles can be found in Appendix B.

Hearing Impairment and Other Physical Effects.—Temporary or permanent hearing impairment is a possibility when marine mammals are exposed to very strong sounds. TTS has been demonstrated and studied in certain captive odontocetes and pinnipeds exposed to strong sounds (reviewed in Southall et al. 2007). However, there has been no specific documentation of TTS let alone permanent hearing damage, i.e., permanent threshold shift (PTS), in free-ranging marine mammals exposed to sequences of airgun pulses during realistic field conditions. Current NMFS policy regarding exposure of marine mammals to high-level sounds is that cetaceans and pinnipeds should not be exposed to impulsive sounds with received levels ≥180 dB and 190 dB re 1 µPa rms, respectively (NMFS 2000). Those criteria have been used in establishing the exclusion (=shut-down) zones planned for the proposed seismic survey. However, those criteria were established before there was any information about minimum received levels of sounds necessary to cause auditory impairment in marine mammals. As discussed in Appendix A (6) and summarized here,

- the 180-dB criterion for cetaceans is probably quite precautionary, i.e., lower than necessary to avoid temporary auditory impairment let alone permanent auditory injury, at least for delphinids.
- TTS is not injury and does not constitute “Level A harassment” in U.S. MMPA terminology.
- the minimum sound level necessary to cause permanent hearing impairment (“Level A harassment”) is higher, by a variable and generally unknown amount, than the level that induces barely-detectable TTS.
- the level associated with the onset of TTS is often considered to be a level below which there is no danger of permanent damage. The actual PTS threshold is likely to be well above the level causing onset of TTS (Southall et al. 2007).

Recommendations for new science-based noise exposure criteria for marine mammals, frequency-weighting procedures, and related matters were published recently (Southall et al. 2007). Those recommendations have not, as of mid 2011, been formally adopted by NMFS for use in regulatory processes and during mitigation programs associated with seismic surveys. However, some aspects of the recommendations have been taken into account in certain environmental impact statements and small-take authorizations. NMFS has indicated that it may issue new noise exposure criteria for marine mammals that account for the now-available scientific data on TTS, the expected offset between the TTS and PTS thresholds, differences in the acoustic frequencies to which different marine mammal groups are sensitive (e.g., M-weighting or generalized frequency weightings for various groups of marine mammals, allowing...
for their functional bandwidths), and other relevant factors. Preliminary information about possible changes in the regulatory and mitigation requirements, and about the possible structure of new criteria, was given by Wieting (2004) and NMFS (2005).

Several aspects of the planned monitoring and mitigation measures for the proposed survey are designed to detect marine mammals occurring near the airgun array, and to avoid exposing them to sound pulses that might, at least in theory, cause hearing impairment (see § II, “Monitoring and Mitigation Measures”). In addition, many marine mammals and (to a limited degree) sea turtles show some avoidance of the area where received levels of airgun sound are high enough such that hearing impairment could potentially occur. In those cases, the avoidance responses of the animals themselves will reduce or (most likely) avoid any possibility of hearing impairment.

Non-auditory physical effects may also occur in marine mammals exposed to strong underwater pulsed sound. Possible types of non-auditory physiological effects or injuries that might (in theory) occur in mammals close to a strong sound source include stress, neurological effects, bubble formation, and other types of organ or tissue damage. It is possible that some marine mammal species (i.e., beaked whales) may be especially susceptible to injury and/or stranding when exposed to strong transient sounds. However, as discussed below, there is no definitive evidence that any of these effects occur even for marine mammals in close proximity to large arrays of airguns. It is unlikely that any effects of these types would occur during the present project given the brief duration of exposure of any given mammal and the planned monitoring and mitigation measures (see below). The following subsections discuss in somewhat more detail the possibilities of TTS, PTS, and non-auditory physical effects.

Temporary Threshold Shift

TTS is the mildest form of hearing impairment that can occur during exposure to a strong sound (Kryter 1985). While experiencing TTS, the hearing threshold rises and a sound must be stronger in order to be heard. At least in terrestrial mammals, TTS can last from minutes or hours to (in cases of strong TTS) days. For sound exposures at or somewhat above the TTS threshold, hearing sensitivity in both terrestrial and marine mammals recovers rapidly after exposure to the noise ends. Few data on sound levels and durations necessary to elicit mild TTS have been obtained for marine mammals, and none of the published data concern TTS elicited by exposure to multiple pulses of sound. Available data on TTS in marine mammals are summarized in Southall et al. (2007). Based on these data, the received energy level of a single seismic pulse (with no frequency weighting) might need to be ~186 dB re 1 µPa²·s (i.e., 186 dB SEL or ~196–201 dB re 1 µPa rms) in order to produce mild TTS. Exposure to several strong seismic pulses that each have received levels near 190 dB re 1 µPa rms might result in cumulative exposure of ~186 dB SEL and thus slight TTS in a small odontocete assuming the TTS threshold is (to a first approximation) a function of the total received pulse energy; however, this ‘equal-energy’ concept is an oversimplification. The distances from the Thompson’s airguns at which the received energy level (per pulse, flat-weighted) would be expected to be ≥190 dB re 1 µPa rms are estimated in Table 1. Levels ≥190 dB re 1 µPa rms are expected to be restricted to radii no more than 20 m (Table 1). For an odontocete closer to the surface, the maximum radius with ≥190 dB re 1 µPa rms would be smaller.

3 If the low frequency components of the watergun sound used in the experiments of Finneran et al. (2002) are downweighted as recommended by Miller et al. (2005) and Southall et al. (2007) using their M_{mf}-weighting curve, the effective exposure level for onset of mild TTS was 183 dB re 1 µPa²·s (Southall et al. 2007).
The above TTS information for odontocetes is derived from studies on the bottlenose dolphin and beluga. For the one harbor porpoise tested, the received level of airgun sound that elicited onset of TTS was lower (Lucke et al. 2009). If these results from a single animal are representative, it is inappropriate to assume that onset of TTS occurs at similar received levels in all odontocetes (cf. Southall et al. 2007). Some cetaceans apparently can incur TTS at considerably lower sound exposures than are necessary to elicit TTS in the beluga or bottlenose dolphin.

For baleen whales, there are no data, direct or indirect, on levels or properties of sound that are required to induce TTS. The frequencies to which baleen whales are most sensitive are assumed to be lower than those to which odontocetes are most sensitive, and natural background noise levels at those low frequencies tend to be higher. As a result, auditory thresholds of baleen whales within their frequency band of best hearing are believed to be higher (less sensitive) than are those of odontocetes at their best frequencies (Clark and Ellison 2004). From this, it is suspected that received levels causing TTS onset may also be higher in baleen whales (Southall et al. 2007). In any event, no cases of TTS are expected given three considerations: (1) the low abundance of baleen whales in the proposed survey area at the time of the proposed survey; (2) the strong likelihood that baleen whales would avoid the approaching airguns (or vessel) before being exposed to levels high enough for TTS to occur; and (3) the mitigation measures that are planned.

In pinnipeds, TTS thresholds associated with exposure to brief pulses (single or multiple) of underwater sound have not been measured. Initial evidence from more prolonged (non-pulse) exposures suggested that some pinnipeds (harbor seals in particular) incur TTS at somewhat lower received levels than do small odontocetes exposed for similar durations (Kastak et al. 1999, 2005; Ketten et al. 2001). The TTS threshold for pulsed sounds has been indirectly estimated as being an SEL of ~171 dB re 1 µPa^2s (Southall et al. 2007), which would be equivalent to a single pulse with received level ~181–186 dB re 1 µPa_{rms}, or a series of pulses for which the highest rms values are a few dB lower. Corresponding values for California sea lions and northern elephant seals are likely to be higher (Kastak et al. 2005).

NMFS (1995, 2000) concluded that cetaceans and pinnipeds should not be exposed to pulsed underwater noise at received levels exceeding, respectively, 180 and 190 dB re 1 µPa_{rms}. Those sound levels are not considered to be the level above which TTS might occur. Rather, they were the received levels above which, in the view of a panel of bioacoustics specialists convened by NMFS before TTS measurements for marine mammals started to become available, one could not be certain that there would be no injurious effects, auditory or otherwise, to marine mammals. As summarized above and in Southall et al. (2007), data that are now available imply that TTS is unlikely to occur in most odontocetes (and probably mysticetes as well) unless they are exposed to a sequence of several airgun pulses stronger than 190 dB re 1 µPa_{rms}. For the harbor seal and any species with similarly low TTS thresholds, TTS may occur upon exposure to one or more airgun pulses whose received level equals the NMFS “do not exceed” value of 190 dB re 1 µPa_{rms}. That criterion corresponds to a single-pulse SEL of 175–180 dB re 1 µPa^2s in typical conditions, whereas TTS is suspected to be possible (in harbor seals) with a cumulative SEL of ~171 dB re 1 µPa^2s.

Permanent Threshold Shift

When PTS occurs, there is physical damage to the sound receptors in the ear. In severe cases, there can be total or partial deafness, whereas in other cases, the animal has an impaired ability to hear sounds in specific frequency ranges (Kryter 1985).

There is no specific evidence that exposure to pulses of airgun sound can cause PTS in any marine mammal, even with large arrays of airguns. However, given the possibility that mammals close to an airgun array might incur at least mild TTS, there has been further speculation about the possibility that
some individuals occurring very close to airguns might incur PTS (e.g., Richardson et al. 1995, p. 372ff, Gedamke et al. 2008). Single or occasional occurrences of mild TTS are not indicative of permanent auditory damage, but repeated or (in some cases) single exposures to a level well above that causing TTS onset might elicit PTS.

Relationships between TTS and PTS thresholds have not been studied in marine mammals, but are assumed to be similar to those in humans and other terrestrial mammals. PTS might occur at a received sound level at least several decibels above that inducing mild TTS if the animal were exposed to strong sound pulses with rapid rise time—see Appendix A (6). Based on data from terrestrial mammals, a precautionary assumption is that the PTS threshold for impulse sounds (such as airgun pulses as received close to the source) is at least 6 dB higher than the TTS threshold on a peak-pressure basis, and probably >6 dB (Southall et al. 2007). On an SEL basis, Southall et al. (2007:441-4) estimated that received levels would need to exceed the TTS threshold by at least 15 dB for there to be risk of PTS. Thus, for cetaceans they estimate that the PTS threshold might be an M-weighted SEL (for the sequence of received pulses) of ~198 dB re 1 μPa²·s (15 dB higher than the M_m-weighted TTS threshold, in a beluga, for a watergun impulse), where the SEL value is cumulated over the sequence of pulses. Additional assumptions had to be made to derive a corresponding estimate for pinnipeds, as the only available data on TTS-thresholds in pinnipeds pertain to non-impulse sound. Southall et al. (2007) estimate that the PTS threshold could be a cumulative M_pw-weighted SEL of ~186 dB re 1 μPa²·s in the harbor seal exposed to impulse sound. The PTS threshold for the California sea lion and northern elephant seal the PTS threshold would probably be higher, given the higher TTS thresholds in those species.

Southall et al. (2007) also note that, regardless of the SEL, there is concern about the possibility of PTS if a cetacean or pinniped received one or more pulses with peak pressure exceeding 230 or 218 dB re 1 μPa (peak), respectively. Thus, PTS might be expected upon exposure of cetaceans to either SEL ≥198 dB re 1 μPa²·s or peak pressure ≥230 dB re 1 μPa. Corresponding proposed dual criteria for pinnipeds (at least harbor seals) are ≥186 dB SEL and ≥ 218 dB peak pressure (Southall et al. 2007). These estimates are all first approximations, given the limited underlying data, assumptions, species differences, and evidence that the “equal energy” model is not be entirely correct. A peak pressure of 230 dB re 1 μPa (3.2 bar·m, 0-pk) would only be found within less than a meter from a GI gun, which has a peak pressure of 224.6 dB re 1μPa·m. A peak pressure of 218 dB re 1 μPa could be received somewhat farther away; to estimate that specific distance, one would need to apply a model that accurately calculates peak pressures in the near-field around an array of airguns.

Given the higher level of sound necessary to cause PTS as compared with TTS, it is considerably less likely that PTS would occur. Baleen whales generally avoid the immediate area around operating seismic vessels, as do some other marine mammals and sea turtles. The planned monitoring and mitigation measures, including visual monitoring, ramp ups, and shut downs of the airguns when mammals are seen within or approaching the “exclusion zones”, will further reduce the probability of exposure of marine mammals to sounds strong enough to induce PTS.

Strandings and Mortality

Marine mammals close to underwater detonations of high explosives can be killed or severely injured, and the auditory organs are especially susceptible to injury (Ketten et al. 1993; Ketten 1995). However, explosives are no longer used for marine waters for commercial seismic surveys or (with rare exceptions) for seismic research; they have been replaced entirely by airguns or related non-explosive pulse generators. Airgun pulses are less energetic and have slower rise times, and there is no specific evidence that they can cause serious injury, death, or stranding even in the case of large airgun arrays.
However, the association of strandings of beaked whales with naval exercises and, in one case, an L-DEO seismic survey (Malakoff 2002; Cox et al. 2006), has raised the possibility that beaked whales exposed to strong “pulsed” sounds may be especially susceptible to injury and/or behavioral reactions that can lead to stranding (e.g., Hildebrand 2005; Southall et al. 2007). Appendix A (6) provides additional details.

Specific sound-related processes that lead to strandings and mortality are not well documented, but may include (1) swimming in avoidance of a sound into shallow water; (2) a change in behavior (such as a change in diving behavior) that might contribute to tissue damage, gas bubble formation, hypoxia, cardiac arrhythmia, hypertensive hemorrhage or other forms of trauma; (3) a physiological change such as a vestibular response leading to a behavioral change or stress-induced hemorrhagic diathesis, leading in turn to tissue damage; and (4) tissue damage directly from sound exposure, such as through acoustically mediated bubble formation and growth or acoustic resonance of tissues. Some of these mechanisms are unlikely to apply in the case of impulse sounds. However, there are increasing indications that gas-bubble disease (analogous to “the bends”), induced in supersaturated tissue by a behavioral response to acoustic exposure, could be a pathologic mechanism for the strandings and mortality of some deep-diving cetaceans exposed to sonar. The evidence for this remains circumstantial and associated with exposure to naval mid-frequency sonar, not seismic surveys (Cox et al. 2006; Southall et al. 2007).

Seismic pulses and mid-frequency sonar signals are quite different, and some mechanisms by which sonar sounds have been hypothesized to affect beaked whales are unlikely to apply to airgun pulses. Sounds produced by airgun arrays are broadband impulses with most of the energy below 1 kHz. Typical military mid-frequency sonars emit non-impulse sounds at frequencies of 2–10 kHz, generally with a relatively narrow bandwidth at any one time. A further difference between seismic surveys and naval exercises is that naval exercises can involve sound sources on more than one vessel. Thus, it is not appropriate to assume that there is a direct connection between the effects of military sonar and seismic surveys on marine mammals. However, evidence that sonar signals can, in special circumstances, lead (at least indirectly) to physical damage and mortality (e.g., Balcomb and Claridge 2001; NOAA and USN 2001; Jepson et al. 2003; Fernández et al. 2004, 2005; Hildebrand 2005; Cox et al. 2006) suggests that caution is warranted when dealing with exposure of marine mammals to any high-intensity “pulsed” sound.

There is no conclusive evidence of cetacean strandings or deaths at sea as a result of exposure to seismic surveys, but a few cases of strandings in the general area where a seismic survey was ongoing have led to speculation concerning a possible link between seismic surveys and strandings. Suggestions that there was a link between seismic surveys and strandings of humpback whales in Brazil (Engel et al. 2004) were not well founded (IAGC 2004; IWC 2007b). In September 2002, there was a stranding of two Cuvier’s beaked whales in the Gulf of California, Mexico, when the L-DEO vessel R/V Maurice Ewing was operating a 20-airgun, 8490-in3 airgun array in the general area. The link between the stranding and the seismic surveys was inconclusive and not based on any physical evidence (Hogarth 2002; Yoder 2002). Nonetheless, the Gulf of California incident plus the beaked whale strandings near naval exercises involving use of mid-frequency sonar suggests a need for caution in conducting seismic surveys in areas occupied by beaked whales until more is known about effects of seismic surveys on those species (Hildebrand 2005). No injuries of beaked whales are anticipated during the proposed survey because of (1) the high likelihood that any beaked whales nearby would avoid the approaching vessel before being exposed to high sound levels, (2) the proposed monitoring and mitigation measures, and (3) differences between the sound sources operated by SIO and those involved in the naval exercises associated with strandings.
Non-auditory Physiological Effects

Non-auditory physiological effects or injuries that theoretically might occur in marine mammals exposed to strong underwater sound include stress, neurological effects, bubble formation, resonance, and other types of organ or tissue damage (Cox et al. 2006; Southall et al. 2007). Studies examining such effects are limited. However, resonance effects (Gentry 2002) and direct noise-induced bubble formation (Crum et al. 2005) are implausible in the case of exposure to an impulsive broadband source like an airgun array. If seismic surveys disrupt diving patterns of deep-diving species, this might perhaps result in bubble formation and a form of “the bends”, as speculated to occur in beaked whales exposed to sonar. However, there is no specific evidence of this upon exposure to airgun pulses.

In general, very little is known about the potential for seismic survey sounds (or other types of strong underwater sounds) to cause non-auditory physical effects in marine mammals. Such effects, if they occur at all, would presumably be limited to short distances and to activities that extend over a prolonged period. The available data do not allow identification of a specific exposure level above which non-auditory effects can be expected (Southall et al. 2007), or any meaningful quantitative predictions of the numbers (if any) of marine mammals that might be affected in those ways. Marine mammals that show behavioral avoidance of seismic vessels, including most baleen whales, some odontocetes, and some pinnipeds, are especially unlikely to incur non-auditory physical effects. Also, the planned mitigation measures [§ II (3)], including shut downs of the airguns, will reduce any such effects that might otherwise occur.

Sea Turtles

The limited available data indicate that the frequency range of best hearing sensitivity by sea turtles extends from roughly 250–300 Hz to 500–700 Hz. Sensitivity deteriorates as one moves away from that range to either lower or higher frequencies. However, there is some sensitivity to frequencies as low as 60 Hz, and probably as low as 30 Hz. Thus, there is substantial overlap in the frequencies that sea turtles detect vs. the frequencies in airgun pulses. We are not aware of measurements of the absolute hearing thresholds of any sea turtle to waterborne sounds similar to airgun pulses. In the absence of relevant absolute threshold data, we cannot estimate how far away an airgun array might be audible. Moein et al. (1994) and Lenhardt (2002) reported TTS for loggerhead turtles exposed to many airgun pulses (Appendix B). This suggests that sounds from an airgun array might cause temporary hearing impairment in sea turtles if they do not avoid the (unknown) radius where TTS occurs. However, exposure duration during the proposed survey would be much less than during the aforementioned studies. Also, recent monitoring studies show that some sea turtles do show localized movement away from approaching airguns (Holst et al. 2005a, 2006; Holst and Smultea 2008). At short distances from the source, received sound level diminishes rapidly with increasing distance. In that situation, even a small-scale avoidance response could result in a significant reduction in sound exposure.

As noted above, the PSOs stationed on the Thompson will also watch for sea turtles, and airgun operations will be shut down if a turtle enters the designated exclusion zone.

(b) Possible Effects of Multibeam Echosounder Signals

The Kongsberg EM 300 MBES will be operated from the source vessel during the proposed survey. Information about this equipment was provided in § II. Sounds from the MBES are very short pings, occurring for 5 ms once every 5–20 s, depending on water depth. Most of the energy in the sound emitted by this MBES is at frequencies near 30 kHz, and the maximum source level is 237 dB re 1 μPa·m rms. The beam is narrow (1°) in the fore-aft extent and wide (36°) in the cross-track extent. Each
ping consists of nine (in water >1000 m deep) or three (<1000 m deep) successive fan-shaped transmissions (segments) at different cross-track angles. Any given mammal at depth near the trackline would be in the main beam for only one or two of the nine segments. Also, marine mammals that encounter the Kongsberg EM 300 are unlikely to be subjected to repeated pings because of the narrow fore–aft width of the beam and will receive only limited amounts of energy because of the short pings. Animals close to the ship (where the beam is narrowest) are especially unlikely to be ensonified for more than one 5-ms ping (or two pings if in the overlap area). Similarly, Kremser et al. (2005) noted that the probability of a cetacean swimming through the area of exposure when an MBES emits a ping is small. The animal would have to pass the transducer at close range and be swimming at speeds similar to the vessel in order to receive the multiple pings that might result in sufficient exposure to cause TTS.

Navy sonars that have been linked to avoidance reactions and stranding of cetaceans (1) generally have a longer signal duration than the Kongsberg EM 300, and (2) are often directed close to horizontally vs. more downward for the MBES. The area of possible influence of the MBES is much smaller—a narrow band below the source vessel. The duration of exposure for a given marine mammal can be much longer for a naval sonar. During SIO’s operations, the individual pings will be very short, and a given mammal would not receive many of the downward-directed pings as the vessel passes by. Possible effects of an MBES on marine mammals are outlined below.

Masking.—Marine mammal communications will not be masked appreciably by the MBES signals given the low duty cycle of the echosounder and the brief period when an individual mammal is likely to be within its beam. Furthermore, in the case of baleen whales, the MBES signals (30 kHz) do not overlap with the predominant frequencies in the calls, which would avoid any significant masking.

Behavioral Responses.—Behavioral reactions of free-ranging marine mammals to sonars, echosounders, and other sound sources appear to vary by species and circumstance. Observed reactions have included silencing and dispersal by sperm whales (Watkins et al. 1985), increased vocalizations and no dispersal by pilot whales (Rendell and Gordon 1999), and the previously mentioned beachings by beaked whales. During exposure to a 21–25 kHz “whale-finding” sonar with a source level of 215 dB re 1 μPa·m, gray whales reacted by orienting slightly away from the source and being deflected from their course by ~200 m (Frankel 2005). When a 38-kHz echosounder and a 150-kHz acoustic Doppler current profiler were transmitting during studies in the eastern tropical Pacific, baleen whales showed no significant responses, whereas spotted and spinner dolphins were detected slightly more often and beaked whales less often during visual surveys (Gerrodette and Pettis 2005).

Captive bottlenose dolphins and a white whale exhibited changes in behavior when exposed to 1-s tonal signals at frequencies similar to those that will be emitted by the MBES used by SIO, and to shorter broadband pulsed signals. Behavioral changes typically involved what appeared to be deliberate attempts to avoid the sound exposure (Schlundt et al. 2000; Finneran et al. 2002; Finneran and Schlundt 2004). The relevance of those data to free-ranging odontocetes is uncertain, and in any case, the test sounds were quite different in duration as compared with those from an MBES.

Very few data are available on the reactions of pinnipeds to echosounder sounds at frequencies similar to those used during seismic operations. Hastie and Janik (2007) conducted a series of behavioral response tests on two captive gray seals to determine their reactions to underwater operation of a 375-kHz multibeam imaging echosounder that included significant signal components down to 6 kHz. Results indicated that the two seals reacted to the signal by significantly increasing their dive durations. Because of the likely brevity of exposure to the MBES sounds, pinniped reactions are expected to be limited to startle or otherwise brief responses of no lasting consequence to the animals.
Hearing Impairment and Other Physical Effects.—Given recent stranding events that have been associated with the operation of naval sonar, there is concern that mid-frequency sonar sounds can cause serious impacts to marine mammals (see above). However, the MBES proposed for use by SIO is quite different than sonars used for navy operations. Ping duration of the MBES is very short relative to the naval sonars. Also, at any given location, an individual marine mammal would be in the beam of the MBES for much less time given the generally downward orientation of the beam and its narrow fore-aft beamwidth; navy sonars often use near-horizontally-directed sound. Those factors would all reduce the sound energy received from the MBES rather drastically relative to that from the sonars used by the navy.

Given the maximum source level of 237 dB re 1 μPa \cdot m$_{rms}$ (see § II), the received level for an animal within the MBES beam 100 m below the ship would be \sim197 dB re 1 μPa$_{rms}$, assuming 40 dB of spreading loss over 100 m (circular spreading). Given the narrow beam, only one ping is likely to be received by a given animal as the ship passes overhead. The received energy level from a single ping of duration 5 ms would be about 174 dB re 1 μPa2·s, i.e., 197 dB + 10 log (0.005 s). That is below the TTS threshold for a cetacean receiving a single non-impulse sound (195 dB re 1 μPa2·s) and even further below the anticipated PTS threshold (215 dB re 1 μPa2·s) (Southall et al. 2007). In contrast, an animal that was only 10 m below the MBES when a ping is emitted would be expected to receive a level \sim20 dB higher, i.e., 194 dB re 1 μPa2·s in the case of the EM 300. That animal might incur some TTS (which would be fully recoverable), but the exposure would still be below the anticipated PTS threshold for cetaceans. As noted by Burkhardt et al. (2008), cetaceans are very unlikely to incur PTS from operation of scientific sonars on a ship that is underway.

Sea Turtles.—It is unlikely that MBES operations during the proposed seismic survey would significantly affect sea turtles through masking, disturbance, or hearing impairment. Any effects would likely be negligible given the brief exposure and the fact that the MBES frequency is far above the range of optimal hearing by sea turtles (see Appendix B).

(c) Possible Effects of Sub-bottom Profiler Signals

An ODEC Bathy-2000 sub-bottom profiler will be operated from the source vessel during the proposed survey. Details about this equipment were provided in § II. Sounds from the sub-bottom profiler are very short pulses, occurring for up to 25 ms once every 3–8 sec. Most of the energy in the sound pulses emitted by the sub-bottom profiler is at 3–6 kHz, and the beam is directed downward. The sub-bottom profiler on the R/V Thompson has a maximum source level of 211 dB re 1 μPa · m (see § II). Kremser et al. (2005) noted that the probability of a cetacean swimming through the area of exposure when a bottom profiler emits a pulse is small, and—even for an SBP more powerful than that on the R/V Thompson—if the animal was in the area, it would have to pass the transducer at close range and in order to be subjected to sound levels that could cause TTS.

Masking.—Marine mammal communications will not be masked appreciably by the SBP sounds given the directionality of the signal and the brief period when an individual mammal is likely to be within its beam. Furthermore, in the case of most baleen whales, the SBP signals do not overlap with the predominant frequencies in the calls, which would avoid significant masking.

Behavioral Responses.—Marine mammal behavioral reactions to other sound sources are discussed above, and responses to the SBP are likely to be similar to those for other non-impulse sources if received at the same levels. However, the signals from the SBP are considerably weaker than those from the MBES. Therefore, behavioral responses are not expected unless marine mammals are very close to the source.
Hearing Impairment and Other Physical Effects.—It is unlikely that the SBP produces sound levels strong enough to cause hearing impairment or other physical injuries even in an animal that is (briefly) in a position near the source. The SBP is usually operated simultaneously with other higher-power acoustic sources. Many marine mammals will move away in response to the approaching higher-power sources or the vessel itself before the mammals would be close enough for there to be any possibility of effects from the less intense sounds from the SBP. In the case of mammals that do not avoid the approaching vessel and its various sound sources, mitigation measures that would be applied to minimize effects of other sources [see § II(3)] would further reduce or eliminate any minor effects of the SBP.

Sea Turtles.—It is very unlikely that SBP operations during the proposed seismic survey would significantly affect sea turtles through masking, disturbance, or hearing impairment. Any effects likely would be negligible given the brief exposure and relatively low source level. Also, the frequency of the SBP sounds is higher than the frequency range of best hearing by sea turtles.

(2) Mitigation Measures

Several mitigation measures are built into the proposed seismic survey as an integral part of the planned activities. These measures include the following: ramp ups; typically two, however a minimum of one dedicated observer maintaining a visual watch during all daytime airgun operations; two observers for 30 min before and during ramp ups during the day and at night; and shut downs when mammals or turtles are detected in or about to enter designated exclusion zones. These mitigation measures are described earlier in this document, in § II(3). The fact that the GI airgun, as a result of its design, directs the majority of the energy downward, and less energy laterally, is also an inherent mitigation measure.

Previous and subsequent analysis of the potential impacts take account of these planned mitigation measures. It would not be meaningful to analyze the effects of the planned activities without mitigation, as the mitigation (and associated monitoring) measures are a basic part of the activities.

(3) Potential Numbers of Marine Mammals Exposed to Received Sound Levels ≥160 dB

All anticipated takes would be “takes by harassment”, involving temporary changes in behavior. The mitigation measures to be applied will minimize the possibility of injurious takes. (However, as noted earlier, there is no specific information demonstrating that injurious “takes” would occur even in the absence of the planned mitigation measures.) In the sections below, we describe methods to estimate the number of potential exposures to various received sound levels, and present estimates of the numbers of marine mammals that could be affected during the proposed seismic program. The estimates are based on consideration of the number of marine mammals that could be disturbed appreciably by ~1600 km of seismic surveys in the western tropical Pacific Ocean. The main sources of distributional and numerical data used in deriving the estimates are described in the next subsection.

It is assumed that, during simultaneous operations of the seismic sources and the other sources, any marine mammals close enough to be affected by the MBES or SBP would already be affected by the seismic sources. However, whether or not the seismic sources are operating simultaneously with the other sources, marine mammals are expected to exhibit no more than short-term and inconsequential responses to the MBES and SBP given their characteristics (e.g., narrow downward-directed beam) and other considerations described in § II and IV(1)(b and c), above. Such reactions are not considered to constitute “taking” (NMFS 2001). Therefore, no additional allowance is included for animals that might be affected by sound sources other than airguns.
(a) Basis for Estimating Exposure to Received Sound Levels ≥160 dB

Extensive systematic ship-based surveys have been conducted by NMFS Southwest Fisheries Science Center (SWFSC) for marine mammals in the eastern but not the western tropical Pacific Ocean. A systematic vessel-based marine mammal survey was conducted ~2500 km west of the proposed survey area in the CNMI for the U.S. Navy during January–April 2007 (SRS-Parsons et al. 2007; Fulling et al. in press). The cruise area was defined by the boundaries 10–18°N 142–148°E, encompassing an area ~585,000 km² including the islands of Guam and the southern CNMI. The survey was conducted using standard line-transect protocols developed by NMFS SWFSC. Observers visually surveyed 11,033 km of trackline, mostly in high sea states (88% of the time in Beaufort Sea states 4–6). Another survey was conducted by SWFSC ~3500 km east of the proposed survey area in the EEZ around Hawaii during August–November 2002; survey effort was 3550 km in the “Main Island stratum”, which had a surface area of 212,892 km², and 13,500 km in the “Outer EEZ stratum”, which had a surface area of 2,240,024 km² (Barlow 2006).

We used densities that were the effort-weighted means for the CNMI (Fulling et al. in press) and the outer EEZ stratum of Hawaii (Barlow 2006). The densities had been corrected, by the original authors, for trackline detection probability bias, and for data from Hawaii, for availability bias. Trackline detection probability bias is associated with diminishing sightability with increasing lateral distance from the track line, and is measured by \(f(0) \). Availability bias refers to the fact that there is less-than 100% probability of sighting an animal that is present along the survey track line, and it is measured by \(g(0) \). Fulling et al. (in press) did not correct the Marianas densities for availability bias (i.e., it was assumed that \(g(0) = 1 \)), which resulted in underestimates of density.

There is some uncertainty about the representativeness of the density data and the assumptions used in the calculations. For example, the timing of the surveys was different; the CNMI survey was in January–April, the Hawaii survey was in August–November, and the proposed survey is in November–December. Locations were also different, with the proposed survey area ~2500 km east of the CNMI and ~3500 km west of Hawaii. Also, most of the Marianas survey was in high sea states that would have prevented detection of many marine mammals, especially cryptic species such as beaked whales and Kogia spp. However, the approach used here is believed to be the best available approach. Densities are given in Table 3.

The estimated numbers of individuals potentially exposed presented below are based on the 160-dB re 1 \(\mu Pa_{rms} \) criterion for all cetaceans. It is assumed that marine mammals exposed to airgun sounds that strong could change their behavior sufficiently to be considered “taken by harassment”.

It should be noted that the following estimates of exposures to various sound levels assume that the proposed survey will be completed; in fact, the ensonified areas calculated using the planned number of line-kilometers have been increased by 25% to accommodate turns, lines that may need to be repeated, equipment testing, etc. As is typical during offshore ship surveys, inclement weather and equipment malfunctions are likely to cause delays and may limit the number of useful line-kilometers of seismic operations that can be undertaken. Also, any marine mammal sightings within or near the designated exclusion zones will result in the shut down of seismic operations as a mitigation measure. Thus, the following estimates of the numbers of marine mammals potentially exposed to 160-dB re 1 \(\mu Pa_{rms} \) sounds are precautionary and probably overestimate the actual numbers of marine mammals that could be involved. These estimates assume that there will be no weather, equipment, or mitigation delays, which is highly unlikely.
TABLE 3. Densities of marine mammals sighted during surveys in the CNMI (Fulling et al. in press) and the Outer EEZ Stratum of Hawaii (Barlow 2006). See text for rationale and details. All densities are corrected for $f(0)$ and some for $g(0)$; see text for details. Species listed as "Endangered" under the ESA are in italics.

<table>
<thead>
<tr>
<th>Species</th>
<th>Density (#/1000 km2)</th>
<th>CNMI1</th>
<th>Hawaii2</th>
<th>Mean3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mysticetes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humpback whale</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Minke whale</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bryde's whale</td>
<td>0.41</td>
<td>0.21</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Sei whale</td>
<td>0.29</td>
<td>0</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>Fin whale</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Blue whale</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Odontocetes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sperm whale</td>
<td>1.23</td>
<td>3.03</td>
<td>2.22</td>
<td></td>
</tr>
<tr>
<td>Pygmy sperm whale</td>
<td>0</td>
<td>3.19</td>
<td>1.76</td>
<td></td>
</tr>
<tr>
<td>Dwarf sperm whale</td>
<td>0</td>
<td>7.82</td>
<td>4.30</td>
<td></td>
</tr>
<tr>
<td>Cuvier's beaked whale</td>
<td>0</td>
<td>6.80</td>
<td>3.74</td>
<td></td>
</tr>
<tr>
<td>Longman's beaked whale</td>
<td>0</td>
<td>0.45</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Blainville's beaked whale</td>
<td>0</td>
<td>1.28</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>Ginkgo-toothed beaked whale</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Rough-toothed dolphin</td>
<td>0.29</td>
<td>3.12</td>
<td>1.85</td>
<td></td>
</tr>
<tr>
<td>Bottlenose dolphin</td>
<td>0.21</td>
<td>1.23</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>Pantropical spotted dolphin</td>
<td>22.6</td>
<td>2.10</td>
<td>11.32</td>
<td></td>
</tr>
<tr>
<td>Spinner dolphin</td>
<td>3.14</td>
<td>0.83</td>
<td>1.87</td>
<td></td>
</tr>
<tr>
<td>Striped dolphin</td>
<td>6.16</td>
<td>5.57</td>
<td>5.84</td>
<td></td>
</tr>
<tr>
<td>Fraser's dolphin</td>
<td>0</td>
<td>4.57</td>
<td>2.51</td>
<td></td>
</tr>
<tr>
<td>Risso's dolphin</td>
<td>0</td>
<td>0.83</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>Melon-headed whale</td>
<td>4.28</td>
<td>1.32</td>
<td>2.67</td>
<td></td>
</tr>
<tr>
<td>Pygmy killer whale</td>
<td>0.14</td>
<td>0</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>False killer whale</td>
<td>1.11</td>
<td>0.11</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>Killer whale</td>
<td>0</td>
<td>0.16</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>Short-finned pilot whale</td>
<td>1.59</td>
<td>2.54</td>
<td>2.11</td>
<td></td>
</tr>
</tbody>
</table>

1 Fulling et al. (in press)
2 Outer EEZ stratum of Barlow (2006)
3 Weighted by survey effort

Furthermore, as summarized in “Summary of Potential Airgun Effects”, above, and Appendix A (5), delphinids and pinnipeds seem to be less responsive to airgun sounds than are some mysticetes. The 160-dB (rms) criterion currently applied by NMFS, on which the following estimates are based, was developed based primarily on data from gray and bowhead whales. A ≥ 170 dB re 1 μPa disturbance criterion (rather than ≥ 160 dB) is considered appropriate for delphinids (and pinnipeds), which tend to be less responsive than the more responsive cetaceans. The estimates of “takes by harassment” of delphinids and pinnipeds given below are thus considered precautionary.
(b) Potential Number of Marine Mammals Exposed to ≥160 dB

The number of different individuals that could be exposed to GI-airgun sounds with received levels ≥160 dB re 1 μPa_{rms} on one or more occasions can be estimated by considering the total marine area that would be within the 160-dB radius around the operating seismic source on at least one occasion, along with the expected density of animals in the area. The proposed seismic lines do not run parallel to each other in close proximity and the ensonified areas do not overlap, thus an individual mammal that was stationary would be exposed once during the proposed survey.

The numbers of different individuals potentially exposed to ≥160 dB re 1 μPa_{rms} were calculated by multiplying the expected species density times the anticipated area to be ensonified to that level during GI-airgun operations. The area expected to be ensonified was determined by entering the planned survey lines into a MapInfo GIS, using the GIS to identify the relevant areas by “drawing” the applicable 160-dB buffer (see Table 1) around each seismic line, and then calculating the total area within the buffers. For this survey, there were no areas of overlap because of crossing lines.

Applying the approach described above, ~2144 km² (~2680 km² including the 25% contingency) would be within the 160-dB isopleth on one or more occasions during the proposed survey. Because this approach does not allow for turnover in the mammal populations in the area during the course of the survey, the actual number of individuals exposed may be underestimated, although the conservative (i.e., probably overestimated) line-kilometer distances used to calculate the area may offset this. Also, the approach assumes that no cetaceans will move away or toward the trackline as the R/V Thompson approaches in response to increasing sound levels prior to the time the levels reach 160 dB. Another way of interpreting the estimates that follow is that they represent the number of individuals that are expected (in the absence of a seismic program) to occur in the waters that will be exposed to ≥160 dB re 1 μPa_{rms}.

Table 4 shows the estimates of the number of different individual marine mammals that potentially could be exposed to ≥160 dB re 1 μPa_{rms} during the seismic survey if no animals moved away from the survey vessel. The Requested Take Authorization is given in the far right column of Table 4. For endangered species, the Requested Take Authorization has been increased to the mean group size in the CNMI (Fulling et al. in press) for the particular species in cases where the calculated number of individuals exposed was between 0.05 and the mean group size (i.e., for the sei whale). For non-listed species, the Requested Take Authorization has been increased to the mean group size in the CNMI (Fulling et al. in press) or, for species not sighted in the CNMI survey, Hawaii (Barlow 2006) for the particular species in cases where the calculated number of individuals exposed was between 1 and the mean group size.

The estimate of the number of individual cetaceans that could be exposed to seismic sounds with received levels ≥160 dB re 1 μPa_{rms} during the proposed survey is 118 (Table 4). That total includes 6 Endangered sperm whales, representing 0.02% of the regional population. Most (68.6%) of the cetaceans potentially exposed are delphinids; pantropical spotted, striped, and Fraser’s dolphins are estimated to be the most common species in the area, with estimates of 30, 16, and 7 (in each case <0.01% of the regional population) exposed to ≥160 dB re 1 μPa_{rms}, respectively.

(4) Conclusions for Marine Mammals and Sea Turtles

The proposed seismic project will involve towing a pair of GI airguns that introduce pulsed sounds into the ocean, along with, at times, simultaneous operation of an MBES and an SBP. Routine vessel operations, other than the proposed seismic operations, are conventionally assumed not to affect marine mammals sufficiently to constitute “taking”. No “taking” of marine mammals is expected in association
TABLE 4. Estimates of the possible numbers of different individuals that might be exposed to ≥160 dB during SIO’s proposed seismic survey in western tropical Pacific in November–December 2011. The proposed sound source consists of a pair of 105-in3 GI airguns. Received levels of seismic sounds are expressed in dB re 1 µPa (rms, averaged over pulse duration), consistent with NMFS’ practice. Not all marine mammals will change their behavior when exposed to these sound levels, but some may alter their behavior when levels are lower (see text). Species in italics are listed under the ESA as endangered or threatened. The column of numbers in boldface shows the numbers of "takes" for which authorization is requested.

<table>
<thead>
<tr>
<th>Species</th>
<th>Number¹</th>
<th>% Regional Pop’n²</th>
<th>Requested Take Authorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mysticetes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humpback whale</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Minke whale</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bryde’s whale</td>
<td>1</td>
<td><0.01</td>
<td>1³</td>
</tr>
<tr>
<td>Sei whale</td>
<td>0</td>
<td><0.01</td>
<td>1³</td>
</tr>
<tr>
<td>Fin whale</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Blue whale</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Odontocetes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sperm whale</td>
<td>6</td>
<td>0.02</td>
<td>6</td>
</tr>
<tr>
<td>Pygmy sperm whale</td>
<td>5</td>
<td>NA</td>
<td>5</td>
</tr>
<tr>
<td>Dwarf sperm whale</td>
<td>12</td>
<td><0.01</td>
<td>12</td>
</tr>
<tr>
<td>Cuvier’s beaked whale</td>
<td>10</td>
<td>0.05</td>
<td>10</td>
</tr>
<tr>
<td>Longman’s beaked whale</td>
<td>1</td>
<td>NA</td>
<td>18⁴</td>
</tr>
<tr>
<td>Blainville’s beaked whale</td>
<td>2</td>
<td><0.01</td>
<td>2</td>
</tr>
<tr>
<td>Ginkgo-toothed beaked whale</td>
<td>0</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td>Rough-toothed dolphin</td>
<td>5</td>
<td><0.01</td>
<td>9³</td>
</tr>
<tr>
<td>Bottlenose dolphin</td>
<td>2</td>
<td><0.01</td>
<td>2³</td>
</tr>
<tr>
<td>Pantropical spotted dolphin</td>
<td>30</td>
<td><0.01</td>
<td>64³</td>
</tr>
<tr>
<td>Spinner dolphin</td>
<td>5</td>
<td><0.01</td>
<td>98²</td>
</tr>
<tr>
<td>Striped dolphin</td>
<td>16</td>
<td><0.01</td>
<td>27³</td>
</tr>
<tr>
<td>Fraser’s dolphin</td>
<td>7</td>
<td><0.01</td>
<td>182²</td>
</tr>
<tr>
<td>Risso’s dolphin</td>
<td>1</td>
<td><0.01</td>
<td>15⁴</td>
</tr>
<tr>
<td>Melon-headed whale</td>
<td>7</td>
<td>0.02</td>
<td>95⁵</td>
</tr>
<tr>
<td>Pygmy killer whale</td>
<td>0</td>
<td><0.01</td>
<td>0</td>
</tr>
<tr>
<td>False killer whale</td>
<td>2</td>
<td><0.01</td>
<td>10³</td>
</tr>
<tr>
<td>Killer whale</td>
<td>0</td>
<td><0.01</td>
<td>7⁴</td>
</tr>
<tr>
<td>Short-finned pilot whale</td>
<td>6</td>
<td><0.01</td>
<td>18³</td>
</tr>
</tbody>
</table>

¹ Estimates are based on densities from Table 3 and an ensonified area (including 25% contingency) of 2680 km².
² Regional population size estimates are from Table 2.
³ Increased to mean group size in the CNMI (Fulling et al. in press).
⁴ Increased to mean group size in Hawaii (Barlow 2006).

with echosounder operations given the considerations discussed in § IV(1)(b and c), i.e., sounds are beamed downward, the beam is narrow, and the pulses are extremely short.

(a) Cetaceans

Several species of mysticetes show strong avoidance reactions to seismic vessels at ranges up to 6–8 km and occasionally as far as 20–30 km from the source vessel when medium-large airgun arrays have been used. However, reactions at the longer distances appear to be atypical of most species and situations. If mysticetes are encountered, the numbers estimated to occur within the 160-dB isopleth in the proposed survey area are expected to be low.
Odontocete reactions to seismic pulses, or at least the reactions of delphinids, are expected to extend to lesser distances than are those of mysticetes. Odontocete low-frequency hearing is less sensitive than that of mysticetes, and delphinids are often seen from seismic vessels. In fact, there are documented instances of dolphins approaching active seismic vessels. However, delphinids as well as some other types of odontocetes sometimes show avoidance responses and/or other changes in behavior near operating seismic vessels.

Taking into account the mitigation measures that are planned (see § II), effects on cetaceans are generally expected to be limited to avoidance of the area around the seismic operation and short-term changes in behavior, falling within the MMPA definition of “Level B harassment”. Furthermore, the estimated numbers of animals potentially exposed to sound levels sufficient to cause appreciable disturbance are very low percentages of the regional population sizes (Table 4).

Estimates of the numbers of marine mammals that could be exposed to strong airgun sounds during the proposed program have been presented, together with the requested “take authorization”. That figure likely overestimates the actual number of animals that will be exposed to and will react to the seismic sounds. The reasons for that conclusion are outlined above. The relatively short-term exposures are unlikely to result in any long-term negative consequences for the individuals or their populations.

The many cases of apparent tolerance by cetaceans of seismic exploration, vessel traffic, and some other human activities show that co-existence is possible. Mitigation measures such as controlled speed, course alternation, look outs, non-pursuit, and shut downs when marine mammals are seen within defined ranges should further reduce short-term reactions, and avoid or minimize any auditory effects. In all cases, the effects are expected to be short-term, with no lasting biological consequence.

(b) Sea Turtles

Five species—the leatherback, loggerhead, green, hawksbill, and olive ridley turtles—could be encountered in the proposed survey area. Mostly foraging or migrating individuals would occur. At the time of the proposed surveys, there is likely no or little nesting near the proposed survey area; the green turtle nests in the Marshall Islands from May to November with the peak in mid July–mid September, and the hawksbill turtle has been reported to nest on Wotje Atoll in summer. The proposed survey is scheduled after the peak and near the end of the nesting periods. Given incubation periods of ~2 months, few hatchlings would be encountered at sea. Although it is possible that some turtles will be encountered during the survey, it is anticipated that the proposed seismic survey will have, at most, a short-term effect on behavior and no long-term impacts on individual sea turtles or their populations.

(5) Direct Effects on Fish, Fisheries, and EFH and Their Significance

One reason for the adoption of airguns as the standard energy source for marine seismic surveys is that, unlike explosives, they have not been associated with large-scale fish kills. However, existing information on the impacts of seismic surveys on marine fish populations is very limited (see Appendix C). There are three types of potential effects of exposure to seismic surveys: (1) pathological, (2) physiological, and (3) behavioral. Pathological effects involve lethal and temporary or permanent sub-lethal injury. Physiological effects involve temporary and permanent primary and secondary stress responses, such as changes in levels of enzymes and proteins. Behavioral effects refer to temporary and (if they occur) permanent changes in exhibited behavior (e.g., startle and avoidance behavior). The three categories are inter-related in complex ways. For example, it is possible that certain physiological and behavioral changes could potentially lead to an ultimate pathological effect on individuals (i.e., mortality).
The specific received sound levels at which permanent adverse effects to fish potentially could occur are little studied and largely unknown. Furthermore, the available information on the impacts of seismic surveys on marine fish is from studies of individuals or portions of a population; there have been no studies at the population scale. Thus, available information provides limited insight on possible real-world effects at the ocean or population scale. This makes drawing conclusions about impacts on fish problematic because ultimately, the most important aspect of potential impacts relates to how exposure to seismic survey sound affects marine fish populations and their viability, including their availability to fisheries.

Hastings and Popper (2005), Popper (2009), and Popper and Hastings (2009a,b) provided recent critical reviews of the known effects of sound on fish. The following sections provide a general synopsis of available information on the effects of exposure to seismic and other anthropogenic sound as relevant to fish. The information comprises results from scientific studies of varying degrees of rigor plus some anecdotal information. Some of the data sources may have serious shortcomings in methods, analysis, interpretation, and reproducibility that must be considered when interpreting their results (see Hastings and Popper 2005). Potential adverse effects of the program’s sound sources on marine fish are then noted.

(a) Pathological Effects

The potential for pathological damage to hearing structures in fish depends on the energy level of the received sound and the physiology and hearing capability of the species in question (see Appendix C). For a given sound to result in hearing loss, the sound must exceed, by some specific amount, the hearing threshold of the fish for that sound (Popper 2005). The consequences of temporary or permanent hearing loss in individual fish on a fish population is unknown; however, it likely depends on the number of individuals affected and whether critical behaviors involving sound (e.g. predator avoidance, prey capture, orientation and navigation, reproduction, etc.) are adversely affected.

Little is known about the mechanisms and characteristics of damage to fish that may be inflicted by exposure to seismic survey sounds. Few data have been presented in the peer-reviewed scientific literature. As far as we know, there are only two valid papers with proper experimental methods, controls, and careful pathological investigation implicating sounds produced by actual seismic survey airguns with adverse anatomical effects. One such study indicated anatomical damage and the second indicated TTS in fish hearing. The anatomical case is McCauley et al. (2003), who found that exposure to airgun sound caused observable anatomical damage to the auditory maculae of “pink snapper” (Pagrus auratus). This damage in the ears had not been repaired in fish sacrificed and examined almost two months after exposure. On the other hand, Popper et al. (2005) documented only TTS (as determined by auditory brainstem response) in two of three fishes from the Mackenzie River Delta. This study found that broad whitefish (Coregonus nasus) that received a sound exposure level of 177 dB re 1 μPa²·s showed no hearing loss. During both studies, the repetitive exposure to sound was greater than would have occurred during a typical seismic survey. However, the substantial low-frequency energy produced by the airgun arrays [less than ~400 Hz in the study by McCauley et al. (2003) and less than ~200 Hz in Popper et al. (2005)] likely did not propagate to the fish because the water in the study areas was very shallow (~9 m in the former case and <2 m in the latter). Water depth sets a lower limit on the lowest sound frequency that will propagate (the “cutoff frequency”) at about one-quarter wavelength (Urick 1983; Rogers and Cox 1988).

Wardle et al. (2001) suggested that in water, acute injury and death of organisms exposed to seismic energy depends primarily on two features of the sound source: (1) the received peak pressure and (2) the time required for the pressure to rise and decay. Generally, as received pressure increases, the period for the pressure to rise and decay decreases, and the chance of acute pathological effects increases.
According to Buchanan et al. (2004), for the types of seismic airguns and arrays involved with the proposed program, the pathological (mortality) zone for fish would be expected to be within a few meters of the seismic source. Numerous other studies provide examples of no fish mortality upon exposure to seismic sources (Falk and Lawrence 1973; Holliday et al. 1987; La Bella et al. 1996; Santulli et al. 1999; McCauley et al. 2000a,b, 2003; Bjarti 2002; Thomsen 2002; Hassel et al. 2003; Popper et al. 2005; Boeger et al. 2006).

Some studies have reported, some equivocally, that mortality of fish, fish eggs, or larvae can occur close to seismic sources (Kostyuchenko 1973; Dalen and Knutsen 1986; Booman et al. 1996; Dalen et al. 1996). Some of the reports claimed seismic effects from treatments quite different from actual seismic survey sounds or even reasonable surrogates. However, Payne et al. (2009) reported no statistical differences in mortality/morbidity between control and exposed groups of capelin eggs or monkfish larvae. Saetre and Ona (1996) applied a ‘worst-case scenario’ mathematical model to investigate the effects of seismic energy on fish eggs and larvae. They concluded that mortality rates caused by exposure to seismic surveys are so low, as compared to natural mortality rates, that the impact of seismic surveying on recruitment to a fish stock must be regarded as insignificant.

(b) Physiological Effects

Physiological effects refer to cellular and/or biochemical responses of fish to acoustic stress. Such stress potentially could affect fish populations by increasing mortality or reducing reproductive success. Primary and secondary stress responses of fish after exposure to seismic survey sound appear to be temporary in all studies done to date (Sverdrup et al. 1994; Santulli et al. 1999; McCauley et al. 2000a,b). The periods necessary for the biochemical changes to return to normal are variable, and depend on numerous aspects of the biology of the species and of the sound stimulus (see Appendix C).

(c) Behavioral Effects

Behavioral effects include changes in the distribution, migration, mating, and catchability of fish populations. Studies investigating the possible effects of sound (including seismic survey sound) on fish behavior have been conducted on both uncaged and caged individuals (Chapman and Hawkins 1969; Pearson et al. 1992; Santulli et al. 1999; Wardle et al. 2001; Hassel et al. 2003). Typically, in these studies fish exhibited a sharp “startle” response at the onset of a sound followed by habituation and a return to normal behavior after the sound ceased.

In general, any adverse effects on fish behavior or fisheries attributable to seismic testing may depend on the species in question and the nature of the fishery (season, duration, fishing method). They may also depend on the age of the fish, its motivational state, its size, and numerous other factors that are difficult, if not impossible, to quantify at this point, given such limited data on effects of airguns on fish, particularly under realistic at-sea conditions.

(d) Effects on Fisheries

It is possible that the R/V Thompson’s streamer may become entangled with longline gear. Most fisheries in the seismic survey area are for tuna, primarily skipjack and yellowfin, most of which is taken in purse seines. Avoidance tactics will be employed as necessary to prevent conflict. It is not expected that vessel operations will have a significant impact on commercial fisheries in the western tropical Pacific Ocean. Nonetheless, the potential to have a negative impact on the fisheries will be minimized by avoiding areas where fishing is actively underway.
IV. Environmental Consequences

There is general concern about potential adverse effects of seismic operations on fisheries, namely a potential reduction in the “catchability” of fish involved in fisheries. Although reduced catch rates have been observed in some marine fisheries during seismic testing, in a number of cases the findings are confounded by other sources of disturbance (Dalen and Raknes 1985; Dalen and Knutsen 1986; Løkkeborg 1991; Skalski et al. 1992; Engås et al. 1996). In other airgun experiments, there was no change in catch per unit effort (CPUE) of fish when airgun pulses were emitted, particularly in the immediate vicinity of the seismic survey (Pickett et al. 1994; La Bella et al. 1996). For some species, reductions in catch may have resulted from a change in behavior of the fish, e.g., a change in vertical or horizontal distribution, as reported in Slotte et al. (2004).

(e) Effects on EFH

Seismic sound should not have any direct effect on Essential Fish Habitat (EFH), given that the definition of EFH includes only chemical and physical criteria, not biological criteria (e.g., prey species). The proposed deployment of expendable sonobuoys that will sink to the bottom will disturb only very small areas, thus will be an insignificant impact.

(6) Direct Effects on Invertebrates and Their Significance

(a) Seismic operations

The existing body of information on the impacts of seismic survey sound on marine invertebrates is very limited. However, there is some unpublished and very limited evidence of the potential for adverse effects on invertebrates, thereby justifying further discussion and analysis of this issue. The three types of potential effects of exposure to seismic surveys on marine invertebrates are pathological, physiological, and behavioral. Based on the physical structure of their sensory organs, marine invertebrates appear to be specialized to respond to particle displacement components of an impinging sound field and not to the pressure component (Popper et al. 2001; see also Appendix D).

The only information available on the impacts of seismic surveys on marine invertebrates involves studies of individuals; there have been no studies at the population scale. Thus, available information provides limited insight on possible real-world effects at the regional or ocean scale. The most important aspect of potential impacts concerns how exposure to seismic survey sound ultimately affects invertebrate populations and their viability, including availability to fisheries.

Literature reviews of the effects of seismic and other underwater sound on invertebrates were provided by Moriyasu et al. (2004) and Payne et al. (2008). The following sections provide a synopsis of available information on the effects of exposure to seismic survey sound on species of decapod crustaceans and cephalopods, the two taxonomic groups of invertebrates on which most such studies have been conducted. The available information is from studies with variable degrees of scientific soundness and from anecdotal information. A more detailed review of the literature on the effects of seismic survey sound on invertebrates is provided in Appendix D.

Pathological Effects.—In water, lethal and sub-lethal injury to organisms exposed to seismic survey sound could depend on at least two features of the sound source: (1) the received peak pressure, and (2) the time required for the pressure to rise and decay. Generally, as received pressure increases, the period for the pressure to rise and decay decreases, and the chance of acute pathological effects increases. For the type of seismic source planned for the proposed program, the pathological (mortality) zone for crustaceans and cephalopods is expected to be within a few meters of the seismic source; however, very few specific data are
available on levels of seismic signals that might damage these animals. This premise is based on the peak pressure and rise/decay time characteristics of seismic airgun arrays currently in use around the world.

Some studies have suggested that seismic survey sound has a limited pathological impact on early developmental stages of crustaceans (Pearson et al. 1994; Christian et al. 2003; DFO 2004). However, the impacts appear to be either temporary or insignificant compared to what occurs under natural conditions. Controlled field experiments on adult crustaceans (Christian et al. 2003, 2004; DFO 2004) and adult cephalopods (McCauley et al. 2000a,b) exposed to seismic survey sound have not resulted in any significant pathological impacts on the animals. It has been suggested that giant squid strandings were caused by exposure to commercial seismic survey activities (Guerra et al. 2004), but there was little evidence to support the claim. André et al. (2011) exposed cephalopods, primarily cuttlefish, to continuous 50–400 Hz sinusoidal wave sweeps for two hours while captive in relatively small tanks, and reported morphological and ultrastructural evidence of massive acoustic trauma (i.e., permanent and substantial alterations of statocyst sensory hair cells). The received SPL was reported as 157±5 dB re 1µPa, with peak levels at 175 dB re 1µPa. As in the McCauley et al. (2003) paper on sensory hair cell damage in pink snapper as a result of exposure to seismic sound, the cephalopods were subjected to higher sound levels than they would be under natural conditions, and they were unable to swim away from the sound source.

Physiological Effects.—Physiological effects refer mainly to biochemical responses by marine invertebrates to acoustic stress. Such stress potentially could affect invertebrate populations by increasing mortality or reducing reproductive success. Primary and secondary stress responses (i.e., changes in haemolymph levels of enzymes, proteins, etc.) of crustaceans have been noted several days or months after exposure to seismic survey sounds (Payne et al. 2007). The periods necessary for these biochemical changes to return to normal are variable and depend on numerous aspects of the biology of the species and of the sound stimulus.

Behavioral Effects.—There is increasing interest in assessing the possible direct and indirect effects of seismic and other sounds on invertebrate behavior, particularly in relation to the consequences for fisheries. Changes in behavior could potentially affect such aspects as reproductive success, distribution, susceptibility to predation, and catchability by fisheries. Studies investigating the possible behavioral effects of exposure to seismic survey sound on crustaceans and cephalopods have been conducted on both uncaged and caged animals. In some cases, invertebrates exhibited startle responses (e.g., squid in McCauley et al. 2000a,b). In other cases, no behavioral impacts were noted (e.g., crustaceans in Christian et al. 2003, 2004; DFO 2004). There have been anecdotal reports of reduced catch rates of shrimp shortly after exposure to seismic surveys; however, other studies have not observed any significant changes in shrimp catch rate (Andriguetto-Filho et al. 2005). Any adverse effects on crustacean and cephalopod behavior or fisheries attributable to seismic survey sound depend on the species in question and the nature of the fishery (season, duration, fishing method).

(b) Sonobuoy deployment

Fifty expendable sonobuoys may be deployed during the seismic survey. The sonobuoys consist of a hydrophone and electronics encased in an aluminum tube ~90 cm long and 12 cm in diameter. The sonobuoy is a passive receiver, and designed to self-scuttle after 8 hours. Although scuttled sonobuoys will disrupt a very small area of seafloor habitat and could disturb benthic invertebrates, the impacts are expected to be localized and transitory.
(7) Direct Effects on Seabirds and Their Significance

Investigations into the effects of airguns on seabirds are extremely limited. Stemp (1985) conducted opportunistic observations on the effects of seismic exploration on seabirds, and Lacroix et al. (2003) investigated the effect of seismic surveys on molting long-tailed ducks in the Beaufort Sea, Alaska. Stemp (1985) did not observe any effects of seismic testing, although he warned that his observations should not be extrapolated to areas with large concentrations of feeding or molting birds. In a more intensive and directed study, Lacroix et al. (2003) did not detect any effects of nearshore seismic exploration on molting long-tailed ducks in the inshore lagoon systems of Alaska’s North Slope. Both aerial surveys and radio-tracking indicated that the proportion of ducks that stayed near their marking location from before to after seismic exploration was unaffected by proximity to seismic survey activities. Seismic activity also did not appear to change the diving intensity of long-tailed ducks significantly.

Birds might be affected slightly by seismic sounds from the proposed study, but the impacts are not expected to be significant to individual birds or their populations. The types of impacts that are possible are summarized below.

Localized, temporary displacement and disruption of feeding.—Such displacements would be similar to those caused by other large vessels that passed through the area. Agness et al. (2008) reported changes in behavior of Kittlitz’s murrelets in the presence of large, fast-moving vessels, and suggested the possibility of biological effects because of increased energy expenditure by the birds. However, the R/V Thompson travels at a relatively slow speed (7.4 km/h) during seismic acquisition.

Modified prey abundance.—It is unlikely that prey species for birds will be affected by seismic activities to a degree that affects the foraging success of birds. If prey species exhibit avoidance of the ship, the avoidance is expected to be transitory and limited to a very small portion of a bird’s foraging range.

Disturbance to breeding birds.—A vessel (seismic or otherwise) that approaches too close to a breeding colony could disturb adult birds from nests in response to sonic or visual stimuli. There is little potential for this during the proposed survey, as the only time the R/V Thompson will be near the coast is in transit between Hawaii or Guam and the offshore survey area; during the survey, the closest that the R/V Thompson will approach Wake Island is ~125 km. Thus, there is virtually no potential for disturbance of breeding birds.

Egg and nestling mortality.—Disturbance of adult birds from nests can lead to egg or nestling mortality via temperature stress or predation. There is little potential for this because the only time the Thompson will be near the coast is in transit between Hawaii or Guam and the offshore survey area; during the survey, the closest that the R/V Thompson will approach Wake Island is ~125 km. Thus, there is virtually no potential of egg or nestling mortality.

Chance injury or mortality.—Many species of marine birds feed by diving to depths of several meters or more. Flocks of feeding birds may consist of hundreds or even thousands of individuals. Also, some species of seabirds (particularly alcids) escape from boats by diving when the boat gets too close. It is possible that, during the course of normal feeding or escape behavior, some birds could be near enough to an airgun to be injured by a pulse. Although no specific information is available about the circumstances (if any) where this might occur, the negligible aversive reactions of birds to airguns (see above) suggest that a bird would have to be very close to any airgun to receive a pulse with sufficient energy to cause injury, if that is possible at all.
Induced injury or mortality.—If it disorients, injures, or kills prey species, or otherwise increases the availability of prey species to marine birds, a seismic survey could attract birds. Birds drawn too close to an airgun may be at risk of injury. However, available evidence from other seismic surveys using airguns has not shown a pattern of fish (or other prey) kills from airguns [see § IV(5), above]. Thus, the potential that birds would be attracted and subsequently injured by the proposed seismic survey appears very low.

The transect lines are spaced widely apart within the study area, and the Thompson will transit the area at a steady pace. The approach of the vessel will serve as a “ramp up” in that the received noise levels at a fixed point along the transect will gradually increase. Thus, birds will be alerted to the approaching seismic vessel and could move away from the sound source.

(8) Indirect Effects on Marine Mammals, Sea Turtles, and Their Significance

The proposed seismic operations will not result in any permanent impact on habitats used by marine mammals or sea turtles, or to the food sources they use. The main impact issue associated with the proposed activities will be temporarily elevated noise levels and the associated direct effects on marine mammals and sea turtles, as discussed above.

During the proposed seismic survey, only a small fraction of the available habitat would be ensonified at any given time. Disturbance to fish species and invertebrates would be short-term, and fish would return to their pre-disturbance behavior once the seismic activity ceased [see § IV(5) and § IV(6), above]. Thus, the proposed survey would have little impact on the abilities of marine mammals or sea turtles to feed in the area where seismic work is planned.

Some mysticetes feed on concentrations of zooplankton. A reaction by zooplankton to a seismic impulse would only be relevant to whales if it caused a concentration of zooplankton to scatter. Pressure changes of sufficient magnitude to cause that type of reaction would probably occur only very close to the source. Impacts on zooplankton behavior are predicted to be negligible, and that would translate into negligible impacts on those mysticetes that feed on zooplankton.

(9) Cumulative Effects

Cumulative effects refer to the impacts on the environment that result from a combination of past, existing, and reasonably foreseeable projects and human activities. Causal agents of cumulative effects can include multiple causes, multiple effects, effects of activities in more than one locale, and recurring events. Human activities in the region of the proposed seismic survey in and near the proposed survey areas include commercial vessel traffic, U.S. military training exercises, commercial fishing, and coastal development associated with military requirements.

(a) Collisions with Vessels and Vessel Noise

Vessel traffic has the potential to affect marine mammals and sea turtles via disturbance and collisions. Shipping noise generally dominates ambient noise at frequencies of 20–300 Hz (Richardson et al. 1995). Baleen whales are thought to be more sensitive to sound at these low frequencies than are toothed whales. There may be some localized avoidance by marine mammals of ships that traverse through or near the proposed survey area. Vessel traffic in the proposed survey area will generally consist of U.S. military vessels travelling to and from the Wake Island U.S. Air Force base, commercial fishing vessels, and potentially other large commercial (cargo) ships. Small recreational vessels and sport fishing
vessels from the Republic of the Marshall Islands (RMI) are unlikely to travel as far north as the proposed survey area.

The RMI has four designated ports of entry: Jaluit, Enewetak, Kwajalein, and Majuro. Majuro is the main port of entry and center of trade for domestic and international shipping. The total annual cargo throughput for the port of Majuro is 2652 twenty-foot equivalent units (TEUs) (RMI Ports Authority 2010). Of this, 1057 TEUs originate from the U.S., 846 TEUs originate from Southeast Asia, and 271 TEUs originate from South Pacific countries (mainly Australia and New Zealand). The annual average vessel traffic reported by the RMI Ports Authority (2010) is 41 international cargo vessels, 586 international fishing vessels (including 434 purse seiners and 52 longliners), 151 reefer carriers, and 16 tankers. Based on the data available through the Automated Mutual-Assistance Vessel Rescue (AMVER) system managed by the U.S. Coast Guard, the merchant ship traffic consisted of fewer than five vessels per month in most of the proposed survey area during the months of November and December 2010 (USCG 2011). Higher merchant ship traffic densities (5–14 vessels per month) were reported for those months in the northern portion of the survey area from vessels traveling from eastern Asia to Central and South America.

Many odontocetes show considerable tolerance to vessel traffic, although they sometimes react at long distances if confined by ice or shallow water, or if previously harassed by vessels (Richardson et al. 1995). Dolphins of many species tolerate or even approach vessels. Some dolphin species approach moving vessels to ride the bow or stern waves (Williams et al. 1992). In Western Australia, bottlenose dolphin behavior became more erratic and dolphin schools tightened in response to controlled boat interactions (Bejder et al. 2006). During vessel interactions with bottlenose dolphins in New Zealand, travelling behavior increased and resting behavior decreased (Lusseau 2003, 2004). Also, dolphins apparently avoided areas and times characterized by high vessel traffic (Lusseau 2005). Common dolphins in New Zealand have also reacted to boats with changes in their overall behavioral budget, including decreases in foraging and resting times and increases in socializing and milling behavior (Stockin et al. 2008). Killer whales have also been shown to increase travelling and decrease foraging behavior because of the presence of nearby vessels (Williams et al. 2002a,b). Vessel impact studies of southern resident killer whales also showed decreased foraging in the presence of boats (Lusseau et al. 2009) and other behavioral responses (e.g., Noren et al. 2009), indicating that vessel disturbance may have long-term consequences for this endangered small population of killer whales.

Sperm whales often can be approached with small motorized or sailing vessels (Papastavrou et al. 1989), but they avoided outboard-powered whale-watching vessels up to 2 km away (J. McGibbon in Cawthorn 1992). Resident sperm whales that are repeatedly exposed to small vessels show subtle changes in various measures of behavior, and transient individuals (which presumably had less exposure to vessels) reacted more strongly (Richter et al. 2003, 2006). There have been occasional reports of adult male sperm whales ramming ships; such an encounter was recorded in the Marianas in 2007 by the Mariana Islands Sea Turtle Cetacean Survey (MISTCS). The survey vessel encountered a group of surface-active sperm whales and was directly approached by two male sperm whales; the lead animal rammed the ship before both swam beneath the ship and re-joined the other whales (Fulling and Salinas Vega 2009). A number of theories for this behavior were suggested, including the whales perceiving the ship as a competitor or as a threat, as sperm whales were directly targeted in the Mariana region as late as the 1970s (Fulling and Salinas Vega 2009).

There are few systematic data on the behavioral reactions of beaked whales to vessel noise. Most beaked whales tend to avoid approaching vessels (e.g., Würsig et al. 1998). They may also dive for an
IV. Environmental Consequences

extended period when approached by a vessel (e.g., Kasuya 1986). Aguilar-Soto et al. (2006) suggest that foraging efficiency of Cuvier’s beaked whales could be reduced by close approach of a vessel based on dive and acoustic data received from one whale; the authors cautioned that no conclusions can be drawn based on their single observation.

Reactions of humpback whales to boats are variable, ranging from approach to avoidance (Payne 1978; Salden 1993). In southeast Alaska, concern was raised that increasing vessel traffic in Glacier Bay National Park may have caused humpbacks to leave the bay, particularly early in 1978 (Jurasz and Jurasz 1979). A subsequent detailed study confirmed that humpbacks often move away when vessels are within several km (Baker et al. 1982, 1983; Baker and Herman 1989), although reactions of humpbacks vary considerably. Humpbacks seem less likely to react overtly when actively feeding than when resting or engaged in other activities (Krieger and Wing 1984, 1986). More recent studies of humpback whale responses to approaching vessels have been carried out on breeding grounds. Off the coast of mainland Ecuador, humpback whales were found to react to the approach of whale-watching boats by increasing swim speeds significantly (Scheidat et al. 2004), and behavioral responses including abrupt course changes and long dive times have also been reported for humpback whales in Hawaiian waters (Green 1998 in Nowacek et al. 2007). There is limited information available about the reactions of rorquals to vessels, but in general, cetacean reactions to vessels are varied. Some researchers suggest that vessel disturbances can lead to biologically-significant effects with long-term consequences for individuals or populations (see Lusseau and Bejder 2007), and urge that management schemes be established for populations with multiple potential stressors (e.g., Higham et al. 2009).

Another concern with vessel traffic is the potential for striking marine mammals. The probability of a ship strike resulting in a lethal injury (mortality or severe injury) of a large cetacean has been associated with ship speed. Most lethal and severe injuries to large whales resulting from documented ship strikes have occurred when vessels were travelling at 26 km/h or greater (Laist et al. 2001), speeds not uncommon among large ships. Vanderlaan and Taggart (2007), using a logistic regression modelling approach based upon vessel strike records, found that for vessel speeds greater than 28 km/h, the probability of a lethal injury (mortality or severe injury) from a ship strike approaches 1. Laist et al. (2001) reported that fin whales are struck most frequently, but that right, humpback, sperm, and gray whales also are regularly hit. There are less frequent records of collisions with blue, sei, and minke whales (Laist et al. 2001). Van Waerebeek et al. (2006) compiled ship strike records for large whales in the Southern Hemisphere. The large whales included right, blue, pygmy blue, sei, fin, Bryde’s, and humpback whales. It is likely that many ship strikes go undetected or unreported as the strikes may occur in remote areas or struck whales may not strand on land (Jensen and Silber 2003).

Small cetacean species are also at risk from vessel collision; Van Waerebeek et al. (2006) documented ship strikes for 19 species of small cetaceans. Whereas there is potential for collisions between marine mammals and large vessels (e.g., cargo vessels) transiting in and near the proposed survey area, it is highly unlikely that the survey would increase the rate of serious injury or mortality given that the typical vessel speed during most seismic surveys ranges from 7.4 to 9.3 km/h.

Sea turtles are also at risk from ship strikes. NMFS has recognized that sea turtles are highly susceptible to vessel collisions because they regularly surface to breathe and often rest at or near the surface. Of all dead sea turtle strandings recorded from Queensland, Australia, 14% were attributable to ship strikes (Hazel and Gyuris 2006). A study carried out to assess the ability of green turtles to avoid vessels in Morton Bay, Queensland, found that the proportion of turtles that displayed a flight response to approaching vessels decreased as speed increased, and that this was most notable for close encounters.
IV. Environmental Consequences

(Hazel et al. 2007). Turtles were observed to flee from slow-moving vessels (~4 km/hr) in 60% of observations (Hazel et al. 2007). This study also indicated that a turtle’s ability to detect an approaching vessel was vision-dependent and so directly related to water clarity. The study proposed that the vision-dependence of sea turtles explains their inability to evade fast vessels (Hazel et al. 2007).

(b) Fisheries

The primary contributions of fishing to potential cumulative impacts on marine mammals and sea turtles involve direct take, noise, entanglement, and the direct and indirect removal of prey items. Bycatch has been recognized as a significant cause of cetacean mortality for the past 30–40 years since the proliferation of synthetic gill nets throughout the world (Reeves et al. 2003). Recently, there has also been concern over the potential effects of trawl, purse-seine, and longline activities on cetaceans. Marine mammals are known to become entangled in fishing gear, causing direct mortality through drowning or indirect mortality or permanent injury through towing entangled gear.

The most important fishery in Pacific EEZ waters in terms of catch volume is the tuna fishery, with purse seiners of the international fleet operating in EEZ waters under a license system (Sea Around Us Project 2010a). In the western central Pacific, more than 1.5 million tonnes of tuna and billfish are landed annually (Miller 2009). Reported landings in the Wake Island and Marshall Island EEZs are relatively small (Table 5). The catch in 2006 was almost entirely tuna, mostly skipjack (80% and 69% of total catch at Wake Island and the Marshall Islands, respectively) and yellowfin tuna (14% and 26%) (Sea Around Us Project 2010b,c).

The tuna catch in Wake Island’s EEZ during 1989–2003 was taken by U.S.- and Russian Federation-registered vessels, and from 2004 to 2006 was taken entirely by U.S.-registered vessels, mostly (92%) purse seiners (Table 6; Sea Around Us Project 2010b). Up to 2005, the RMI EEZ was fished by international fleets mostly from Japan, Taiwan, the U.S., and Korea (Aylesworth 2009; Sea Around Us Project 2010c). In 2005 and 2006, the Solomon Islands, the Marshall Islands, and Micronesia recorded the most landings in the RMI EEZ waters (Sea Around Us 2010c). There are no domestic long-liners in the Marshall Islands and there are 5 Marshall Island purse seiners that fish in the EEZ and throughout other Pacific Islands (Aylesworth 2009). The predominant fishing methods in the RMI EEZ in 2006 were purse seines (91% of total catch; Table 5) with ~121 purse-seiners from the international fleet (Aylesworth 2009). There is much inter-annual variation in the amount of tuna purse seine landings in the RMI, partly because of El Nino (Aylesworth 2009).

There are no data available on bycatch of marine mammals in the fishery around Wake Island, but information is available for the greater Pacific Islands region, although the estimate for cetacean bycatch is limited by the limited amount of vessel monitoring. The amount of observer coverage between 1994 and 2000 was only 5% (Lawson 2001 in Miller 2009).

TABLE 5. Commercial fisheries landings (tonnes) in 2006 by gear type for the EEZs of Wake Island and the Republic of the Marshall Islands. Source: Sea Around Us Project (2010b,c).

<table>
<thead>
<tr>
<th>EEZ</th>
<th>Gillnets</th>
<th>Long-line tuna</th>
<th>Purse seine</th>
<th>Pole-line tuna</th>
<th>Troll line</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wake Island</td>
<td>0</td>
<td>46</td>
<td>1002</td>
<td>39</td>
<td>0</td>
<td>0</td>
<td>1087</td>
</tr>
<tr>
<td>Marshall Islands</td>
<td>396</td>
<td>185</td>
<td>8419</td>
<td>296</td>
<td>0</td>
<td>0</td>
<td>9300</td>
</tr>
</tbody>
</table>
Purse-seine observer data for the greater Pacific Islands region reported a total of 127 marine mammals as bycatch. Species were not identified in any of the bycatch incidents (Lawson 2001 in Miller 2009). Molony (2005) collated records for 1980–2004 for purse-seine observer data from the western and central Pacific tuna fisheries. Bycatch for that period included 18 bottlenose dolphins, 24 common dolphins, 1 pygmy killer whale, 2 short-finned pilot whales, 4 spinner dolphins, 19 ‘blackfish’ dolphins, and 38 unidentified cetaceans.

There is evidence of illegal, unregulated, and unreported fishing on marine megafauna such as cetaceans and sea turtles in Micronesian waters (Dalebout et al. 2008). A juvenile beaked whale (*Mesoplodon ginkgodens*) was confiscated from a Taiwan-registered longliner during a routine vessel inspection in Guam (Dalebout et al. 2008). The animal had apparently become entangled in the vessel’s longlines when the vessel was fishing near Pohnpei and had been kept on ice for sale in Taipei (Dalebout et al. 2008). The extent of illegal, unregulated, and unreported fishing in the tropical western Pacific and also on the global scale is unknown, as catches are not reported and such activities are often hidden (Dalebout et al. 2008). The majority of these illegal, unreported takes are thought to occur in national EEZs by far-seas fishing vessels registered in foreign countries; there is an economic incentive for such fishing activities because of the lucrative markets for whale and dolphin meat products in Japan and South Korea (Baker et al. 2000; Dalebout et al. 2008).

c) Military Operations

Wake Island is administered by the Office of Insular Affairs, U.S. Department of the Interior, and managed by the U.S. Air Force. The Missile Defense Agency uses Wake Island as part of its mandate to develop, test, deploy, and prepare for decommissioning a Ballistic Missile Defense System to provide a defensive capability for the U.S. The Wake Island Launch Center filed a Supplemental EA in 1999 to analyze the effects of launching up to 20 liquid propellant target missiles over a 10-year period. Test launches were to commence in 2000 (U.S. Army Space and Missile Defence Command 1999). Military-related impacts could include increased nearshore pollution and impacts on nearshore habitats from regular military-base operations and maintenance on Wake Island.

The U.S. Marine Expeditionary Force is relocating from Okinawa to Guam (1600 km from the proposed survey area), and a 5-year military program including training, research and development, testing, and evaluation was scheduled to begin in January 2010 and continue until December 2014. Military operations will be focused on the Mariana Islands Range Complex (MIRC), and consist of ocean surface and undersea areas, special use airspace, and training land areas.

During Navy operations, marine mammals and sea turtles within the MIRC could be exposed to sounds from sonar operations, underwater detonations and other training exercises, and ship and air operations. The main impact associated with naval operations is the addition of underwater noise to oceanic ambient noise levels and the use of low-, mid-, and high-frequency active sonar. The proposed seismic survey area is 1600 km east of the MIRC; it is unlikely that marine animals would be simultaneously exposed to sounds from airguns and Navy echosounders. However, it is possible that...
marine animals could be exposed to airguns, then travel within exposure range of Navy echosounders, or vice versa. Variations in ambient noise levels have the potential to affect the prominence of sound signals (Richardson et al. 1995), which may have consequences for the communication, foraging, and navigational abilities of marine mammals. Marine mammals are especially susceptible to acoustic disturbance because of their reliance on sound and acoustic signals to survive.

The Navy uses both passive and active sonars during their operations. Passive sonars detect sound waves by using hydrophones and can indicate the presence and movement of submarines. Active sonars transmit sound that reflects off objects and returns to the receiving system; they include low-, mid-, and high-frequency sonars (DoN 2008). The Surveillance Towed Array Sensor System Low Frequency Active (SURTASS LFA) sonar operates at frequencies <1 kHz and is designed to detect quiet submarines at far ranges (DoN 2008). Mid-frequency sonars operate at frequencies between 1 and 10 kHz; these are designed to detect submarines in tactical operation scenarios (DoN 2008). High-frequency sonar generates frequencies >10 kHz and is primarily used for determining water depth, hunting mines, and guiding torpedoes (DoN 2008).

There are increasing indications that some beaked whales tend to strand when naval exercises involving mid-frequency sonar operation are ongoing nearby (e.g., Simmonds and Lopez-Jurado 1991; Frantzis 1998; NOAA and USN 2001; Jepson et al. 2003; Hildebrand 2005; Barlow and Gisiner 2006). These strandings may be in part a disturbance response, although auditory or other injuries or other physiological effects may also be involved (see §IV Strandings and Mortality). However, seismic survey sounds are quite different from the naval sonars that will be operating in the MIRC.

(d) Summary of Cumulative Impacts to Marine Mammals

Impacts of the proposed seismic survey in the western tropical Pacific are expected to be no more than a very minor (and short-term) increment when viewed in the light of other human activities within the proposed survey area. Unlike some other activities (e.g., fishing), seismic activities are not expected to result in injuries or deaths of marine mammals. Although airgun sounds from the seismic survey will have higher source levels than do sounds from some other human activities in the area, airgun sounds are pulses and will occur for only ~16 days, in contrast to those from other sources that occur continuously over extended periods of time (e.g., vessel noise).

As previously discussed, airgun operations are unlikely to cause any large-scale or prolonged effects. Thus, the combination of the project operations with the existing Navy exercises in the Marianas, shipping, and fishing operations is expected to produce only a negligible increase in overall disturbance effects on marine mammals.

(e) Cumulative Impacts to Sea Turtles

Major threats to sea turtles worldwide include entanglement in fishing gear, hunting and poaching, the collection of eggs, coastal development, increased tourism including beaches obstructed with lights and chairs, beach sand mining, pedestrian traffic, oil spills, ship strikes, ingestion of plastic and marine garbage, and destruction of feeding habitat in coral reefs and seagrass beds (Horrocks 1992; Marcovaldi et al. 2003). Coastal development associated with new resorts and hotels has been related to coastal pollution, particularly through increased runoff and sedimentation. Sea turtles may be particularly affected by coastal development and erosion through degradation of nesting and critical nearshore and pelagic habitats (Kolinski et al. 2004).

Sea turtles are known to become entangled in fishing gear, causing direct mortality through drowning. In 2001, sea turtle mortality attributable to the longline fishery was estimated at 500–600
turtles per year. The most recent estimates for the longline fishery are ~918 turtle mortalities per year. The species identified in the bycatch included the green, hawksbill, and olive ridley turtles (Aylesworth 2009). Less than 500 turtle/fishery interactions occurred per year in the purse seine fishery. Olive ridley and hawksbill turtles were the most common species identified in the bycatch (Molony 2007 in Aylesworth 2009).

Marine turtles have long held economic, cultural and spiritual value to Pacific Islanders. In the RMI it is prohibited to kill sea turtles while they are on land and it is also illegal to take their eggs. Hawksbill and green turtles cannot be killed unless they meet a certain size requirement. Although green and hawksbill turtles are now offered protection, there is still some illegal harvest and also egg collection in the RMI. Turtles and eggs are used as a traditional food source and the shell, skin and flippers are used as ornaments or implements (McCoy 2004 in Project Global 2011).

Disturbance that could be caused by the proposed seismic survey will have minimal contributions to cumulative impacts on sea turtles. Turtles may be feeding in the proposed survey area or migrating to nesting beaches in the RMI. It is anticipated that relatively few numbers of turtles could be disturbed during the survey, and there are no anticipated injurious or lethal effects at the individual or population level.

(10) Unavoidable Impacts

Unavoidable impacts to the species of marine mammals and turtles occurring in the proposed survey area will be limited to short-term, localized changes in behavior of individuals. For cetaceans, some of the changes in behavior may be sufficient to fall within the MMPA definition of “Level B Harassment” (behavioral disturbance; no serious injury or mortality). TTS, if it occurs, will be limited to a few individuals, is a temporary phenomenon that does not involve injury, and is unlikely to have long term consequences for the few individuals involved. No long-term or significant impacts are expected on any of these individual marine mammals or turtles, or on the populations to which they belong. Effects on recruitment or survival are expected to be (at most) negligible.

(11) Coordination with Other Agencies and Processes

This document will be used as supporting documentation for an IHA application submitted by SIO to NMFS, under the U.S. MMPA, for “taking by harassment” (disturbance) of small numbers of marine mammals during this proposed seismic project. Potential impacts to endangered species and critical habitat have also been assessed in the document; therefore, it will be used to support the ESA Section 7 consultation process with NMFS and USFWS.

UW will work with the US Department of State to obtain the necessary approvals for operating in the foreign EEZs of the RMI. SIO and NSF will coordinate the planned marine mammal monitoring program associated with the seismic survey with any parties that express interest in this survey activity. SIO and NSF have coordinated, and will continue to coordinate, with other applicable Federal and State agencies as required, and will comply with their requirements.

Alternative Action: Another Time

An alternative to issuing the IHA for the period requested, and to conducting the project then, is to issue the IHA for another time, and to conduct the project at that alternative time. The proposed dates for
the cruise (32 days in November–December 2011) are the dates when the personnel and equipment essential to meet the overall project objectives are available.

Marine mammals and sea turtles are expected to be found throughout the proposed survey area and throughout the time period during which the project may occur. A number of marine mammal species (see Table 2) are year-round residents in the western tropical Pacific Ocean, so altering the timing of the proposed project likely would result in no net benefits for those species (see § III, above). The survey is scheduled near the beginning of the tropical breeding season of many baleen whales, but there is no evidence that any mysticete species breeds near the proposed survey area. The proposed survey is scheduled after the end of the peak summer nesting periods for the two sea turtles that nest in the area, so few hatchlings would be encountered at sea.

No Action Alternative

An alternative to conducting the proposed activities is the “No Action” alternative, i.e. do not issue an IHA and do not conduct the operations. If the research were not conducted, the “No Action” alternative would result in no disturbance to marine mammals or sea turtles attributable to the proposed activities, however valuable data about the marine environment would be lost. Research that will contribute to fundamental aspects of geophysics, such as the dynamics of Earth’s deep interior including the core and deep mantle, provide constraints for geodynamo models, and improve insight on the overall evolution of planet Earth, would also be lost. A more robust and improved geomagnetic polarity time scale model for the Mid-Jurassic would not be achieved.
V. LIST OF PREPARERS

LGL Ltd., environmental research associates

William E. Cross, M.Sc., King City, Ont.*
Nathalie Patenaude, Ph.D., King City, Ont.*
Patrick Abgrall, Ph.D., King City, Ont.*
Meike Holst, M.Sc., Sidney, B.C.
John Christian, M.Sc., St. John's, Nfld.
Ted Elliott, B.Sc., King City, Ont.
William R. Koski, M.Sc., King City, Ont.
W. John Richardson, Ph.D., King City, Ont.

Lamont Doherty Earth Observatory

John Diebold, Ph.D., Palisades, NY

Scripps Institution of Oceanography

Woody Sutherland, M.S., La Jolla, CA

National Science Foundation

Holly E. Smith, M.A., Arlington, VA
Olivia Lee, Ph.D., Arlington, VA

* Principal preparers of this specific document. Others listed above contributed to a lesser extent, or contributed substantially to previous related documents from which material has been excerpted.
VI. LITERATURE CITED

Marine Mammals and Acoustics

VI. Literature Cited

VI. Literature Cited

VI. Literature Cited

VI. Literature Cited

Sea Turtles, Fish, and Other

DoN (Department of the Navy). 2008. Request for letter of authorization for the incidental harassment of marine mammals resulting from training and research development, testing and evaluation activities conducted within the Marianas Islands Range Complex. Submitted to Office of Protected Resources National Marine Fisheries Service, 1315 East-West Highway Silver Spring, Maryland, 20910-3226. 414 p.

VI. Literature Cited

VI. Literature Cited

APPENDIX A:

REVIEW OF THE EFFECTS OF AIRGUN SOUNDS ON MARINE MAMMALS

The following subsections review relevant information concerning the potential effects of airguns on marine mammals. Because this review is intended to be of general usefulness, it includes references to types of marine mammals that will not be found in some specific regions.

1. Categories of Noise Effects

The effects of noise on marine mammals are highly variable, and can be categorized as follows (adapted from Richardson et al. 1995):

1. The noise may be too weak to be heard at the location of the animal, i.e., lower than the prevailing ambient noise level, the hearing threshold of the animal at relevant frequencies, or both;
2. The noise may be audible but not strong enough to elicit any overt behavioral response, i.e., the mammal may tolerate it, either without or with some deleterious effects (e.g., masking, stress);
3. The noise may elicit behavioral reactions of variable conspicuousness and variable relevance to the well being of the animal; these can range from subtle effects on respiration or other behaviors (detectable only by statistical analysis) to active avoidance reactions;
4. Upon repeated exposure, animals may exhibit diminishing responsiveness (habituation), or disturbance effects may persist; the latter is most likely with sounds that are highly variable in characteristics, unpredictable in occurrence, and associated with situations that the animal perceives as a threat;
5. Any man-made noise that is strong enough to be heard has the potential to reduce (mask) the ability of marine mammals to hear natural sounds at similar frequencies, including calls from conspecifics, echolocation sounds of odontocetes, and environmental sounds such as surf noise or (at high latitudes) ice noise. However, intermittent airgun or sonar pulses could cause strong masking for only a small proportion of the time, given the short duration of these pulses relative to the inter-pulse intervals;
6. Very strong sounds have the potential to cause temporary or permanent reduction in hearing sensitivity, or other physical or physiological effects. Received sound levels must far exceed the animal’s hearing threshold for any temporary threshold shift to occur. Received levels must be even higher for a risk of permanent hearing impairment.

2. Hearing Abilities of Marine Mammals

The hearing abilities of marine mammals are functions of the following (Richardson et al. 1995; Au et al. 2000):

1. Absolute hearing threshold at the frequency in question (the level of sound barely audible in the absence of ambient noise). The “best frequency” is the frequency with the lowest absolute threshold.

4 By W. John Richardson and Valerie D. Moulton, with subsequent updates (to Feb. 2010) by WJR and VDM plus Patrick A勃rand, William E. Cross, Meike Holst, and Mari A. Smultea, all of LGL Ltd., environmental research associates
2. Critical ratio (the signal-to-noise ratio required to detect a sound at a specific frequency in the presence of background noise around that frequency).

3. The ability to determine sound direction at the frequencies under consideration.

4. The ability to discriminate among sounds of different frequencies and intensities.

Marine mammals rely heavily on the use of underwater sounds to communicate and to gain information about their surroundings. Experiments and monitoring studies also show that they hear and may react to many man-made sounds including sounds made during seismic exploration (Richardson et al. 1995; Gordon et al. 2004; Nowacek et al. 2007; Tyack 2008).

2.1 Toothed Whales (Odontocetes)

Hearing abilities of some toothed whales (odontocetes) have been studied in detail (reviewed in Chapter 8 of Richardson et al. [1995] and in Au et al. [2000]). Hearing sensitivity of several species has been determined as a function of frequency. The small to moderate-sized toothed whales whose hearing has been studied have relatively poor hearing sensitivity at frequencies below 1 kHz, but extremely good sensitivity at, and above, several kHz. There are very few data on the absolute hearing thresholds of most of the larger, deep-diving toothed whales, such as the sperm and beaked whales. However, Cook et al. (2006) found that a stranded juvenile Gervais’ beaked whale showed evoked potentials from 5 kHz up to 80 kHz (the entire frequency range that was tested), with best sensitivity at 40–80 kHz. An adult Gervais’ beaked whale had a similar upper cutoff frequency (80–90 kHz; Finneran et al. 2009).

Most of the odontocete species have been classified as belonging to the “mid-frequency” (MF) hearing group, and the MF odontocetes (collectively) have functional hearing from about 150 Hz to 160 kHz (Southall et al. 2007). However, individual species may not have quite so broad a functional frequency range. Very strong sounds at frequencies slightly outside the functional range may also be detectable. The remaining odontocetes—the porpoises, river dolphins, and members of the genera *Cephalorhynchus* and *Kogia*—are distinguished as the “high frequency” (HF) hearing group. They have functional hearing from about 200 Hz to 180 kHz (Southall et al. 2007).

Airguns produce a small proportion of their sound at mid- and high-frequencies, although at progressively lower levels with increasing frequency. In general, most of the energy in the sound pulses emitted by airgun arrays is at low frequencies; strongest spectrum levels are below 200 Hz, with considerably lower spectrum levels above 1000 Hz, and smaller amounts of energy emitted up to ~150 kHz (Goold and Fish 1998; Sodal 1999; Goold and Coates 2006; Potter et al. 2007).

Despite the relatively poor sensitivity of small odontocetes at the low frequencies that contribute most of the energy in pulses of sound from airgun arrays, airgun sounds are sufficiently strong, and contain sufficient mid- and high-frequency energy, that their received levels sometimes remain above the hearing thresholds of odontocetes at distances out to several tens of kilometers (Richardson and Würsig 1997). There is no evidence that most small odontocetes react to airgun pulses at such long distances. However, beluga whales do seem quite responsive at intermediate distances (10–20 km) where sound levels are well above the ambient noise level (see below).

In summary, even though odontocete hearing is relatively insensitive to the predominant low frequencies produced by airguns, sounds from airgun arrays are audible to odontocetes, sometimes to distances of 10s of kilometers.
2.2 Baleen Whales (Mysticetes)

The hearing abilities of baleen whales (mysticetes) have not been studied directly. Behavioral and anatomical evidence indicates that they hear well at frequencies below 1 kHz (Richardson et al. 1995; Ketten 2000). Frankel (2005) noted that gray whales reacted to a 21–25 kHz whale-finding sonar. Some baleen whales react to pinger sounds up to 28 kHz, but not to pingers or sonars emitting sounds at 36 kHz or above (Watkins 1986). In addition, baleen whales produce sounds at frequencies up to 8 kHz and, for humpbacks, with components to >24 kHz (Au et al. 2006). The anatomy of the baleen whale inner ear seems to be well adapted for detection of low-frequency sounds (Ketten 1991, 1992, 1994, 2000; Parks et al. 2007b). Although humpbacks and minke whales (Berta et al. 2009) may have some auditory sensitivity to frequencies above 22 kHz, for baleen whales as a group, the functional hearing range is thought to be about 7 Hz to 22 kHz and they are said to constitute the “low-frequency” (LF) hearing group (Southall et al. 2007). The absolute sound levels that they can detect below 1 kHz are probably limited by increasing levels of natural ambient noise at decreasing frequencies (Clark and Ellison 2004). Ambient noise levels are higher at low frequencies than at mid frequencies. At frequencies below 1 kHz, natural ambient levels tend to increase with decreasing frequency.

The hearing systems of baleen whales are undoubtedly more sensitive to low-frequency sounds than are the ears of the small toothed whales that have been studied directly. Thus, baleen whales are likely to hear airgun pulses farther away than can small toothed whales and, at closer distances, airgun sounds may seem more prominent to baleen than to toothed whales. However, baleen whales have commonly been seen well within the distances where seismic (or other source) sounds would be detectable and often show no overt reaction to those sounds. Behavioral responses by baleen whales to seismic pulses have been documented, but received levels of pulsed sounds necessary to elicit behavioral reactions are typically well above the minimum levels that the whales are assumed to detect (see below).

2.3 Seals and Sea Lions (Pinnipeds)

Underwater audiograms have been obtained using behavioral methods for three species of phocinid seals, two species of monachid seals, two species of otariids, and the walrus (reviewed in Richardson et al. 1995: 211ff; Kastak and Schusterman 1998, 1999; Kastelein et al. 2002, 2009). The functional hearing range for pinnipeds in water is considered to extend from 75 Hz to 75 kHz (Southall et al. 2007), although some individual species—especially the eared seals—do not have that broad an auditory range (Richardson et al. 1995). In comparison with odontocetes, pinnipeds tend to have lower best frequencies, lower high-frequency cutoffs, better auditory sensitivity at low frequencies, and poorer sensitivity at the best frequency.

At least some of the phocid seals have better sensitivity at low frequencies (≤1 kHz) than do odontocetes. Below 30–50 kHz, the hearing thresholds of most species tested are essentially flat down to ~1 kHz, and range between 60 and 85 dB re 1 µPa. Measurements for harbor seals indicate that, below 1 kHz, their thresholds under quiet background conditions deteriorate gradually with decreasing frequency to ~75 dB re 1 µPa at 125 Hz (Kastelein et al. 2009).

For the otariid (eared) seals, the high frequency cutoff is lower than for phocinids, and sensitivity at low frequencies (e.g., 100 Hz) is poorer than for seals (harbor seal).
2.4 Manatees and Dugong (Sirenians)

The West Indian manatee can apparently detect sounds and low-frequency vibrations from 15 Hz to 46 kHz, based on a study involving behavioral testing methods (Gerstein et al. 1999, 2004). A more recent study found that, in one Florida manatee, auditory sensitivity extended up to 90.5 kHz (Bauer et al. 2009). Thus, manatees may hear, or at least detect, sounds in the low-frequency range where most seismic energy is released. It is possible that they are able to feel these low-frequency sounds using vibrotactile receptors or because of resonance in body cavities or bone conduction.

Based on measurements of evoked potentials, manatee hearing is apparently best around 1–1.5 kHz (Bullock et al. 1982). However, behavioral tests suggest that best sensitivities are at 6–20 kHz (Gerstein et al. 1999) or 8–32 kHz (Bauer et al. 2009). The ability to detect high frequencies may be an adaptation to shallow water, where the propagation of low frequency sound is limited (Gerstein et al. 1999, 2004).

2.5 Sea Otter and Polar Bear

No data are available on the hearing abilities of sea otters (Ketten 1998), although the in-air vocalizations of sea otters have most of their energy concentrated at 3–5 kHz (McShane et al. 1995; Thomson and Richardson 1995). Sea otter vocalizations are considered to be most suitable for short-range communication among individuals (McShane et al. 1995). However, Ghoul et al. (2009) noted that the in-air “screams” of sea otters are loud signals (source level of 93–118 dB re 20 µPa pk) that may be used over larger distances; screams have a frequency of maximum energy ranging from 2 to 8 kHz. In-air audiograms for two river otters indicate that this related species has its best hearing sensitivity at the relatively high frequency of 16 kHz, with some sensitivity from about 460 Hz to 33 kHz (Gunn 1988). However, these data apply to a different species of otter, and to in-air rather than underwater hearing.

Data on the specific hearing capabilities of polar bears are limited. A recent study of the in-air hearing of polar bears applied the auditory evoked potential method while tone pips were played to anesthetized bears (Nachtigall et al. 2007). Hearing was tested in ½ octave steps from 1 to 22.5 kHz, and best hearing sensitivity was found between 11.2 and 22.5 kHz. Although low-frequency hearing was not studied, the data suggested that medium- and some high-frequency sounds may be audible to polar bears. However, polar bears’ usual behavior (e.g., remaining on the ice, at the water surface, or on land) reduces or avoids exposure to underwater sounds.

3. Characteristics of Airgun Sounds

Airguns function by venting high-pressure air into the water. The pressure signature of an individual airgun consists of a sharp rise and then fall in pressure, followed by several positive and negative pressure excursions caused by oscillation of the resulting air bubble. The sizes, arrangement, and firing times of the individual airguns in an array are designed and synchronized to suppress the pressure oscillations subsequent to the first cycle. The resulting downward-directed pulse has a duration of only 10–20 ms, with only one strong positive and one strong negative peak pressure (Caldwell and Dragoset 2000). Most energy emitted from airguns is at relatively low frequencies. For example, typical high-energy airgun arrays emit most energy at 10–120 Hz. However, the pulses contain significant energy up to 500–1000 Hz and some energy at higher frequencies (Goold and Fish 1998; Potter et al. 2007). Studies in the Gulf of Mexico have shown that the horizontally-propagating sound can contain significant energy above the frequencies that airgun arrays are designed to emit (DeRuiter et al. 2006; Madsen et al. 2006; Tyack et al. 2006a). Energy at frequencies up to 150 kHz was found in tests of single 60-in³ and 250-in³ airguns (Goold and Coates 2006). Nonetheless, the predominant energy is at low frequencies.
The pulsed sounds associated with seismic exploration have higher peak levels than other industrial sounds (except those from explosions) to which whales and other marine mammals are routinely exposed. The nominal source levels of the 2- to 36-airgun arrays used by Lamont-Doherty Earth Observatory (L-DEO) from the R/V Maurice Ewing (now retired) and R/V Marcus G. Langseth (36 airguns) are 236–265 dB re 1 µPa p–p. These are the nominal source levels applicable to downward propagation. The effective source levels for horizontal propagation are lower than those for downward propagation when the source consists of numerous airguns spaced apart from one another. Explosions are the only man-made sources with effective source levels as high as (or higher than) a large array of airguns. However, high-power sonars can have source pressure levels as high as a small array of airguns, and signal duration can be longer for a sonar than for an airgun array, making the source energy levels of some sonars more comparable to those of airgun arrays.

Several important mitigating factors need to be kept in mind. (1) Airgun arrays produce intermittent sounds, involving emission of a strong sound pulse for a small fraction of a second followed by several seconds of near silence. In contrast, some other sources produce sounds with lower peak levels, but their sounds are continuous or discontinuous but continuing for longer durations than seismic pulses. (2) Airgun arrays are designed to transmit strong sounds downward through the seafloor, and the amount of sound transmitted in near-horizontal directions is considerably reduced. Nonetheless, they also emit sounds that travel horizontally toward non-target areas. (3) An airgun array is a distributed source, not a point source. The nominal source level is an estimate of the sound that would be measured from a theoretical point source emitting the same total energy as the airgun array. That figure is useful in calculating the expected received levels in the far field, i.e., at moderate and long distances, but not in the near field. Because the airgun array is not a single point source, there is no one location within the near field (or anywhere else) where the received level is as high as the nominal source level.

The strengths of airgun pulses can be measured in different ways, and it is important to know which method is being used when interpreting quoted source or received levels. Geophysicists usually quote peak-to-peak (p-p) levels, in bar-meters or (less often) dB re 1 µPa · m. The peak (= zero-to-peak, or 0-p) level for the same pulse is typically ~6 dB less. In the biological literature, levels of received airgun pulses are often described based on the “average” or “root-mean-square” (rms) level, where the average is calculated over the duration of the pulse. The rms value for a given airgun pulse is typically ~10 dB lower than the peak level, and 16 dB lower than the peak-to-peak value (Greene 1997; McCauley et al. 1998, 2000a). A fourth measure that is increasingly used is the energy, or Sound Exposure Level (SEL), in dB re 1 µPa² · s. Because the pulses, even when stretched by propagation effects (see below), are usually <1 s in duration, the numerical value of the energy is usually lower than the rms pressure level. However, the units are different. Because the level of a given pulse will differ substantially depending on which of these measures is being applied, it is important to be aware which measure is in use when interpreting any quoted pulse level. In the past, the U.S. National Marine Fisheries Service

The rms value for a given airgun array pulse, as measured at a horizontal distance on the order of 0.1 km to 1–10 km in the units dB re 1 µPa, usually averages 10–15 dB higher than the SEL value for the same pulse measured in dB re 1 µPa² · s (e.g., Greene 1997). However, there is considerable variation, and the difference tends to be larger close to the airgun array, and less at long distances (Blackwell et al. 2007; MacGillivray and Hannay 2007a,b). In some cases, generally at longer distances, pulses are “stretched” by propagation effects to the extent that the rms and SEL values (in the respective units mentioned above) become very similar (e.g., MacGillivray and Hannay 2007a,b).
(NMFS) has commonly referred to rms levels when discussing levels of pulsed sounds that might “harass” marine mammals.

Seismic sound pulses received at any given point will arrive via a direct path, indirect paths that include reflection from the sea surface and bottom, and often indirect paths including segments through the bottom sediments. Sounds propagating via indirect paths travel longer distances and often arrive later than sounds arriving via a direct path. (However, sound traveling in the bottom may travel faster than that in the water, and thus may, in some situations, arrive slightly earlier than the direct arrival despite traveling a greater distance.) These variations in travel time have the effect of lengthening the duration of the received pulse, or may cause two or more received pulses from a single emitted pulse. Near the source, the predominant part of a seismic pulse is ~10–20 ms in duration. In comparison, the pulse duration as received at long horizontal distances can be much greater. For example, for one airgun array operating in the Beaufort Sea, pulse duration was ~300 ms at a distance of 8 km, 500 ms at 20 km, and 850 ms at 73 km (Greene and Richardson 1988).

The rms level for a given pulse (when measured over the duration of that pulse) depends on the extent to which propagation effects have “stretched” the duration of the pulse by the time it reaches the receiver (e.g., Madsen 2005). As a result, the rms values for various received pulses are not perfectly correlated with the SEL (energy) values for the same pulses. There is increasing evidence that biological effects are more directly related to the received energy (e.g., to SEL) than to the rms values averaged over pulse duration (Southall et al. 2007).

Another important aspect of sound propagation is that received levels of low-frequency underwater sounds diminish close to the surface because of pressure-release and interference phenomena that occur at and near the surface (Urick 1983; Richardson et al. 1995; Potter et al. 2007). Paired measurements of received airgun sounds at depths of 3 vs. 9 or 18 m have shown that received levels are typically several decibels lower at 3 m (Greene and Richardson 1988). For a mammal whose auditory organs are within 0.5 or 1 m of the surface, the received level of the predominant low-frequency components of the airgun pulses would be further reduced. In deep water, the received levels at deep depths can be considerably higher than those at relatively shallow (e.g., 18 m) depths and the same horizontal distance from the airguns (Tolstoy et al. 2004a,b).

Pulses of underwater sound from open-water seismic exploration are often detected 50–100 km from the source location, even during operations in nearshore waters (Greene and Richardson 1988; Burgess and Greene 1999). At those distances, the received levels are usually low, <120 dB re 1 μPa on an approximate rms basis. However, faint seismic pulses are sometimes detectable at even greater ranges (e.g., Bowles et al. 1994; Fox et al. 2002). In fact, low-frequency airgun signals sometimes can be detected thousands of kilometers from their source. For example, sound from seismic surveys conducted offshore of Nova Scotia, the coast of western Africa, and northeast of Brazil were reported as a dominant feature of the underwater noise field recorded along the mid-Atlantic ridge (Nieukirk et al. 2004).

4. Masking Effects of Airgun Sounds

Masking is the obscuring of sounds of interest by interfering sounds, generally at similar frequencies (Richardson et al. 1995). Introduced underwater sound will, through masking, reduce the effective communication distance of a marine mammal species if the frequency of the source is close to that used as a signal by the marine mammal, and if the anthropogenic sound is present for a significant fraction of the time (Richardson et al. 1995). If little or no overlap occurs between the introduced sound and the frequencies used by the species, communication is not expected to be disrupted. Also, if the
Appendix A: Impacts of Airgun Sounds on Marine Mammals

Introduced sound is present only infrequently, communication is not expected to be disrupted much if at all. The duty cycle of airguns is low; the airgun sounds are pulsed, with relatively quiet periods between pulses. In most situations, strong airgun sound will only be received for a brief period (<1 s), with these sound pulses being separated by at least several seconds of relative silence, and longer in the case of deep-penetration surveys or refraction surveys. A single airgun array might cause appreciable masking in only one situation: When propagation conditions are such that sound from each airgun pulse reverberates strongly and persists for much or all of the interval up to the next airgun pulse (e.g., Simard et al. 2005; Clark and Gagnon 2006). Situations with prolonged strong reverberation are infrequent, in our experience. However, it is common for reverberation to cause some lesser degree of elevation of the background level between airgun pulses (e.g., Guerra et al. 2009), and this weaker reverberation presumably reduces the detection range of calls and other natural sounds to some degree.

Although masking effects of pulsed sounds on marine mammal calls and other natural sounds are expected to be limited, there are few specific studies on this. Some whales continue calling in the presence of seismic pulses and whale calls often can be heard between the seismic pulses (e.g., Richardson et al. 1986; McDonald et al. 1995; Greene et al. 1999a,b; Nieukirk et al. 2004; Smultea et al. 2004; Holst et al. 2005a,b, 2006; Dunn and Hernandez 2009). However, there is one recent summary report indicating that calling fin whales distributed in one part of the North Atlantic went silent for an extended period starting soon after the onset of a seismic survey in the area (Clark and Gagnon 2006). It is not clear from that preliminary paper whether the whales ceased calling because of masking, or whether this was a behavioral response not directly involving masking. Also, bowhead whales in the Beaufort Sea may decrease their call rates in response to seismic operations, although movement out of the area might also have contributed to the lower call detection rate (Blackwell et al. 2009a,b). In contrast, Di Iorio and Clark (2009) found evidence of increased calling by blue whales during operations by a lower-energy seismic source—a sparker.

Among the odontocetes, there has been one report that sperm whales ceased calling when exposed to pulses from a very distant seismic ship (Bowles et al. 1994). However, more recent studies of sperm whales found that they continued calling in the presence of seismic pulses (Madsen et al. 2002; Tyack et al. 2003; Smultea et al. 2004; Holst et al. 2006; Jochens et al. 2008). Madsen et al. (2006) noted that airgun sounds would not be expected to mask sperm whale calls given the intermittent nature of airgun pulses. Dolphins and porpoises are also commonly heard calling while airguns are operating (Gordon et al. 2004; Smultea et al. 2004; Holst et al. 2005a,b; Potter et al. 2007). Masking effects of seismic pulses are expected to be negligible in the case of the smaller odontocetes, given the intermittent nature of seismic pulses plus the fact that sounds important to them are predominantly at much higher frequencies than are the dominant components of airgun sounds.

Pinnipeds, sirenians and sea otters have best hearing sensitivity and/or produce most of their sounds at frequencies higher than the dominant components of airgun sound, but there is some overlap in the frequencies of the airgun pulses and the calls. However, the intermittent nature of airgun pulses presumably reduces the potential for masking.

A few cetaceans are known to increase the source levels of their calls in the presence of elevated sound levels, shift their peak frequencies in response to strong sound signals, or otherwise modify their vocal behavior in response to increased noise (Dahlheim 1987; Au 1993; reviewed in Richardson et al. 1995:233ff; 364ff; Lesage et al. 1999; Terhune 1999; Nieukirk et al. 2005; Scheifele et al. 2005; Parks et al. 2007a, 2009; Di Iorio and Clark 2009; Hanser et al. 2009). It is not known how often these types of responses occur upon exposure to airgun sounds. However, blue whales in the St. Lawrence Estuary
significantly increased their call rates during sparker operations (Di Iorio and Clark 2009). The sparker, used to obtain seismic reflection data, emitted frequencies of 30–450 Hz with a relatively low source level of 193 dB re 1 μPa_{pk-pk}. If cetaceans exposed to airgun sounds sometimes respond by changing their vocal behavior, this adaptation, along with directional hearing and preadaptation to tolerate some masking by natural sounds (Richardson et al. 1995), would all reduce the importance of masking by seismic pulses.

5. Disturbance by Seismic Surveys

Disturbance includes a variety of effects, including subtle to conspicuous changes in behavior, movement, and displacement. In the terminology of the 1994 amendments to the U.S. Marine Mammal Protection Act (MMPA), seismic noise could cause “Level B” harassment of certain marine mammals. Level B harassment is defined as “…disruption of behavioral patterns, including, but not limited to, migration, breathing, nursing, breeding, feeding, or sheltering.”

There has been debate regarding how substantial a change in behavior or mammal activity is required before the animal should be deemed to be “taken by Level B harassment”. NMFS has stated that “…a simple change in a marine mammal’s actions does not always rise to the level of disruption of its behavioral patterns. … If the only reaction to the [human] activity on the part of the marine mammal is within the normal repertoire of actions that are required to carry out that behavioral pattern, NMFS considers [the human] activity not to have caused a disruption of the behavioral pattern, provided the animal’s reaction is not otherwise significant enough to be considered disruptive due to length or severity. Therefore, for example, a short-term change in breathing rates or a somewhat shortened or lengthened dive sequence that are within the animal’s normal range and that do not have any biological significance (i.e., do no disrupt the animal’s overall behavioral pattern of breathing under the circumstances), do not rise to a level requiring a small take authorization.” (NMFS 2001, p. 9293).

Based on this guidance from NMFS, and on NRC (2005), simple exposure to sound, or brief reactions that do not disrupt behavioral patterns in a potentially significant manner, do not constitute harassment or “taking”. In this analysis, we interpret “potentially significant” to mean in a manner that might have deleterious effects on the well-being of individual marine mammals or their populations.

Even with this guidance, there are difficulties in defining what marine mammals should be counted as “taken by harassment”. Available detailed data on reactions of marine mammals to airgun sounds (and other anthropogenic sounds) are limited to relatively few species and situations (see Richardson et al. 1995; Gordon et al. 2004; Nowacek et al. 2007; Southall et al. 2007). Behavioral reactions of marine mammals to sound are difficult to predict in the absence of site- and context-specific data. Reactions to sound, if any, depend on species, state of maturity, experience, current activity, reproductive state, time of day, and many other factors (Richardson et al. 1995; Wartzok et al. 2004; Southall et al. 2007; Weilgart 2007). If a marine mammal reacts to an underwater sound by changing its behavior or moving a small distance, the impacts of the change are unlikely to be significant to the individual, let alone the stock or population. However, if a sound source displaces marine mammals from an important feeding or breeding area for a prolonged period, impacts on individuals and populations could be significant (e.g., Lusseau and Bejder 2007; Weilgart 2007). Also, various authors have noted that some marine mammals that show no obvious avoidance or behavioral changes may still be adversely affected by noise (Brodie 1981; Richardson et al. 1995:317ff; Romano et al. 2004; Weilgart 2007; Wright et al. 2009). For example, some research suggests that animals in poor condition or in an already stressed state may not react as strongly to human disturbance as would more robust animals (e.g., Beale and Monaghan 2004).
Appendix A: Impacts of Airgun Sounds on Marine Mammals

Studies of the effects of seismic surveys have focused almost exclusively on the effects on individual species or related groups of species, with little scientific or regulatory attention being given to broader community-level issues. Parente et al. (2007) suggested that the diversity of cetaceans near the Brazil coast was reduced during years with seismic surveys. However, a preliminary account of a more recent analysis suggests that the trend did not persist when additional years were considered (Britto and Silva Barreto 2009).

Given the many uncertainties in predicting the quantity and types of impacts of sound on marine mammals, it is common practice to estimate how many mammals would be present within a particular distance of human activities and/or exposed to a particular level of anthropogenic sound. In most cases, this approach likely overestimates the numbers of marine mammals that would be affected in some biologically important manner. One of the reasons for this is that the selected distances/isopleths are based on limited studies indicating that some animals exhibited short-term reactions at this distance or sound level, whereas the calculation assumes that all animals exposed to this level would react in a biologically significant manner.

The definitions of “taking” in the U.S. MMPA, and its applicability to various activities, were slightly altered in November 2003 for military and federal scientific research activities. Also, NMFS is proposing to replace current Level A and B harassment criteria with guidelines based on exposure characteristics that are specific to particular groups of mammal species and to particular sound types (NMFS 2005). Recently, a committee of specialists on noise impact issues has proposed new science-based impact criteria (Southall et al. 2007). Thus, for projects subject to U.S. jurisdiction, changes in procedures may be required in the near future.

The sound criteria used to estimate how many marine mammals might be disturbed to some biologically significant degree by seismic survey activities are primarily based on behavioral observations of a few species. Detailed studies have been done on humpback, gray, bowhead, and sperm whales, and on ringed seals. Less detailed data are available for some other species of baleen whales and small toothed whales, but for many species there are no data on responses to marine seismic surveys.

5.1 Baleen Whales

Baleen whales generally tend to avoid operating airguns, but avoidance radii are quite variable among species, locations, whale activities, oceanographic conditions affecting sound propagation, etc. (reviewed in Richardson et al. 1995; Gordon et al. 2004). Whales are often reported to show no overt reactions to pulses from large arrays of airguns at distances beyond a few kilometers, even though the airgun pulses remain well above ambient noise levels out to much longer distances. However, baleen whales exposed to strong sound pulses from airguns often react by deviating from their normal migration route and/or interrupting their feeding and moving away. Some of the major studies and reviews on this topic are Malme et al. (1984, 1985, 1988); Richardson et al. (1986, 1995, 1999); Ljungblad et al. (1988); Richardson and Malme (1993); McCauley et al. (1998, 2000a,b); Miller et al. (1999, 2005); Gordon et al. (2004); Moulton and Miller (2005); Stone and Tasker (2006); Johnson et al. (2007); Nowacek et al. (2007) and Weir (2008a). Although baleen whales often show only slight overt responses to operating airgun arrays (Stone and Tasker 2006; Weir 2008a), strong avoidance reactions by several species of mysticetes have been observed at ranges up to 6–8 km and occasionally as far as 20–30 km from the source vessel when large arrays of airguns were used. Experiments with a single airgun showed that bowhead, humpback and gray whales all showed localized avoidance to a single airgun of 20–100 in³ (Malme et al. 1984, 1985, 1986, 1988; Richardson et al. 1986; McCauley et al. 1998, 2000a,b).
Appendix A: Impacts of Airgun Sounds on Marine Mammals

Studies of gray, bowhead, and humpback whales have shown that seismic pulses with received levels of 160–170 dB re 1 \(\mu \)Pa\(_\text{rms} \) seem to cause obvious avoidance behavior in a substantial portion of the animals exposed (Richardson et al. 1995). In many areas, seismic pulses from large arrays of airguns diminish to those levels at distances ranging from 4–15 km from the source. More recent studies have shown that some species of baleen whales (bowheads and humpbacks in particular) at times show strong avoidance at received levels lower than 160–170 dB re 1 \(\mu \)Pa\(_\text{rms} \). The largest avoidance radii involved migrating bowhead whales, which avoided an operating seismic vessel by 20–30 km (Miller et al. 1999; Richardson et al. 1999). In the cases of migrating bowhead (and gray) whales, the observed changes in behavior appeared to be of little or no biological consequence to the animals—they simply avoided the sound source by displacing their migration route to varying degrees, but within the natural boundaries of the migration corridors (Malme et al. 1984; Malme and Miles 1985; Richardson et al. 1995). Feeding bowhead whales, in contrast to migrating whales, show much smaller avoidance distances (Miller et al. 2005; Harris et al. 2007), presumably because moving away from a food concentration has greater cost to the whales than does a course deviation during migration.

The following subsections provide more details on the documented responses of particular species and groups of baleen whales to marine seismic operations.

Humpback Whales.—Responses of humpback whales to seismic surveys have been studied during migration, on the summer feeding grounds, and on Angolan winter breeding grounds; there has also been discussion of effects on the Brazilian wintering grounds. McCauley et al. (1998, 2000a) studied the responses of migrating humpback whales off Western Australia to a full-scale seismic survey with a 16-airgun 2678-in\(^3\) array, and to a single 20 in\(^3\) airgun with a (horizontal) source level of 227 dB re 1 \(\mu \)Pa\(_\text{rms} \). They found that the overall distribution of humpbacks migrating through their study area was unaffected by the full-scale seismic program, although localized displacement varied with pod composition, behavior, and received sound levels. Observations were made from the seismic vessel, from which the maximum viewing distance was listed as 14 km. Avoidance reactions (course and speed changes) began at 4–5 km for traveling pods, with the closest point of approach (CPA) being 3–4 km at an estimated received level of 157–164 dB re 1 \(\mu \)Pa\(_\text{rms} \) (McCauley et al. 1998, 2000a). A greater stand-off range of 7–12 km was observed for more sensitive resting pods (cow-calf pairs; McCauley et al. 1998, 2000a). The mean received level for initial avoidance of an approaching airgun was 140 dB re 1 \(\mu \)Pa\(_\text{rms} \) for humpback pods containing females, and at the mean CPA distance the received level was 143 dB re 1 \(\mu \)Pa\(_\text{rms} \). One startle response was reported at 112 dB re 1 \(\mu \)Pa\(_\text{rms} \). The initial avoidance response generally occurred at distances of 5–8 km from the airgun array and 2 km from the single airgun. However, some individual humpback whales, especially males, approached within distances of 100–400 m, where the maximum received level was 179 dB re 1 \(\mu \)Pa\(_\text{rms} \). The McCauley et al. (1998, 2000a,b) studies show evidence of greater avoidance of seismic airgun sounds by pods with females than by other pods during humpback migration off Western Australia.

Humpback whales on their summer feeding grounds in southeast Alaska did not exhibit persistent avoidance when exposed to seismic pulses from a 1.64-L (100 in\(^3\)) airgun (Malme et al. 1985). Some humpbacks seemed “startled” at received levels of 150–169 dB re 1 \(\mu \)Pa. Malme et al. (1985) concluded that there was no clear evidence of avoidance, despite the possibility of subtle effects, at received levels up to 172 re 1 \(\mu \)Pa on an approximate rms basis.

Among wintering humpback whales off Angola (\(n = 52 \) useable groups), there were no significant differences in encounter rates (sightings/hr) when a 24-airgun array (3147 in\(^3\) or 5085 in\(^3\)) was operating vs. silent (Weir 2008a). There was also no significant difference in the mean CPA (closest observed point
of approach) distance of the humpback sightings when airguns were on vs. off (3050 m vs. 2700 m, respectively).

It has been suggested that South Atlantic humpback whales wintering off Brazil may be displaced or even strand upon exposure to seismic surveys (Engel et al. 2004). The evidence for this was circumstantial and subject to alternative explanations (IAGC 2004). Also, the evidence was not consistent with subsequent results from the same area of Brazil (Parente et al. 2006), or with direct studies of humpbacks exposed to seismic surveys in other areas and seasons (see above). After allowance for data from subsequent years, there was “no observable direct correlation” between strandings and seismic surveys (IWC 2007, p. 236).

Bowhead Whales.—Responsiveness of bowhead whales to seismic surveys can be quite variable depending on their activity (feeding vs. migrating). Bowhead whales on their summer feeding grounds in the Canadian Beaufort Sea showed no obvious reactions to pulses from seismic vessels at distances of 6–99 km and received sound levels of 107–158 dB on an approximate rms basis (Richardson et al. 1986; their general activities were indistinguishable from those of a control group. However, subtle but statistically significant changes in surfacing–respiration–dive cycles were evident upon statistical analysis. Bowheads usually did show strong avoidance responses when seismic vessels approached within a few kilometers (~3–7 km) and when received levels of airgun sounds were 152–178 dB (Richardson et al. 1986, 1995; Ljungblad et al. 1988; Miller et al. 2005). They also moved away when a single airgun fired nearby (Richardson et al. 1986; Ljungblad et al. 1988). In one case, bowheads engaged in near-bottom feeding began to turn away from a 30-airgun array with a source level of 248 dB re 1 \(\mu \) Pa·m at a distance of 7.5 km, and swam away when it came within ~2 km; some whales continued feeding until the vessel was 3 km away (Richardson et al. 1986). This work and subsequent summer studies in the same region by Miller et al. (2005) and Harris et al. (2007) showed that many feeding bowhead whales tend to tolerate higher sound levels than migrating bowhead whales (see below) before showing an overt change in behavior. On the summer feeding grounds, bowhead whales are often seen from the operating seismic ship, though average sighting distances tend to be larger when the airguns are operating. Similarly, preliminary analyses of recent data from the Alaskan Beaufort Sea indicate that bowheads feeding there during late summer and autumn also did not display large-scale distributional changes in relation to seismic operations (Christie et al. 2009; Koski et al. 2009). However, some individual bowheads apparently begin to react at distances a few kilometers away, beyond the distance at which observers on the ship can sight bowheads (Richardson et al. 1986; Citta et al. 2007). The feeding whales may be affected by the sounds, but the need to feed may reduce the tendency to move away until the airguns are within a few kilometers.

Migrating bowhead whales in the Alaskan Beaufort Sea seem more responsive to noise pulses from a distant seismic vessel than are summering bowheads. Bowhead whales migrating west across the Alaskan Beaufort Sea in autumn are unusually responsive, with substantial avoidance occurring out to distances of 20–30 km from a medium-sized airgun source at received sound levels of around 120–130 dB re 1 \(\mu \) Pa·m (Miller et al. 1999; Richardson et al. 1999; see also Manly et al. 2007). Those results came from 1996–98, when a partially-controlled study of the effect of Ocean Bottom Cable (OBC) seismic surveys on westward-migrating bowheads was conducted in late summer and autumn in the Alaskan Beaufort Sea. At times when the airguns were not active, many bowheads moved into the area close to the inactive seismic vessel. Avoidance of the area of seismic operations did not persist beyond 12–24 h after seismic shooting stopped. Preliminary analysis of recent data on traveling bowheads in the Alaskan Beaufort Sea also showed a stronger tendency to avoid operating airguns than was evident for feeding bowheads (Christie et al. 2009; Koski et al. 2009).
Bowhead whale calls detected in the presence and absence of airgun sounds have been studied extensively in the Beaufort Sea. Early work on the summering grounds in the Canadian Beaufort Sea showed that bowheads continue to produce calls of the usual types when exposed to airgun sounds, although numbers of calls detected may be somewhat lower in the presence of airgun pulses (Richardson et al. 1986). Studies during autumn in the Alaskan Beaufort Sea, one in 1996–1998 and another in 2007–2008, have shown that numbers of calls detected are significantly lower in the presence than in the absence of airgun pulses (Greene et al. 1999a,b; Blackwell et al. 2009a,b; Koski et al. 2009; see also Nations et al. 2009). This decrease could have resulted from movement of the whales away from the area of the seismic survey or a reduction in calling behavior, or a combination of the two. However, concurrent aerial surveys showed that there was strong avoidance of the operating airguns during the 1996–98 study, when most of the whales appeared to be migrating (Miller et al. 1999; Richardson et al. 1999). In contrast, aerial surveys during the 2007–08 study showed less consistent avoidance by the bowheads, many of which appeared to be feeding (Christie et al. 2009; Koski et al. 2009). The reduction in call detection rates during periods of airgun operation may have been more dependent on actual avoidance during the 1996–98 study and more dependent on reduced calling behavior during the 2007–08 study, but further analysis of the recent data is ongoing.

There are no data on reactions of bowhead whales to seismic surveys in winter or spring.

Gray Whales.—Malme et al. (1986, 1988) studied the responses of feeding eastern gray whales to pulses from a single 100-in³ airgun off St. Lawrence Island in the northern Bering Sea. They estimated, based on small sample sizes, that 50% of feeding gray whales stopped feeding at an average received pressure level of 173 dB re 1 µPa on an (approximate) rms basis, and that 10% of feeding whales interrupted feeding at received levels of 163 dB re 1 µPa. Malme et al. (1986) estimated that an average pressure level of 173 dB occurred at a range of 2.6–2.8 km from an airgun array with a source level of 250 dB re 1 µPapeak in the northern Bering Sea. These findings were generally consistent with the results of studies conducted on larger numbers of gray whales migrating off California (Malme et al. 1984; Malme and Miles 1985) and western Pacific gray whales feeding off Sakhalin, Russia (Würsig et al. 1999; Gailey et al. 2007; Johnson et al. 2007; Yazvenko et al. 2007a,b), along with a few data on gray whales off British Columbia (Bain and Williams 2006).

Malme and Miles (1985) concluded that, during migration off California, gray whales showed changes in swimming pattern with received levels of ~160 dB re 1 µPa and higher, on an approximate rms basis. The 50% probability of avoidance was estimated to occur at a CPA distance of 2.5 km from a 4000-in³ airgun array operating off central California. This would occur at an average received sound level of ~170 dB re 1 µPa. Some slight behavioral changes were noted when approaching gray whales reached the distances where received sound levels were 140 to 160 dB re 1 µPa, but these whales generally continued to approach (at a slight angle) until they passed the sound source at distances where received levels averaged ~170 dB re 1 µPa. Malme et al. (1984; Malme and Miles 1985).

There was no indication that western gray whales exposed to seismic noise were displaced from their overall feeding grounds near Sakhalin Island during seismic programs in 1997 (Würsig et al. 1999) and in 2001 (Johnson et al. 2007; Meier et al. 2007; Yazvenko et al. 2007a). However, there were indications of subtle behavioral effects among whales that remained in the areas exposed to airgun sounds (Würsig et al. 1999; Gailey et al. 2007; Weller et al. 2006a). Also, there was evidence of localized redistribution of some individuals within the nearshore feeding ground so as to avoid close approaches by the seismic vessel (Weller et al. 2002, 2006b; Yazvenko et al. 2007a). Despite the evidence of subtle changes in some quantitative measures of behavior and local redistribution of some individuals, there was no
apparent change in the frequency of feeding, as evident from mud plumes visible at the surface (Yazvenko et al. 2007b). The 2001 seismic program involved an unusually comprehensive combination of real-time monitoring and mitigation measures designed to avoid exposing western gray whales to received levels of sound above about 163 dB re 1 μPa (Johnson et al. 2007). The lack of strong avoidance or other strong responses was presumably in part a result of the mitigation measures. Effects probably would have been more significant without such intensive mitigation efforts.

Gray whales in British Columbia exposed to seismic survey sound levels up to ~170 dB re 1 μPa did not appear to be strongly disturbed (Bain and Williams 2006). The few whales that were observed moved away from the airguns but toward deeper water where sound levels were said to be higher due to propagation effects (Bain and Williams 2006).

Rorquals.—Blue, sei, fin, and minke whales (all of which are members of the genus *Balaenoptera*) often have been seen in areas ensonified by airgun pulses (Stone 2003; MacLean and Haley 2004; Stone and Tasker 2006), and calls from blue and fin whales have been localized in areas with airgun operations (e.g., McDonald et al. 1995; Dunn and Hernandez 2009). Sightings by observers on seismic vessels during 110 large-source seismic surveys off the U.K. from 1997 to 2000 suggest that, during times of good sightability, sighting rates for mysticetes (mainly fin and sei whales) were similar when large arrays of airguns were shooting vs. silent (Stone 2003; Stone and Tasker 2006). However, these whales tended to exhibit localized avoidance, remaining significantly further (on average) from the airgun array during seismic operations compared with non-seismic periods ($P = 0.0057$; Stone and Tasker 2006). The average CPA distances for baleen whales sighted when large airgun arrays were operating vs. silent were about 1.6 vs. 1.0 km. Baleen whales, as a group, were more often oriented away from the vessel while a large airgun array was shooting compared with periods of no shooting ($P < 0.05$; Stone and Tasker 2006). In addition, fin/sei whales were less likely to remain submerged during periods of seismic shooting (Stone 2003).

In a study off Nova Scotia, Moulton and Miller (2005) found little difference in sighting rates (after accounting for water depth) and initial average sighting distances of balaenopterid whales when airguns were operating (mean = 1324 m) vs. silent (mean = 1303 m). However, there were indications that these whales were more likely to be moving away when seen during airgun operations. Baleen whales at the average sighting distance during airgun operations would have been exposed to sound levels (via direct path) of about 169 dB re 1 μPa (Moulton and Miller 2005). Similarly, ship-based monitoring studies of blue, fin, sei and minke whales offshore of Newfoundland (Orphan Basin and Laurentian Sub-basin) found no more than small differences in sighting rates and swim directions during seismic vs. non-seismic periods (Moulton et al. 2005, 2006a,b). Analyses of CPA data yielded variable results. The authors of the Newfoundland reports concluded that, based on observations from the seismic vessel, some mysticetes exhibited localized avoidance of seismic operations (Moulton et al. 2005, 2006a).

Minke whales have occasionally been observed to approach active airgun arrays where received sound levels were estimated to be near 170–180 dB re 1 μPa (McLean and Haley 2004).

6 The CPA of baleen whales sighted from the seismic vessels was, on average, significantly closer during non-seismic periods vs. seismic periods in 2004 in the Orphan Basin (means 1526 m vs. 2316 m, respectively; Moulton et al. 2005). In contrast, mean distances without vs. with seismic did not differ significantly in 2005 in either the Orphan Basin (means 973 m vs. 832 m, respectively; Moulton et al. 2006a) or in the Laurentian Sub-basin (means 1928 m vs. 1650 m, respectively; Moulton et al. 2006b). In both 2005 studies, mean distances were greater (though not significantly so) without seismic.
Discussion and Conclusions.—Baleen whales generally tend to avoid operating airguns, but avoidance radii are quite variable. Whales are often reported to show no overt reactions to airgun pulses at distances beyond a few kilometers, even though the airgun pulses remain well above ambient noise levels out to much longer distances. However, studies done since the late 1990s of migrating humpback and migrating bowhead whales show reactions, including avoidance, that sometimes extend to greater distances than documented earlier. Avoidance distances often exceed the distances at which boat-based observers can see whales, so observations from the source vessel can be biased. Observations over broader areas may be needed to determine the range of potential effects of some large-source seismic surveys where effects on cetaceans may extend to considerable distances (Richardson et al. 1999; Bain and Williams 2006; Moore and Angliss 2006). Longer-range observations, when required, can sometimes be obtained via systematic aerial surveys or aircraft-based observations of behavior (e.g., Richardson et al. 1986, 1999; Miller et al. 1999, 2005; Yazvenko et al. 2007a,b) or by use of observers on one or more support vessels operating in coordination with the seismic vessel (e.g., Smultea et al. 2004; Johnson et al. 2007). However, the presence of other vessels near the source vessel can, at least at times, reduce sightability of cetaceans from the source vessel (Beland et al. 2009), thus complicating interpretation of sighting data.

Some baleen whales show considerable tolerance of seismic pulses. However, when the pulses are strong enough, avoidance or other behavioral changes become evident. Because the responses become less obvious with diminishing received sound level, it has been difficult to determine the maximum distance (or minimum received sound level) at which reactions to seismic become evident and, hence, how many whales are affected.

Studies of gray, bowhead, and humpback whales have determined that received levels of pulses in the 160–170 dB re 1 \(\mu \text{Pa}_{\text{rms}} \) range seem to cause obvious avoidance behavior in a substantial fraction of the animals exposed. In many areas, seismic pulses diminish to these levels at distances ranging from 4 to 15 km from the source. A substantial proportion of the baleen whales within such distances may show avoidance or other strong disturbance reactions to the operating airgun array. However, in other situations, various mysticetes tolerate exposure to full-scale airgun arrays operating at even closer distances, with only localized avoidance and minor changes in activities. At the other extreme, in migrating bowhead whales, avoidance often extends to considerably larger distances (20–30 km) and lower received sound levels (120–130 dB re 1 \(\mu \text{Pa}_{\text{rms}} \)). Also, even in cases where there is no conspicuous avoidance or change in activity upon exposure to sound pulses from distant seismic operations, there are sometimes subtle changes in behavior (e.g., surfacing–respiration–dive cycles) that are only evident through detailed statistical analysis (e.g., Richardson et al. 1986; Gailey et al. 2007).

Mitigation measures for seismic surveys, especially nighttime seismic surveys, typically assume that many marine mammals (at least baleen whales) tend to avoid approaching airguns, or the seismic vessel itself, before being exposed to levels high enough for there to be any possibility of injury. This assumes that the ramp-up (soft-start) procedure is used when commencing airgun operations, to give whales near the vessel the opportunity to move away before they are exposed to sound levels that might be strong enough to elicit TTS. As noted above, single-airgun experiments with three species of baleen whales show that those species typically do tend to move away when a single airgun starts firing nearby, which simulates the onset of a ramp up. The three species that showed avoidance when exposed to the onset of pulses from a single airgun were gray whales (Malme et al. 1984, 1986, 1988); bowhead whales (Richardson et al. 1986; Ljungblad et al. 1988); and humpback whales (Malme et al. 1985; McCauley et al. 1998, 2000a,b). Since startup of a single airgun is equivalent to the start of a ramp-up (=soft start), this strongly suggests that many baleen whales will begin to move away during the initial stages of a ramp-up.
Data on short-term reactions by cetaceans to impulsive noises are not necessarily indicative of long-term or biologically significant effects. It is not known whether impulsive sounds affect reproductive rate or distribution and habitat use in subsequent days or years. However, gray whales have continued to migrate annually along the west coast of North America despite intermittent seismic exploration (and much ship traffic) in that area for decades (Appendix A in Malme et al. 1984; Richardson et al. 1995), and there has been a substantial increase in the population over recent decades (Angliss and Outlaw 2008). The western Pacific gray whale population did not seem affected by a seismic survey in its feeding ground during a prior year (Johnson et al. 2007). Similarly, bowhead whales have continued to travel to the eastern Beaufort Sea each summer despite seismic exploration in their summer and autumn range for many years (Richardson et al. 1987), and their numbers have increased notably (Angliss and Outlaw 2008). Bowheads also have been observed over periods of days or weeks in areas ensonified repeatedly by seismic pulses (Richardson et al. 1987; Harris et al. 2007). However, it is generally not known whether the same individual bowheads were involved in these repeated observations (within and between years) in strongly ensonified areas. In any event, in the absence of some unusual circumstances, the history of coexistence between seismic surveys and baleen whales suggests that brief exposures to sound pulses from any single seismic survey are unlikely to result in prolonged effects.

5.2 Toothed Whales

Little systematic information is available about reactions of toothed whales to noise pulses. Few studies similar to the more extensive baleen whale/seismic pulse work summarized above have been reported for toothed whales. However, there are recent systematic data on sperm whales (e.g., Gordon et al. 2006; Madsen et al. 2006; Winsor and Mate 2006; Jochens et al. 2008; Miller et al. 2009). There is also an increasing amount of information about responses of various odontocetes to seismic surveys based on monitoring studies (e.g., Stone 2003; Smultea et al. 2004; Moulton and Miller 2005; Bain and Williams 2006; Holst et al. 2006; Stone and Tasker 2006; Potter et al. 2007; Hauser et al. 2008; Holst and Smultea 2008; Weir 2008a; Barkaszi et al. 2009; Richardson et al. 2009).

Delphinids (Dolphins and similar) and Monodontids (Beluga).—Seismic operators and marine mammal observers on seismic vessels regularly see dolphins and other small toothed whales near operating airgun arrays, but in general there is a tendency for most delphinids to show some avoidance of operating seismic vessels (e.g., Goold 1996a,b,c; Calambokidis and Osmek 1998; Stone 2003; Moulton and Miller 2005; Holst et al. 2006; Stone and Tasker 2006; Weir 2008a; Richardson et al. 2009; see also Barkaszi et al. 2009). In most cases, the avoidance radii for delphinids appear to be small, on the order of 1 km or less, and some individuals show no apparent avoidance. Studies that have reported cases of small toothed whales close to the operating airguns include Duncan (1985), Arnold (1996), Stone (2003), and Holst et al. (2006). When a 3959 in³, 18-airgun array was firing off California, toothed whales behaved in a manner similar to that observed when the airguns were silent (Arnold 1996). Some dolphins seem to be attracted to the seismic vessel and floats, and some ride the bow wave of the seismic vessel even when a large array of airguns is firing (e.g., Moulton and Miller 2005). Nonetheless, small toothed whales more often tend to head away, or to maintain a somewhat greater distance from the vessel, when a large array of airguns is operating than when it is silent (e.g., Stone and Tasker 2006; Weir 2008a).

Weir (2008b) noted that a group of short-finned pilot whales initially showed an avoidance response to ramp up of a large airgun array, but that this response was limited in time and space. Although the ramp-up procedure is a widely-used mitigation measure, it remains uncertain how effective it is at alerting marine mammals (especially odontocetes) and causing them to move away from seismic operations (Weir 2008b).
Goold (1996a,b,c) studied the effects on common dolphins of 2D seismic surveys in the Irish Sea. Passive acoustic surveys were conducted from the “guard ship” that towed a hydrophone. The results indicated that there was a local displacement of dolphins around the seismic operation. However, observations indicated that the animals were tolerant of the sounds at distances outside a 1-km radius from the airguns (Goold 1996a). Initial reports of larger-scale displacement were later shown to represent a normal autumn migration of dolphins through the area, and were not attributable to seismic surveys (Goold 1996a,b,c).

The beluga is a species that (at least at times) shows long-distance avoidance of seismic vessels. Aerial surveys conducted in the southeastern Beaufort Sea in summer found that sighting rates of belugas were significantly lower at distances 10–20 km compared with 20–30 km from an operating airgun array (Miller et al. 2005). The low number of beluga sightings by marine mammal observers on the vessel seemed to confirm there was a strong avoidance response to the 2250 in³ airgun array. More recent seismic monitoring studies in the same area have confirmed that the apparent displacement effect on belugas extended farther than has been shown for other small odontocetes exposed to airgun pulses (e.g., Harris et al. 2007).

Observers stationed on seismic vessels operating off the U.K. from 1997 to 2000 have provided data on the occurrence and behavior of various toothed whales exposed to seismic pulses (Stone 2003; Gordon et al. 2004; Stone and Tasker 2006). Dolphins of various species often showed more evidence of avoidance of operating airgun arrays than has been reported previously for small odontocetes. Sighting rates of white-sided dolphins, white-beaked dolphins, *Lagenorhynchus* spp., and all small odontocetes combined were significantly lower during periods when large-volume⁷ airgun arrays were shooting. Except for the pilot whale and bottlenose dolphin, CPA distances for all of the small odontocete species tested, including killer whales, were significantly farther from large airgun arrays during periods of shooting compared with periods of no shooting. Pilot whales were less responsive than other small odontocetes in the presence of seismic surveys (Stone and Tasker 2006). For small odontocetes as a group, and most individual species, orientations differed between times when large airgun arrays were operating vs. silent, with significantly fewer animals traveling towards and/or more traveling away from the vessel during shooting (Stone and Tasker 2006). Observers’ records suggested that fewer cetaceans were feeding and fewer were interacting with the survey vessel (e.g., bow-riding) during periods with airguns operating, and small odontocetes tended to swim faster during periods of shooting (Stone and Tasker 2006). For most types of small odontocetes sighted by observers on seismic vessels, the median CPA distance was ≥0.5 km larger during airgun operations (Stone and Tasker 2006). Killer whales appeared to be more tolerant of seismic shooting in deeper waters.

Data collected during seismic operations in the Gulf of Mexico and off Central America show similar patterns. A summary of vessel-based monitoring data from the Gulf of Mexico during 2003–2008 showed that delphinids were generally seen farther from the vessel during seismic than during non-seismic periods (based on Barkaszi et al. 2009, excluding sperm whales). Similarly, during two NSF-funded L-DEO seismic surveys that used a large 20-airgun array (~7000 in³), sighting rates of delphinids were lower and initial sighting distances were farther away from the vessel during seismic than non-seismic periods (Smultea et al. 2004; Holst et al. 2005a, 2006; Richardson et al. 2009). Monitoring results during a seismic survey in the Southeast Caribbean showed that the mean CPA of delphinids was 991 m during seismic operations vs. 172 m when the airguns were not operational (Smultea et al. 2004).

⁷ Large volume means at least 1300 in³, with most (79%) at least 3000 in³.
Surprisingly, nearly all acoustic detections via a towed passive acoustic monitoring (PAM) array, including both delphinids and sperm whales, were made when the airguns were operating (Smultea et al. 2004). Although the number of sightings during monitoring of a seismic survey off the Yucatán Peninsula, Mexico, was small ($n = 19$), the results showed that the mean CPA distance of delphinids there was 472 m during seismic operations vs. 178 m when the airguns were silent (Holst et al. 2005a). The acoustic detection rates were nearly 5 times higher during non-seismic compared with seismic operations (Holst et al. 2005a).

For two additional NSF-funded L-DEO seismic surveys in the Eastern Tropical Pacific, both using a large 36-airgun array (~6600 in3), the results are less easily interpreted (Richardson et al. 2009). During both surveys, the delphinid detection rate was lower during seismic than during non-seismic periods, as found in various other projects, but the mean CPA distance of delphinids was closer (not farther) during seismic periods (Hauser et al. 2008; Holst and Smultea 2008).

During two seismic surveys off Newfoundland and Labrador in 2004–05, dolphin sighting rates were lower during seismic periods than during non-seismic periods after taking temporal factors into account, although the difference was statistically significant only in 2004 (Moulton et al. 2005, 2006a). In 2005, the mean CPA distance of dolphins was significantly farther during seismic periods (807 vs. 652 m); in 2004, the corresponding difference was not significant.

Among Atlantic spotted dolphins off Angola ($n = 16$ useable groups), marked short-term and localized displacement was found in response to seismic operations conducted with a 24-airgun array (3147 in3 or 5085 in3) (Weir 2008a). Sample sizes were low, but CPA distances of dolphin groups were significantly larger when airguns were on (mean 1080 m) vs. off (mean 209 m). No Atlantic spotted dolphins were seen within 500 m of the airguns when they were operating, whereas all sightings when airguns were silent occurred within 500 m, including the only recorded “positive approach” behaviors.

Reactions of toothed whales to a single airgun or other small airgun source are not well documented, but tend to be less substantial than reactions to large airgun arrays (e.g., Stone 2003; Stone and Tasker 2006). During 91 site surveys off the U.K. in 1997–2000, sighting rates of all small odontocetes combined were significantly lower during periods the low-volume8 airgun sources were operating, and effects on orientation were evident for all species and groups tested (Stone and Tasker 2006). Results from four NSF-funded L-DEO seismic surveys using small arrays (up to 3 GI guns and 315 in3) were inconclusive. During surveys in the Eastern Tropical Pacific (Holst et al. 2005b) and in the Northwest Atlantic (Haley and Koski 2004), detection rates were slightly lower during seismic compared to non-seismic periods. However, mean CPAs were closer during seismic operations during one cruise (Holst et al. 2005b), and greater during the other cruise (Haley and Koski 2004). Interpretation of the data was confounded by the fact that survey effort and/or number of sightings during non-seismic periods during both surveys was small. Results from another two small-array surveys were even more variable (MacLean and Koski 2005; Smultea and Holst 2008).

Captive bottlenose dolphins and beluga whales exhibited changes in behavior when exposed to strong pulsed sounds similar in duration to those typically used in seismic surveys (Finneran et al. 2000, 2002, 2005). Finneran et al. (2002) exposed a captive bottlenose dolphin and beluga to single impulses from a water gun (80 in3). As compared with airgun pulses, water gun impulses were expected to contain proportionally more energy at higher frequencies because there is no significant gas-filled bubble, and

8 For low volume arrays, maximum volume was 820 in3, with most (87%) ≤ 180 in3.
Odontocete responses (or lack of responses) to noise pulses from underwater explosions (as opposed to airgun pulses) may be indicative of odontocete responses to very strong noise pulses. During the 1950s, small explosive charges were dropped into an Alaskan river in attempts to scare belugas away from salmon. Success was limited (Fish and Vania 1971; Frost et al. 1984). Small explosive charges were “not always effective” in moving bottlenose dolphins away from sites in the Gulf of Mexico where larger demolition blasts were about to occur (Klima et al. 1988). Odontocetes may be attracted to fish killed by explosions, and thus attracted rather than repelled by “scare” charges. Captive false killer whales showed no obvious reaction to single noise pulses from small (10 g) charges; the received level was ~185 dB re 1 μPa (Akamatsu et al. 1993). Jefferson and Curry (1994) reviewed several additional studies that found limited or no effects of noise pulses from small explosive charges on killer whales and other odontocetes. Aside from the potential for causing auditory impairment (see below), the tolerance to these charges may indicate a lack of effect, or the failure to move away may simply indicate a stronger desire to feed, regardless of circumstances.

Phocoenids (Porpoises).—Porpoises, like delphinids, show variable reactions to seismic operations, and reactions apparently depend on species. The limited available data suggest that harbor porpoises show stronger avoidance of seismic operations than Dall’s porpoises (Stone 2003; MacLean and Koski 2005; Bain and Williams 2006). In Washington State waters, the harbor porpoise—despite being considered a high-frequency specialist—appeared to be the species affected by the lowest received level of airgun sound (<145 dB re 1 μPa at a distance >70 km; Bain and Williams 2006). Similarly, during seismic surveys with large airgun arrays off the U.K. in 1997–2000, there were significant differences in directions of travel by harbor porpoises during periods when the airguns were shooting vs. silent (Stone 2003; Stone and Tasker 2006). A captive harbor porpoise exposed to single sound pulses from a small airgun showed aversive behavior upon receipt of a pulse with received level above 174 dB re 1 μPa or SEL >145 dB re 1 μPa s (Lucke et al. 2009). In contrast, Dall’s porpoises seem relatively tolerant of airgun operations (MacLean and Koski 2005; Bain and Williams 2006), although they too have been observed to avoid large arrays of operating airguns (Calambokidis and Osmeñ 1998; Bain and Williams 2006). The apparent tendency for greater responsiveness in the harbor porpoise is consistent with their relative responsiveness to boat traffic and some other acoustic sources (Richardson et al. 1995; Southall et al. 2007).

Beaked Whales.—There are almost no specific data on the behavioral reactions of beaked whales to seismic surveys. Most beaked whales tend to avoid approaching vessels of other types (e.g., Würsig et al. 1998). They may also dive for an extended period when approached by a vessel (e.g., Kasuya 1986), although it is uncertain how much longer such dives may be as compared to dives by undisturbed beaked whales, which also are often quite long (Baird et al. 2006; Tyack et al. 2006b). In any event, it is likely that most beaked whales would also show strong avoidance of an approaching seismic vessel, regardless of whether or not the airguns are operating. However, this has not been documented explicitly. Northern bottlenose whales sometimes are quite tolerant of slow-moving vessels not emitting airgun pulses (Reeves...
et al. 1993; Hooker et al. 2001). The few detections (acoustic or visual) of northern bottlenose whales from seismic vessels during recent seismic surveys off Nova Scotia have been during times when the airguns were shut down; no detections were reported when the airguns were operating (Moulton and Miller 2005; Potter et al. 2007). However, other visual and acoustic studies indicated that some northern bottlenose whales remained in the general area and continued to produce high-frequency clicks when exposed to sound pulses from distant seismic surveys (Gosselin and Lawson 2004; Laurinolli and Cochran 2005; Simard et al. 2005).

There are increasing indications that some beaked whales tend to strand when military exercises involving mid-frequency sonar operation are ongoing nearby (e.g., Simmonds and Lopez-Jurado 1991; Frantzis 1998; NOAA and USN 2001; Jepson et al. 2003; Barlow and Gisiner 2006; see also the “Strandings and Mortality” subsection, later). These strandings are apparently at least in part a disturbance response, although auditory or other injuries or other physiological effects may also be a factor. Whether beaked whales would ever react similarly to seismic surveys is unknown. Seismic survey sounds are quite different from those of the sonars in operation during the above-cited incidents. No conclusive link has been established between seismic surveys and beaked whale strandings. There was a stranding of two Cuvier’s beaked whales in the Gulf of California (Mexico) in September 2002 when the R/V Maurice Ewing was conducting a seismic survey in the general area (e.g., Malakoff 2002; Hildebrand 2005). However, NMFS did not establish a cause and effect relationship between this stranding and the seismic survey activities (Hogarth 2002). Cox et al. (2006) noted the “lack of knowledge regarding the temporal and spatial correlation between the [stranding] and the sound source”. Hildebrand (2005) illustrated the approximate temporal-spatial relationships between the stranding and the Ewing’s tracks, but the time of the stranding was not known with sufficient precision for accurate determination of the CPA distance of the whales to the Ewing. Another stranding of Cuvier’s beaked whales in the Galápagos occurred during a seismic survey in April 2000; however “There is no obvious mechanism that bridges the distance between this source and the stranding site” (Gentry [ed.] 2002).

Sperm Whales.—All three species of sperm whales have been reported to show avoidance reactions to standard vessels not emitting airgun sounds (e.g., Richardson et al. 1995; Würsig et al. 1998; McAlpine 2002; Baird 2005). However, most studies of the sperm whale *Physeter macrocephalus* exposed to airgun sounds indicate that this species shows considerable tolerance of airgun pulses. The whales usually do not show strong avoidance (i.e., they do not leave the area) and they continue to call.

There were some early and limited observations suggesting that sperm whales in the Southern Ocean ceased calling during some (but not all) times when exposed to weak noise pulses from extremely distant (>300 km) seismic exploration. However, other operations in the area could also have been a factor (Bowles et al. 1994). This “quieting” was suspected to represent a disturbance effect, in part because sperm whales exposed to pulsed man-made sounds at higher frequencies often cease calling (Watkins and Schevill 1975; Watkins et al. 1985). Also, there was an early preliminary account of possible long-range avoidance of seismic vessels by sperm whales in the Gulf of Mexico (Mate et al. 1994). However, this has not been substantiated by subsequent more detailed work in that area (Gordon et al. 2006; Winsor and Mate 2006; Jochens et al. 2008; Miller et al. 2009).

Recent and more extensive data from vessel-based monitoring programs in U.K. waters and off Newfoundland and Angola suggest that sperm whales in those areas show little evidence of avoidance or behavioral disruption in the presence of operating seismic vessels (Stone 2003; Stone and Tasker 2006; Moulton et al. 2005, 2006a; Weir 2008a). Among sperm whales off Angola (n = 96 useable groups), there were no significant differences in encounter rates (sightings/hr) when a 24-airgun array (3147 in3 or
5085 in³) was operating vs. silent (Weir 2008a). There was also no significant difference in the CPA distances of the sperm whale sightings when airguns were on vs. off (means 3039 m vs. 2594 m, respectively). Encounter rate tended to increase over the 10-month duration of the seismic survey. These types of observations are difficult to interpret because the observers are stationed on or near the seismic vessel, and may underestimate reactions by some of the more responsive animals, which may be beyond visual range. However, these results do seem to show considerable tolerance of seismic surveys by at least some sperm whales. Also, a study off northern Norway indicated that sperm whales continued to call when exposed to pulses from a distant seismic vessel. Received levels of the seismic pulses were up to 146 dB re 1 μPap-p (Madsen et al. 2002).

Similarly, a study conducted off Nova Scotia that analyzed recordings of sperm whale vocalizations at various distances from an active seismic program did not detect any obvious changes in the distribution or behavior of sperm whales (McCall Howard 1999).

Sightings of sperm whales by observers on seismic vessels operating in the Gulf of Mexico during 2003–2008 were at very similar average distances regardless of the airgun operating conditions (Barkaszi et al. 2009). For example, the mean sighting distance was 1839 m when the airgun array was in full operation (n=612) vs. 1960 m when all airguns were off (n=66).

A controlled study of the reactions of tagged sperm whales to seismic surveys was done recently in the Gulf of Mexico—the Sperm Whale Seismic Study or SWSS (Gordon et al. 2006; Madsen et al. 2006; Winsor and Mate 2006; Jochens et al. 2008; Miller et al. 2009). During SWSS, D-tags (Johnson and Tyack 2003) were used to record the movement and acoustic exposure of eight foraging sperm whales before, during, and after controlled exposures to sound from airgun arrays (Jochens et al. 2008; Miller et al. 2009). Whales were exposed to maximum received sound levels of 111–147 dB re 1 μPapms (131–162 dB re 1 μPap-pk) at ranges of ~1.4–12.8 km from the sound source (Miller et al. 2009). Although the tagged whales showed no discernible horizontal avoidance, some whales showed changes in diving and foraging behavior during full-array exposure, possibly indicative of subtle negative effects on foraging (Jochens et al. 2008; Miller et al. 2009; Tyack 2009). Two indications of foraging that they studied were oscillations in pitch and occurrence of echolocation buzzes, both of which tend to occur when a sperm whale closes-in on prey. "Oscillations in pitch generated by swimming movements during foraging dives were on average 6% lower during exposure than during the immediately following post-exposure period, with all 7 foraging whales exhibiting less pitching (P = 0.014). Buzz rates, a proxy for attempts to capture prey, were 19% lower during exposure…” (Miller et al. 2009). Although the latter difference was not statistically significant (P = 0.141), the percentage difference in buzz rate during exposure vs. post-exposure conditions appeared to be strongly correlated with airgun-whale distance (Miller et al. 2009: Fig. 5; Tyack 2009).

Discussion and Conclusions.—Dolphins and porpoises are often seen by observers on active seismic vessels, occasionally at close distances (e.g., bow riding). However, some studies near the U.K., Newfoundland and Angola, in the Gulf of Mexico, and off Central America have shown localized avoidance. Also, belugas summering in the Canadian Beaufort Sea showed larger-scale avoidance, tending to avoid waters out to 10–20 km from operating seismic vessels. In contrast, recent studies show little evidence of conspicuous reactions by sperm whales to airgun pulses, contrary to earlier indications.

There are almost no specific data on responses of beaked whales to seismic surveys, but it is likely that most if not all species show strong avoidance. There is increasing evidence that some beaked whales may strand after exposure to strong noise from sonars. Whether they ever do so in response to seismic
survey noise is unknown. Northern bottlenose whales seem to continue to call when exposed to pulses from distant seismic vessels.

Overall, odontocete reactions to large arrays of airguns are variable and, at least for delphinids and some porpoises, seem to be confined to a smaller radius than has been observed for some mysticetes. However, other data suggest that some odontocetes species, including belugas and harbor porpoises, may be more responsive than might be expected given their poor low-frequency hearing. Reactions at longer distances may be particularly likely when sound propagation conditions are conducive to transmission of the higher-frequency components of airgun sound to the animals’ location (DeRuiter et al. 2006; Goold and Coates 2006; Tyack et al. 2006a; Potter et al. 2007).

For delphinids, and possibly the Dall’s porpoise, the available data suggest that a ≥ 170 dB re 1 μP$_{rms}$ disturbance criterion (rather than ≥ 160 dB) would be appropriate. With a medium-to-large airgun array, received levels typically diminish to 170 dB within 1–4 km, whereas levels typically remain above 160 dB out to 4–15 km (e.g., Tolstoy et al. 2009). Reaction distances for delphinids are more consistent with the typical 170 dB re 1 μP$_{rms}$ distances. The 160 dB (rms) criterion currently applied by NMFS was developed based primarily on data from gray and bowhead whales. Avoidance distances for delphinids and Dall’s porpoises tend to be shorter than for those two mysticete species. For delphinids and Dall’s porpoises, there is no indication of strong avoidance or other disruption of behavior at distances beyond those where received levels would be ~ 170 dB re 1 μP$_{rms}$.

5.3 Pinnipeds

Few studies of the reactions of pinnipeds to noise from open-water seismic exploration have been published (for review of the early literature, see Richardson et al. 1995). However, pinnipeds have been observed during a number of seismic monitoring studies. Monitoring in the Beaufort Sea during 1996–2002 provided a substantial amount of information on avoidance responses (or lack thereof) and associated behavior. Additional monitoring of that type has been done in the Beaufort and Chukchi Seas in 2006–2009. Pinnipeds exposed to seismic surveys have also been observed during seismic surveys along the U.S. west coast. Some limited data are available on physiological responses of pinnipeds exposed to seismic sound, as studied with the aid of radio telemetry. Also, there are data on the reactions of pinnipeds to various other related types of impulsive sounds.

Early observations provided considerable evidence that pinnipeds are often quite tolerant of strong pulsed sounds. During seismic exploration off Nova Scotia, gray seals exposed to noise from airguns and linear explosive charges reportedly did not react strongly (J. Parsons in Greene et al. 1985). An airgun caused an initial startle reaction among South African fur seals but was ineffective in scaring them away from fishing gear (Anonymous 1975). Pinnipeds in both water and air sometimes tolerate strong noise pulses from non-explosive and explosive scaring devices, especially if attracted to the area for feeding or reproduction (Mate and Harvey 1987; Reeves et al. 1996). Thus, pinnipeds are expected to be rather tolerant of, or to habituate to, repeated underwater sounds from distant seismic sources, at least when the animals are strongly attracted to the area.

In the U.K., a radio-telemetry study demonstrated short-term changes in the behavior of harbor (=common) and gray seals exposed to airgun pulses (Thompson et al. 1998). Harbor seals were exposed to seismic pulses from a 90-in3 array (3 \times 30 in3 airguns), and behavioral responses differed among individuals. One harbor seal avoided the array at distances up to 2.5 km from the source and only resumed foraging dives after seismic stopped. Another harbor seal exposed to the same small airgun array showed no detectable behavioral response, even when the array was within 500 m. Gray seals
exposed to a single 10-in3 airgun showed an avoidance reaction: they moved away from the source, increased swim speed and/or dive duration, and switched from foraging dives to predominantly transit dives. These effects appeared to be short-term as gray seals either remained in, or returned at least once to, the foraging area where they had been exposed to seismic pulses. These results suggest that there are interspecific as well as individual differences in seal responses to seismic sounds.

Off California, visual observations from a seismic vessel showed that California sea lions “typically ignored the vessel and array. When [they] displayed behavior modifications, they often appeared to be reacting visually to the sight of the towed array. At times, California sea lions were attracted to the array, even when it was on. At other times, these animals would appear to be actively avoiding the vessel and array” (Arnold 1996). In Puget Sound, sighting distances for harbor seals and California sea lions tended to be larger when airguns were operating; both species tended to orient away whether or not the airguns were firing (Calambokidis and Osmek 1998). Bain and Williams (2006) also stated that their small sample of harbor seals and sea lions tended to orient and/or move away upon exposure to sounds from a large airgun array.

Monitoring work in the Alaskan Beaufort Sea during 1996–2001 provided considerable information regarding the behavior of seals exposed to seismic pulses (Harris et al. 2001; Moulton and Lawson 2002). Those seismic projects usually involved arrays of 6–16 airguns with total volumes 560–1500 in3. Subsequent monitoring work in the Canadian Beaufort Sea in 2001–2002, with a somewhat larger airgun system (24 airguns, 2250 in3), provided similar results (Miller et al. 2005). The combined results suggest that some seals avoid the immediate area around seismic vessels. In most survey years, ringed seal sightings averaged somewhat farther away from the seismic vessel when the airguns were operating than when they were not (Moulton and Lawson 2002). Also, seal sighting rates at the water surface were lower during airgun array operations than during no-airgun periods in each survey year except 1997. However, the avoidance movements were relatively small, on the order of 100 m to (at most) a few hundreds of meters, and many seals remained within 100–200 m of the trackline as the operating airgun array passed by.

The operation of the airgun array had minor and variable effects on the behavior of seals visible at the surface within a few hundred meters of the airguns (Moulton and Lawson 2002). The behavioral data indicated that some seals were more likely to swim away from the source vessel during periods of airgun operations and more likely to swim towards or parallel to the vessel during non-seismic periods. No consistent relationship was observed between exposure to airgun noise and proportions of seals engaged in other recognizable behaviors, e.g., “looked” and “dove”. Such a relationship might have occurred if seals seek to reduce exposure to strong seismic pulses, given the reduced airgun noise levels close to the surface where “looking” occurs (Moulton and Lawson 2002).

Monitoring results from the Canadian Beaufort Sea during 2001–2002 were more variable (Miller et al. 2005). During 2001, sighting rates of seals (mostly ringed seals) were similar during all seismic states, including periods without airgun operations. However, seals tended to be seen closer to the vessel during non-seismic than seismic periods. In contrast, during 2002, sighting rates of seals were higher during non-seismic periods than seismic operations, and seals were seen farther from the vessel during non-seismic compared to seismic activity (a marginally significant result). The combined data for both years showed that sighting rates were higher during non-seismic periods compared to seismic periods, and that sighting distances were similar during both seismic states. Miller et al. (2005) concluded that seals showed very limited avoidance to the operating airgun array.
Vessel-based monitoring also took place in the Alaskan Chukchi and Beaufort seas during 2006–2008 (Reiser et al. 2009). Observers on the seismic vessels saw phocid seals less frequently while airguns were operating than when airguns were silent. Also, during airgun operations, those observers saw seals less frequently than did observers on nearby vessels without airguns. Finally, observers on the latter “no-airgun” vessels saw seals more often when the nearby source vessels’ airguns were operating than when they were silent. All of these observations are indicative of a tendency for phocid seals to exhibit localized avoidance of the seismic source vessel when airguns are firing (Reiser et al. 2009).

In summary, visual monitoring from seismic vessels has shown only slight (if any) avoidance of airguns by pinnipeds, and only slight (if any) changes in behavior. These studies show that many pinnipeds do not avoid the area within a few hundred meters of an operating airgun array. However, based on the studies with large sample size, or observations from a separate monitoring vessel, or radio telemetry, it is apparent that some phocid seals do show localized avoidance of operating airguns. The limited nature of this tendency for avoidance is a concern. It suggests that one cannot rely on pinnipeds to move away, or to move very far away, before received levels of sound from an approaching seismic survey vessel approach those that may cause hearing impairment (see below).

5.4 Sirenians, Sea Otter and Polar Bear

We are not aware of any information on the reactions of sirenians to airgun sounds.

Behavior of sea otters along the California coast was monitored by Riedman (1983, 1984) while they were exposed to a single 100 in³ airgun and a 4089 in³ airgun array. No disturbance reactions were evident when the airgun array was as close as 0.9 km. Sea otters also did not respond noticeably to the single airgun. These results suggest that sea otters may be less responsive to marine seismic pulses than some other marine mammals, such as mysticetes and odontocetes (summarized above). Also, sea otters spend a great deal of time at the surface feeding and grooming (Riedman 1983, 1984). While at the surface, the potential noise exposure of sea otters would be much reduced by pressure-release and interference (Lloyd’s mirror) effects at the surface (Greene and Richardson 1988; Richardson et al. 1995).

Airgun effects on polar bears have not been studied. However, polar bears on the ice would be largely unaffected by underwater sound. Sound levels received by polar bears in the water would be attenuated because polar bears generally do not dive much below the surface and received levels of airgun sounds are reduced near the surface because of the aforementioned pressure release and interference effects at the water’s surface.

6. Hearing Impairment and Other Physical Effects of Seismic Surveys

Temporary or permanent hearing impairment is a possibility when marine mammals are exposed to very strong sounds. Temporary threshold shift (TTS) has been demonstrated and studied in certain captive odontocetes and pinnipeds exposed to strong sounds (reviewed in Southall et al. 2007). However, there has been no specific documentation of TTS let alone permanent hearing damage, i.e. permanent threshold shift (PTS), in free-ranging marine mammals exposed to sequences of airgun pulses during realistic field conditions. Current NMFS policy regarding exposure of marine mammals to high-level sounds is that cetaceans and pinnipeds should not be exposed to impulsive sounds ≥180 and 190 dB re 1 μPa rms, respectively (NMFS 2000). Those criteria have been used in establishing the safety (=shutdown) radii planned for numerous seismic surveys conducted under U.S. jurisdiction. However, those criteria were established before there was any information about the minimum received levels of sounds necessary to cause auditory impairment in marine mammals. As discussed below,
Appendix A: Impacts of Airgun Sounds on Marine Mammals

- the 180-dB criterion for cetaceans is probably quite precautionary, i.e., lower than necessary to avoid temporary auditory impairment let alone permanent auditory injury, at least for delphinids.
- TTS is not injury and does not constitute “Level A harassment” in U.S. MMPA terminology.
- the minimum sound level necessary to cause permanent hearing impairment ("Level A harassment") is higher, by a variable and generally unknown amount, than the level that induces barely-detectable TTS.
- the level associated with the onset of TTS is often considered to be a level below which there is no danger of permanent damage. The actual PTS threshold is likely to be well above the level causing onset of TTS (Southall et al. 2007).

Recommendations for new science-based noise exposure criteria for marine mammals, frequency-weighting procedures, and related matters were published recently (Southall et al. 2007). Those recommendations have not, as of late 2009, been formally adopted by NMFS for use in regulatory processes and during mitigation programs associated with seismic surveys. However, some aspects of the recommendations have been taken into account in certain EISs and small-take authorizations. NMFS has indicated that it may issue new noise exposure criteria for marine mammals that account for the now-available scientific data on TTS, the expected offset between the TTS and PTS thresholds, differences in the acoustic frequencies to which different marine mammal groups are sensitive, and other relevant factors. Preliminary information about possible changes in the regulatory and mitigation requirements, and about the possible structure of new criteria, was given by Wieting (2004) and NMFS (2005).

Several aspects of the monitoring and mitigation measures that are now often implemented during seismic survey projects are designed to detect marine mammals occurring near the airgun array, and to avoid exposing them to sound pulses that might, at least in theory, cause hearing impairment. In addition, many cetaceans and (to a limited degree) pinnipeds show some avoidance of the area where received levels of airgun sound are high enough such that hearing impairment could potentially occur. In those cases, the avoidance responses of the animals themselves will reduce or (most likely) avoid the possibility of hearing impairment.

Non-auditory physical effects may also occur in marine mammals exposed to strong underwater pulsed sound. Possible types of non-auditory physiological effects or injuries that might (in theory) occur include stress, neurological effects, bubble formation, and other types of organ or tissue damage. It is possible that some marine mammal species (i.e., beaked whales) may be especially susceptible to injury and/or stranding when exposed to strong pulsed sounds. The following subsections summarize available data on noise-induced hearing impairment and non-auditory physical effects.

6.1 Temporary Threshold Shift (TTS)

TTS is the mildest form of hearing impairment that can occur during exposure to a strong sound (Kryter 1985). While experiencing TTS, the hearing threshold rises and a sound must be stronger in order to be heard. It is a temporary phenomenon, and (especially when mild) is not considered to represent physical damage or “injury” (Southall et al. 2007). Rather, the onset of TTS is an indicator that, if the animal is exposed to higher levels of that sound, physical damage is ultimately a possibility.

The magnitude of TTS depends on the level and duration of noise exposure, and to some degree on frequency, among other considerations (Kryter 1985; Richardson et al. 1995; Southall et al. 2007). For sound exposures at or somewhat above the TTS threshold, hearing sensitivity recovers rapidly after exposure to the noise ends. In terrestrial mammals, TTS can last from minutes or hours to (in cases of
strong TTS) days. Only a few data have been obtained on sound levels and durations necessary to elicit mild TTS in marine mammals (none in mysticetes), and none of the published data concern TTS elicited by exposure to multiple pulses of sound during operational seismic surveys (Southall et al. 2007).

Toothed Whales.—There are empirical data on the sound exposures that elicit onset of TTS in captive bottlenose dolphins and belugas. The majority of these data concern non-impulse sound, but there are some limited published data concerning TTS onset upon exposure to a single pulse of sound from a watergun (Finneran et al. 2002). A detailed review of all TTS data from marine mammals can be found in Southall et al. (2007). The following summarizes some of the key results from odontocetes.

Recent information corroborates earlier expectations that the effect of exposure to strong transient sounds is closely related to the total amount of acoustic energy that is received. Finneran et al. (2005) examined the effects of tone duration on TTS in bottlenose dolphins. Bottlenose dolphins were exposed to 3 kHz tones (non-impulsive) for periods of 1, 2, 4 or 8 s, with hearing tested at 4.5 kHz. For 1-s exposures, TTS occurred with SELs of 197 dB, and for exposures >1 s, SEL >195 dB resulted in TTS (SEL is equivalent to energy flux, in dB re 1 μPa²·s). At an SEL of 195 dB, the mean TTS (4 min after exposure) was 2.8 dB. Finneran et al. (2005) suggested that an SEL of 195 dB is the likely threshold for the onset of TTS in dolphins and belugas exposed to tones of durations 1–8 s (i.e., TTS onset occurs at a near-constant SEL, independent of exposure duration). That implies that, at least for non-impulsive tones, a doubling of exposure time results in a 3 dB lower TTS threshold.

The assumption that, in marine mammals, the occurrence and magnitude of TTS is a function of cumulative acoustic energy (SEL) is probably an oversimplification. Kastak et al. (2005) reported preliminary evidence from pinnipeds that, for prolonged non-impulse noise, higher SELs were required to elicit a given TTS if exposure duration was short than if it was longer, i.e., the results were not fully consistent with an equal-energy model to predict TTS onset. Mooney et al. (2009a) showed this in a bottlenose dolphin exposed to octave-band non-impulse noise ranging from 4 to 8 kHz at SPLs of 130 to 178 dB re 1 μPa for periods of 1.88 to 30 min. Higher SELs were required to induce a given TTS if exposure duration short than if it was longer. Exposure of the aforementioned bottlenose dolphin to a sequence of brief sonar signals showed that, with those brief (but non-impulse) sounds, the received energy (SEL) necessary to elicit TTS was higher than was the case with exposure to the more prolonged octave-band noise (Mooney et al. 2009b). Those authors concluded that, when using (non-impulse) acoustic signals of duration ~0.5 s, SEL must be at least 210–214 dB re 1 μPa²·s to induce TTS in the bottlenose dolphin.

On the other hand, the TTS threshold for odontocetes exposed to a single impulse from a watergun (Finneran et al. 2002) appeared to be somewhat lower than for exposure to non-impulse sound. This was expected, based on evidence from terrestrial mammals showing that broadband pulsed sounds with rapid rise times have greater auditory effect than do non-impulse sounds (Southall et al. 2007). The received energy level of a single seismic pulse that caused the onset of mild TTS in the beluga, as measured without frequency weighting, was ~186 dB re 1 μPa²·s or 186 dB SEL (Finneran et al. 2002). The rms level of an airgun pulse (in dB re 1 μPa measured over the duration of the pulse) is typically 10–15 dB higher than the SEL for the same pulse when received within a few kilometers of the airguns. Thus, a single airgun pulse might need to have a received level of ~196–201 dB re 1 μPa rms in order to produce brief, mild TTS. Exposure to several strong seismic pulses that each has a flat-weighted received level

9 If the low-frequency components of the watergun sound used in the experiments of Finneran et al. (2002) are downweighted as recommended by Southall et al. (2007) using their Mmf-weighting curve, the effective exposure level for onset of mild TTS was 183 dB re 1 μPa²·s (Southall et al. 2007).
near 190 dB$_{rms}$ (175–180 dB SEL) could result in cumulative exposure of ~186 dB SEL (flat-weighted) or ~183 dB SEL (M$_{mf}$-weighted), and thus slight TTS in a small odontocete. That assumes that the TTS threshold upon exposure to multiple pulses is (to a first approximation) a function of the total received pulse energy, without allowance for any recovery between pulses.

The above TTS information for odontocetes is derived from studies on the bottlenose dolphin and beluga. For the one harbor porpoise tested, the received level of airgun sound that elicited onset of TTS was lower. The animal was exposed to single pulses from a small (20 in3) airgun, and auditory evoked potential methods were used to test the animal’s hearing sensitivity at frequencies of 4, 32, or 100 kHz after each exposure (Lucke et al. 2009). Based on the measurements at 4 kHz, TTS occurred upon exposure to one airgun pulse with received level ~200 dB re 1 μPa$_{pk-pk}$ or an SEL of 164.3 dB re 1 μPa2·s. If these results from a single animal are representative, it is inappropriate to assume that onset of TTS occurs at similar received levels in all odontocetes (cf. Southall et al. 2007). Some cetaceans may incur TTS at lower sound exposures than are necessary to elicit TTS in the beluga or bottlenose dolphin.

Insofar as we are aware, there are no published data confirming that the auditory effect of a sequence of airgun pulses received by an odontocete is a function of their cumulative energy. Southall et al. (2007) consider that to be a reasonable, but probably somewhat precautionary, assumption. It is precautionary because, based on data from terrestrial mammals, one would expect that a given energy exposure would have somewhat less effect if separated into discrete pulses, with potential opportunity for partial auditory recovery between pulses. However, as yet there has been little study of the rate of recovery from TTS in marine mammals, and in humans and other terrestrial mammals the available data on recovery are quite variable. Southall et al. (2007) concluded that—until relevant data on recovery are available from marine mammals—it is appropriate not to allow for any assumed recovery during the intervals between pulses within a pulse sequence.

Additional data are needed to determine the received sound levels at which small odontocetes would start to incur TTS upon exposure to repeated, low-frequency pulses of airgun sound with variable received levels. To determine how close an airgun array would need to approach in order to elicit TTS, it is necessary to determine the total energy that a mammal would receive as an airgun array approaches, passes at various CPA distances, and moves away (e.g., Erbe and King 2009). At the present state of knowledge, it is also necessary to assume that the effect is directly related to total received energy even though that energy is received in multiple pulses separated by gaps. The lack of data on the exposure levels necessary to cause TTS in toothed whales when the signal is a series of pulsed sounds, separated by silent periods, remains a data gap, as is the lack of published data on TTS in odontocetes other than the beluga, bottlenose dolphin, and harbor porpoise.

Baleen Whales.—There are no data, direct or indirect, on levels or properties of sound that are required to induce TTS in any baleen whale. The frequencies to which mysticetes are most sensitive are assumed to be lower than those to which odontocetes are most sensitive, and natural background noise levels at those low frequencies tend to be higher. As a result, auditory thresholds of baleen whales within their frequency band of best hearing are believed to be higher (less sensitive) than are those of odontocetes at their best frequencies (Clark and Ellison 2004). From this, it is suspected that received levels causing TTS onset may also be higher in mysticetes (Southall et al. 2007). However, based on preliminary simulation modeling that attempted to allow for various uncertainties in assumptions and variability around population means, Gedamke et al. (2008) suggested that some baleen whales whose closest point of approach to a seismic vessel is 1 km or more could experience TTS or even PTS.
In practice during seismic surveys, few if any cases of TTS are expected given the strong likelihood that baleen whales would avoid the approaching airguns (or vessel) before being exposed to levels high enough for there to be any possibility of TTS (see above for evidence concerning avoidance responses by baleen whales). This assumes that the ramp-up (soft-start) procedure is used when commencing airgun operations, to give whales near the vessel the opportunity to move away before they are exposed to sound levels that might be strong enough to elicit TTS. As discussed earlier, single-airgun experiments with bowhead, gray, and humpback whales show that those species do tend to move away when a single airgun starts firing nearby, which simulates the onset of a ramp up.

Pinnipeds.—In pinnipeds, TTS thresholds associated with exposure to brief pulses (single or multiple) of underwater sound have not been measured. Two California sea lions did not incur TTS when exposed to single brief pulses with received levels of ~178 and 183 dB re 1 µPa and total energy fluxes of 161 and 163 dB re 1 µPa²·s (Finneran et al. 2003). However, initial evidence from more prolonged (non-pulse) exposures suggested that some pinnipeds (harbor seals in particular) incur TTS at somewhat lower received levels than do small odontocetes exposed for similar durations (Kastak et al. 1999, 2005; Ketten et al. 2001). Kastak et al. (2005) reported that the amount of threshold shift increased with increasing SEL in a California sea lion and harbor seal. They noted that, for non-impulse sound, doubling the exposure duration from 25 to 50 min (i.e., a +3 dB change in SEL) had a greater effect on TTS than an increase of 15 dB (95 vs. 80 dB) in exposure level. Mean threshold shifts ranged from 2.9–12.2 dB, with full recovery within 24 hr (Kastak et al. 2005). Kastak et al. (2005) suggested that, for non-impulse sound, SELs resulting in TTS onset in three species of pinnipeds may range from 183 to 206 dB re 1 µPa²·s, depending on the absolute hearing sensitivity.

As noted above for odontocetes, it is expected that—for impulse as opposed to non-impulse sound—the onset of TTS would occur at a lower cumulative SEL given the assumed greater auditory effect of broadband impulses with rapid rise times. The threshold for onset of mild TTS upon exposure of a harbor seal to impulse sounds has been estimated indirectly as being an SEL of ~171 dB re 1 µPa²·s (Southall et al. 2007). That would be approximately equivalent to a single pulse with received level ~181–186 dB re 1 µPa, or a series of pulses for which the highest rms values are a few dB lower.

At least for non-impulse sounds, TTS onset occurs at appreciably higher received levels in California sea lions and northern elephant seals than in harbor seals (Kastak et al. 2005). Thus, the former two species would presumably need to be closer to an airgun array than would a harbor seal before TTS is a possibility. Insofar as we are aware, there are no data to indicate whether the TTS thresholds of other pinniped species are more similar to those of the harbor seal or to those of the two less-sensitive species.

Sirenians, Sea Otter and Polar Bear.—There are no available data on TTS in sea otters and polar bears. However, TTS is unlikely to occur in sea otters or polar bears if they are on the water surface, given the pressure release and Lloyd’s mirror effects at the water’s surface. Furthermore, sea otters tend to inhabit shallow coastal habitats where large seismic survey vessels towing large spreads of streamers may be unable to operate. TTS is also considered unlikely to occur in sirenians as a result of exposure to sounds from a seismic survey. They, like sea otters, tend to inhabit shallow coastal habitats and rarely range far from shore, whereas seismic survey vessels towing large arrays of airguns and (usually) even larger arrays of streamers normally must remain farther offshore because of equipment clearance and maneuverability limitations. Exposures of sea otters and sirenians to seismic surveys are more likely to involve smaller seismic sources that can be used in shallow and confined waters. The impacts of these are inherently less than would occur from a larger source of the types often used farther offshore.
Likelihood of Incurring TTS.—Most cetaceans show some degree of avoidance of seismic vessels operating an airgun array (see above). It is unlikely that these cetaceans would be exposed to airgun pulses at a sufficiently high level for a sufficiently long period to cause more than mild TTS, given the relative movement of the vessel and the marine mammal. TTS would be more likely in any odontocetes that bow- or wake-ride or otherwise linger near the airguns. However, while bow- or wake-riding, odontocetes would be at the surface and thus not exposed to strong sound pulses given the pressure-release and Lloyd Mirror effects at the surface. But if bow- or wake-riding animals were to dive intermittently near airguns, they would be exposed to strong sound pulses, possibly repeatedly.

If some cetaceans did incur mild or moderate TTS through exposure to airgun sounds in this manner, this would very likely be a temporary and reversible phenomenon. However, even a temporary reduction in hearing sensitivity could be deleterious in the event that, during that period of reduced sensitivity, a marine mammal needed its full hearing sensitivity to detect approaching predators, or for some other reason.

Some pinnipeds show avoidance reactions to air guns, but their avoidance reactions are generally not as strong or consistent as those of cetaceans. Pinnipeds occasionally seem to be attracted to operating seismic vessels. There are no specific data on TTS thresholds of pinnipeds exposed to single or multiple low-frequency pulses. However, given the indirect indications of a lower TTS threshold for the harbor seal than for odontocetes exposed to impulse sound (see above), it is possible that some pinnipeds close to a large airgun array could incur TTS.

NMFS (1995, 2000) concluded that cetaceans should not be exposed to pulsed underwater noise at received levels >180 dB re 1 µPa rms. The corresponding limit for pinnipeds has been set by NMFS at 190 dB, although the HESS Team (HESS 1999) recommended a 180-dB limit for pinnipeds in California. The 180 and 190 dB re 1 µPa rms levels have not been considered to be the levels above which TTS might occur. Rather, they were the received levels above which, in the view of a panel of bioacoustics specialists convened by NMFS before TTS measurements for marine mammals started to become available, one could not be certain that there would be no injurious effects, auditory or otherwise, to marine mammals. As summarized above, data that are now available imply that TTS is unlikely to occur in various odontocetes (and probably mysticetes as well) unless they are exposed to a sequence of several airgun pulses stronger than 190 dB re 1 µPa rms. On the other hand, for the harbor seal, harbor porpoise, and perhaps some other species, TTS may occur upon exposure to one or more airgun pulses whose received level equals the NMFS “do not exceed” value of 190 dB re 1 µPa rms. That criterion corresponds to a single-pulse SEL of 175–180 dB re 1 µPa²·s in typical conditions, whereas TTS is suspected to be possible in harbor seals and harbor porpoises with a cumulative SEL of ~171 and ~164 dB re 1 µPa²·s, respectively.

It has been shown that most large whales and many smaller odontocetes (especially the harbor porpoise) show at least localized avoidance of ships and/or seismic operations (see above). Even when avoidance is limited to the area within a few hundred meters of an airgun array, that should usually be sufficient to avoid TTS based on what is currently known about thresholds for TTS onset in cetaceans. In addition, ramping up airgun arrays, which is standard operational protocol for many seismic operators, should allow cetaceans near the airguns at the time of startup (if the sounds are aversive) to move away from the seismic source and to avoid being exposed to the full acoustic output of the airgun array (see above). Thus, most baleen whales likely will not be exposed to high levels of airgun sounds provided the ramp-up procedure is applied. Likewise, many odontocetes close to the trackline are likely to move away before the sounds from an approaching seismic vessel become sufficiently strong for there to be any potential for TTS or other hearing impairment. Therefore, there is little potential for baleen whales or
Appendix A: Impacts of Airgun Sounds on Marine Mammals

odontocetes that show avoidance of ships or airguns to be close enough to an airgun array to experience TTS. In the event that a few individual cetaceans did incur TTS through exposure to strong airgun sounds, this is a temporary and reversible phenomenon unless the exposure exceeds the TTS-onset threshold by a sufficient amount for PTS to be incurred (see below). If TTS but not PTS were incurred, it would most likely be mild, in which case recovery is expected to be quick (probably within minutes).

6.2 Permanent Threshold Shift (PTS)

When PTS occurs, there is physical damage to the sound receptors in the ear. In some cases, there can be total or partial deafness, whereas in other cases, the animal has an impaired ability to hear sounds in specific frequency ranges (Kryter 1985). Physical damage to a mammal’s hearing apparatus can occur if it is exposed to sound impulses that have very high peak pressures, especially if they have very short rise times. (Rise time is the interval required for sound pressure to increase from the baseline pressure to peak pressure.)

There is no specific evidence that exposure to pulses of airgun sound can cause PTS in any marine mammal, even with large arrays of airguns. However, given the likelihood that some mammals close to an airgun array might incur at least mild TTS (see above), there has been further speculation about the possibility that some individuals occurring very close to airguns might incur PTS (e.g., Richardson et al. 1995, p. 372ff; Gedamke et al. 2008). Single or occasional occurrences of mild TTS are not indicative of permanent auditory damage, but repeated or (in some cases) single exposures to a level well above that causing TTS onset might elicit PTS.

Relationships between TTS and PTS thresholds have not been studied in marine mammals, but are assumed to be similar to those in humans and other terrestrial mammals (Southall et al. 2007). Based on data from terrestrial mammals, a precautionary assumption is that the PTS threshold for impulse sounds (such as airgun pulses as received close to the source) is at least 6 dB higher than the TTS threshold on a peak-pressure basis, and probably >6 dB higher (Southall et al. 2007). The low-to-moderate levels of TTS that have been induced in captive odontocetes and pinnipeds during controlled studies of TTS have been confirmed to be temporary, with no measurable residual PTS (Kastak et al. 1999; Schlundt et al. 2000; Finneran et al. 2002, 2005; Nachtigall et al. 2003, 2004). However, very prolonged exposure to sound strong enough to elicit TTS, or shorter-term exposure to sound levels well above the TTS threshold, can cause PTS, at least in terrestrial mammals (Kryter 1985). In terrestrial mammals, the received sound level from a single non-impulsive sound exposure must be far above the TTS threshold for any risk of permanent hearing damage (Kryter 1994; Richardson et al. 1995; Southall et al. 2007). However, there is special concern about strong sounds whose pulses have very rapid rise times. In terrestrial mammals, there are situations when pulses with rapid rise times (e.g., from explosions) can result in PTS even though their peak levels are only a few dB higher than the level causing slight TTS. The rise time of airgun pulses is fast, but not as fast as that of an explosion.

Some factors that contribute to onset of PTS, at least in terrestrial mammals, are as follows:

- exposure to single very intense sound,
- fast rise time from baseline to peak pressure,
- repetitive exposure to intense sounds that individually cause TTS but not PTS, and
- recurrent ear infections or (in captive animals) exposure to certain drugs.
Appendix A: Impacts of Airgun Sounds on Marine Mammals

Cavanagh (2000) reviewed the thresholds used to define TTS and PTS. Based on this review and SACLANT (1998), it is reasonable to assume that PTS might occur at a received sound level 20 dB or more above that inducing mild TTS. However, for PTS to occur at a received level only 20 dB above the TTS threshold, the animal probably would have to be exposed to a strong sound for an extended period, or to a strong sound with rather rapid rise time.

More recently, Southall et al. (2007) estimated that received levels would need to exceed the TTS threshold by at least 15 dB, on an SEL basis, for there to be risk of PTS. Thus, for cetaceans exposed to a sequence of sound pulses, they estimate that the PTS threshold might be an M-weighted SEL (for the sequence of received pulses) of ~198 dB re 1 μPa²·s (15 dB higher than the Mmf-weighted TTS threshold, in a beluga, for a watergun impulse). Additional assumptions had to be made to derive a corresponding estimate for pinnipeds, as the only available data on TTS-thresholds in pinnipeds pertained to non-impulse sound (see above). Southall et al. (2007) estimated that the PTS threshold could be a cumulative Mpw-weighted SEL of ~186 dB re 1 μPa²·s in the case of a harbor seal exposed to impulse sound. The PTS threshold for the California sea lion and northern elephant seal would probably be higher given the higher TTS thresholds in those species. Southall et al. (2007) also note that, regardless of the SEL, there is concern about the possibility of PTS if a cetacean or pinniped received one or more pulses with peak pressure exceeding 230 or 218 dB re 1 μPa, respectively. Thus, PTS might be expected upon exposure of cetaceans to either SEL ≥198 dB re 1 μPa²·s or peak pressure ≥230 dB re 1 μPa. Corresponding proposed dual criteria for pinnipeds (at least harbor seals) are ≥186 dB SEL and ≥218 dB peak pressure (Southall et al. 2007). These estimates are all first approximations, given the limited underlying data, assumptions, species differences, and evidence that the “equal energy” model is not be entirely correct.

Sound impulse duration, peak amplitude, rise time, number of pulses, and inter-pulse interval are the main factors thought to determine the onset and extent of PTS. Ketten (1994) has noted that the criteria for differentiating the sound pressure levels that result in PTS (or TTS) are location and species-specific. PTS effects may also be influenced strongly by the health of the receiver’s ear.

As described above for TTS, in estimating the amount of sound energy required to elicit the onset of TTS (and PTS), it is assumed that the auditory effect of a given cumulative SEL from a series of pulses is the same as if that amount of sound energy were received as a single strong sound. There are no data from marine mammals concerning the occurrence or magnitude of a potential partial recovery effect between pulses. In deriving the estimates of PTS (and TTS) thresholds quoted here, Southall et al. (2007) made the precautionary assumption that no recovery would occur between pulses.

The TTS section (above) concludes that exposure to several strong seismic pulses that each have flat-weighted received levels near 190 dB re 1 μPa (175–180 dB re 1 μPa²·s SEL) could result in cumulative exposure of ~186 dB SEL (flat-weighted) or ~183 dB SEL (Mmf-weighted), and thus slight TTS in a small odontocete. Allowing for the assumed 15 dB offset between PTS and TTS thresholds, expressed on an SEL basis, exposure to several strong seismic pulses that each have flat-weighted received levels near 205 dB (190–195 dB SEL) could result in cumulative exposure of ~198 dB SEL (Mmf-weighted), and thus slight PTS in a small odontocete. However, the levels of successive pulses that will be received by a marine mammal that is below the surface as a seismic vessel approaches, passes and moves away will tend to increase gradually and then decrease gradually, with periodic decreases superimposed on this pattern when the animal comes to the surface to breathe. To estimate how close an odontocete’s CPA distance would have to be for the cumulative SEL to exceed 198 dB SEL (Mmf-weighted), one would (as a minimum) need to allow for the sequence of distances at which airgun shots
would occur, and for the dependence of received SEL on distance in the region of the seismic operation (e.g., Erbe and King 2009).

It is unlikely that an odontocete would remain close enough to a large airgun array for sufficiently long to incur PTS. There is some concern about bowriding odontocetes, but for animals at or near the surface, auditory effects are reduced by Lloyd’s mirror and surface release effects. The presence of the vessel between the airgun array and bow-riding odontocetes could also, in some but probably not all cases, reduce the levels received by bow-riding animals (e.g., Gabriele and Kipple 2009). The TTS (and thus PTS) thresholds of baleen whales are unknown but, as an interim measure, assumed to be no lower than those of odontocetes. Also, baleen whales generally avoid the immediate area around operating seismic vessels, so it is unlikely that a baleen whale could incur PTS from exposure to airgun pulses. The TTS (and thus PTS) thresholds of some pinnipeds (e.g., harbor seal) as well as the harbor porpoise may be lower (Kastak et al. 2005; Southall et al. 2007; Lucke et al. 2009). If so, TTS and potentially PTS may extend to a somewhat greater distance for those animals. Again, Lloyd’s mirror and surface release effects will ameliorate the effects for animals at or near the surface.

Although it is unlikely that airgun operations during most seismic surveys would cause PTS in many marine mammals, caution is warranted given

- the limited knowledge about noise-induced hearing damage in marine mammals, particularly baleen whales, pinnipeds, and sea otters;
- the seemingly greater susceptibility of certain species (e.g., harbor porpoise and harbor seal) to TTS and presumably also PTS; and
- the lack of knowledge about TTS and PTS thresholds in many species, including various species closely related to the harbor porpoise and harbor seal.

The avoidance reactions of many marine mammals, along with commonly-applied monitoring and mitigation measures (visual and passive acoustic monitoring, ramp ups, and power downs or shut downs when mammals are detected within or approaching the “safety radii”), would reduce the already-low probability of exposure of marine mammals to sounds strong enough to induce PTS.

6.3 Strandings and Mortality

Marine mammals close to underwater detonations of high explosives can be killed or severely injured, and the auditory organs are especially susceptible to injury (Ketten et al. 1993; Ketten 1995). However, explosives are no longer used in marine waters for commercial seismic surveys or (with rare exceptions) for seismic research; they have been replaced by airguns and other non-explosive sources. Airgun pulses are less energetic and have slower rise times, and there is no specific evidence that they can cause serious injury, death, or stranding even in the case of large airgun arrays. However, the association of mass strandings of beaked whales with naval exercises and, in one case, a seismic survey (Malakoff 2002; Cox et al. 2006), has raised the possibility that beaked whales exposed to strong “pulsed” sounds may be especially susceptible to injury and/or behavioral reactions that can lead to stranding (e.g., Hildebrand 2005; Southall et al. 2007). Hildebrand (2005) reviewed the association of cetacean strandings with high-intensity sound events and found that deep-diving odontocetes, primarily beaked whales, were by far the predominant (95%) cetaceans associated with these events, with 2% mysticete whales (minke). However, as summarized below, there is no definitive evidence that airguns can lead to injury, strandings, or mortality even for marine mammals in close proximity to large airgun arrays.
Appendix A: Impacts of Airgun Sounds on Marine Mammals

Specific sound-related processes that lead to strandings and mortality are not well documented, but may include (1) swimming in avoidance of a sound into shallow water; (2) a change in behavior (such as a change in diving behavior that might contribute to tissue damage, gas bubble formation, hypoxia, cardiac arrhythmia, hypertensive hemorrhage or other forms of trauma; (3) a physiological change such as a vestibular response leading to a behavioral change or stress-induced hemorrhagic diathesis, leading in turn to tissue damage; and (4) tissue damage directly from sound exposure, such as through acoustically mediated bubble formation and growth or acoustic resonance of tissues. Some of these mechanisms are unlikely to apply in the case of impulse sounds. However, there are increasing indications that gas-bubble disease (analogous to “the bends”), induced in supersaturated tissue by a behavioral response to acoustic exposure, could be a pathologic mechanism for the strandings and mortality of some deep-diving cetaceans exposed to sonar. The evidence for this remains circumstantial and associated with exposure to naval mid-frequency sonar, not seismic surveys (Cox et al. 2006; Southall et al. 2007).

Seismic pulses and mid-frequency sonar signals are quite different, and some mechanisms by which sonar sounds have been hypothesized to affect beaked whales are unlikely to apply to airgun pulses. Sounds produced by airgun arrays are broadband impulses with most of the energy below 1 kHz. Typical military mid-frequency sonars emit non-impulse sounds at frequencies of 2–10 kHz, generally with a relatively narrow bandwidth at any one time (though the frequency may change over time). Thus, it is not appropriate to assume that the effects of seismic surveys on beaked whales or other species would be the same as the apparent effects of military sonar. For example, resonance effects (Gentry 2002) and acoustically-mediated bubble-growth (Crum et al. 2005) are implausible in the case of exposure to broadband airgun pulses. Nonetheless, evidence that sonar signals can, in special circumstances, lead (at least indirectly) to physical damage and mortality (e.g., Balcomb and Claridge 2001; NOAA and USN 2001; Jepson et al. 2003; Fernández et al. 2004, 2005; Hildebrand 2005; Cox et al. 2006) suggests that caution is warranted when dealing with exposure of marine mammals to any high-intensity “pulsed” sound. One of the hypothesized mechanisms by which naval sonars lead to strandings might, in theory, also apply to seismic surveys: If the strong sounds sometimes cause deep-diving species to alter their surfacing–dive cycles in a way that causes bubble formation in tissue, that hypothesized mechanism might apply to seismic surveys as well as mid-frequency naval sonars. However, there is no specific evidence of this upon exposure to airgun pulses.

There is no conclusive evidence of cetacean strandings or deaths at sea as a result of exposure to seismic surveys, but a few cases of strandings in the general area where a seismic survey was ongoing have led to speculation concerning a possible link between seismic surveys and strandings. • Suggestions that there was a link between seismic surveys and strandings of humpback whales in Brazil (Engel et al. 2004) were not well founded (IAGC 2004; IWC 2007). • In Sept. 2002, there was a stranding of two Cuvier’s beaked whales in the Gulf of California, Mexico, when the L-DEO seismic vessel R/V Maurice Ewing was operating a 20-airgun, 8490-in³ airgun array in the general area. The evidence linking the stranding to the seismic survey was inconclusive and not based on any physical evidence (Hogarth 2002; Yoder 2002). The ship was also operating its multibeam echosounder at the same time, but this had much less potential than the aforementioned naval sonars to affect beaked whales, given its downward-directed beams, much shorter pulse durations, and lower duty cycle. Nonetheless, the Gulf of California incident plus the beaked whale strandings near naval exercises involving use of mid-frequency sonar suggest a need for caution in conducting seismic surveys in areas occupied by beaked whales until more is known about effects of seismic surveys on those species (Hildebrand 2005).
6.4 Non-Auditory Physiological Effects

Based on evidence from terrestrial mammals and humans, sound is a potential source of stress (Wright and Kuczaj 2007; Wright et al. 2007a,b, 2009). However, almost no information is available on sound-induced stress in marine mammals, or on its potential (alone or in combination with other stressors) to affect the long-term well-being or reproductive success of marine mammals (Fair and Becker 2000; Hildebrand 2005; Wright et al. 2007a,b). Such long-term effects, if they occur, would be mainly associated with chronic noise exposure, which is characteristic of some seismic surveys and exposure situations (McCauley et al. 2000a:62ff; Nieukirk et al. 2009) but not of some others.

Available data on potential stress-related impacts of anthropogenic noise on marine mammals are extremely limited, and additional research on this topic is needed. We know of only two specific studies of noise-induced stress in marine mammals. (1) Romano et al. (2004) examined the effects of single underwater impulse sounds from a seismic water gun (source level up to 228 dB re 1 µPa · m^2 · p) and single short-duration pure tones (sound pressure level up to 201 dB re 1 µPa) on the nervous and immune systems of a beluga and a bottlenose dolphin. They found that neural-immune changes to noise exposure were minimal. Although levels of some stress-released substances (e.g., catecholamines) changed significantly with exposure to sound, levels returned to baseline after 24 hr. (2) During playbacks of recorded drilling noise to four captive beluga whales, Thomas et al. (1990) found no changes in blood levels of stress-related hormones. Long-term effects were not measured, and no short-term effects were detected. For both studies, caution is necessary when extrapolating these results to wild animals and to real-world situations given the small sample sizes, use of captive animals, and other technical limitations of the two studies.

Aside from stress, other types of physiological effects that might, in theory, be involved in beaked whale strandings upon exposure to naval sonar (Cox et al. 2006), such as resonance and gas bubble formation, have not been demonstrated and are not expected upon exposure to airgun pulses (see preceding subsection). If seismic surveys disrupt diving patterns of deep-diving species, this might perhaps result in bubble formation and a form of “the bends”, as speculated to occur in beaked whales exposed to sonar. However, there is no specific evidence that exposure to airgun pulses has this effect.

In summary, very little is known about the potential for seismic survey sounds (or other types of strong underwater sounds) to cause non-auditory physiological effects in marine mammals. Such effects, if they occur at all, would presumably be limited to short distances and to activities that extend over a prolonged period. The available data do not allow identification of a specific exposure level above which non-auditory effects can be expected (Southall et al. 2007), or any meaningful quantitative predictions of the numbers (if any) of marine mammals that might be affected in these ways.

7. Literature Cited

Appendix A: Impacts of Airgun Sounds on Marine Mammals

Appendix A: Impacts of Airgun Sounds on Marine Mammals

Appendix A: Impacts of Airgun Sounds on Marine Mammals

Appendix A: Impacts of Airgun Sounds on Marine Mammals

western gray whale mitigation and monitoring program for a 3-D seismic survey, Sakhalin Island, Russia.

Appendix A: Impacts of Airgun Sounds on Marine Mammals

Malme, C.I., P.R. Miles, C.W. Clark, P. Tyack, and J.E. Bird. 1984. Investigations of the potential effects of underwater noise from petroleum industry activities on migrating gray whale behavior/Phase II: January
Appendix A: Impacts of Airgun Sounds on Marine Mammals

Miller, G.W., R.E. Elliott, W.R. Koski, V.D. Moulton, and W.J. Richardson. 1999. Whales. p. 5-1 to 5-109 In: W.J. Richardson (ed.), Marine mammal and acoustical monitoring of Western Geophysical's open-water

Appendix A: Impacts of Airgun Sounds on Marine Mammals

Appendix A: Impacts of Airgun Sounds on Marine Mammals

APPENDIX B:

REVIEW OF THE EFFECTS OF AIRGUN SOUNDS ON SEA TURTLES

The following subsections review relevant information concerning the potential effects of airgun sounds on sea turtles. This information is included here as background. Much of this information has also been included in varying formats in other reviews, assessments, and regulatory applications prepared by LGL Ltd.

1. Sea Turtle Hearing

Although there have been a limited number of studies on sea turtle hearing (see review by Southwood et al. 2008), the available data are not very comprehensive. However, these data demonstrate that sea turtles appear to be low-frequency specialists (see Table B-1).

Sea turtle auditory perception occurs through a combination of both bone and water conduction rather than air conduction (Lenhardt 1982; Lenhardt and Harkins 1983). Detailed descriptions of sea turtle ear anatomy are found in Ridgway et al. (1969), Lenhardt et al. (1985), and Bartol and Musick (2003). Sea turtles do not have external ears, but the middle ear is well adapted as a peripheral component of a bone conduction system. The thick tympanum is disadvantageous as an aerial receptor, but enhances low-frequency bone conduction hearing (Lenhardt et al. 1985; Bartol et al. 1999; Bartol and Musick 2003). A layer of subtympanic fat emerging from the middle ear is fused to the tympanum (Ketten et al. 2006; Bartol 2004, 2008). A cartilaginous disk, the extracolumella, is found under the tympanic membrane and is attached to the columella (Bartol 2004, 2008). The columella is a long rod that expands to form the stapes, and fibrous strands connect the stapes to the saccule (Bartol 2004, 2008). When the tympanum is depressed, the vibrations are conveyed via the fibrous stapedo-sacular strands to the sacule (Lenhardt et al. 1985). This arrangement of fat deposits and bone enables sea turtles to hear low-frequency sounds while underwater and makes them relatively insensitive to sound above water. Vibrations, however, can be conducted through the bones of the carapace to reach the middle ear.

A variety of audiometric methods are available to assess hearing abilities. Electrophysiological measures of hearing (e.g., auditory brainstem response or ABR) provide good information about relative sensitivity to different frequencies. However, this approach may underestimate the frequency range to which the animal is sensitive and may be imprecise at determining absolute hearing thresholds (e.g., Wolski et al. 2003). Nevertheless, when time is critical and only untrained animals are available, this method can provide useful information on sea turtle hearing (e.g., Wolski et al. 2003).

Ridgway et al. (1969) obtained the first direct measurements of sea turtle hearing sensitivity (Table B-1). They used an electrophysiological technique (cochlear potentials) to determine the response of green sea turtles (Chelonia mydas) to aerial- and vibrational-stimuli consisting of tones with frequencies 30 to 700 Hz. They found that green turtles exhibit maximum hearing sensitivity between 300 and 500 Hz, and speculated that the turtles had a useful hearing range of 60–1000 Hz. (However, there was some response to strong vibrational signals at frequencies down to the lowest one tested — 30 Hz.)

By Valerie D. Moulton and W. John Richardson, with subsequent updates (to Feb. 2010) by Mari A. Smultea and Meike Holst, all of LGL Ltd., environmental research associates.
Appendix B: Effects of Airgun Sounds on Sea Turtles

TABLE B-1. Hearing capabilities of sea turtles as measured using behavioral and electro-physiological techniques. ABR: auditory brainstem response; NA: no empirical data available.

<table>
<thead>
<tr>
<th>Sea Turtle Species</th>
<th>Range (Hz)</th>
<th>Highest Sensitivity (Hz)</th>
<th>Technique</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>60-1000</td>
<td>300-500</td>
<td>Cochlear Potentials<sup>a</sup></td>
<td>Ridgway et al. 1969</td>
</tr>
<tr>
<td></td>
<td>100-800</td>
<td>600-700 (juveniles) 200-400 (subadults)</td>
<td>ABR<sup>w</sup></td>
<td>Bartol & Ketten 2006; Ketten & Bartol 2006</td>
</tr>
<tr>
<td></td>
<td>50-1600</td>
<td>50-400</td>
<td>ABR<sup>a,w</sup></td>
<td>Dow et al. 2008</td>
</tr>
<tr>
<td>Hawksbill</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Loggerhead</td>
<td>250-1000</td>
<td>250</td>
<td>ABR<sup>a</sup></td>
<td>Bartol et al. 1999</td>
</tr>
<tr>
<td>Olive ridley</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Kemp’s ridley</td>
<td>100-500</td>
<td>100-200</td>
<td>ABR<sup>w</sup></td>
<td>Bartol & Ketten 2006; Ketten & Bartol 2006</td>
</tr>
<tr>
<td>Leatherback</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Flatback</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

^a measured in air; ^w measured underwater

Bartol et al. (1999) tested the in-air hearing of juvenile loggerhead turtles *Caretta caretta* (Table B-1). The authors used ABR to determine the response of the sea turtle ear to two types of vibrational stimuli: (1) brief, low-frequency broadband clicks, and (2) brief tone bursts at four frequencies from 250 to 1000 Hz. They demonstrated that loggerhead sea turtles hear well between 250 and 1000 Hz; within that frequency range the turtles were most sensitive at 250 Hz. The authors did not measure hearing sensitivity below 250 Hz or above 1000 Hz. There was an extreme decrease in response to stimuli above 1000 Hz, and the vibrational intensities required to elicit a response may have damaged the turtle’s ear. The signals used in this study were very brief — 0.6 ms for the clicks and 0.8–5.5 ms for the tone bursts. In other animals, auditory thresholds decrease with increasing signal duration up to ~100–200 ms. Thus, sea turtles probably could hear weaker signals than demonstrated in the study if the signal duration were longer.

Lenhardt (2002) exposed loggerhead turtles while they were near the bottom of holding tanks at a depth of 1 m to tones from 35 to 1000 Hz. The turtles exhibited startle responses (neck contractions) to these tones. The lowest thresholds were in the 400–500 Hz range (106 dB SPL re 1 μPa), and thresholds in the 100–200 Hz range were ~124 dB (Lenhardt 2002). Thresholds at 735 and 100 Hz were 117 and 156 dB, respectively (Lenhardt 2002). Diving behaviour occurred at 30 Hz and 164 dB.

More recently, ABR techniques have been used to determine the underwater hearing capabilities of six subadult green turtles, two juvenile green turtles, and two juvenile Kemp’s ridley (*Lepidochelys kempii*) turtles (Ketten and Bartol 2006; Bartol and Ketten 2006; Table B-1). The turtles were physically restrained in a small box tank with their ears below the water surface and the top of the head exposed above the surface. Pure-tone acoustic stimuli were presented to the animals, though the exact frequencies of these tones were not indicated. The six subadult green turtles detected sound at frequencies 100–500 Hz, with the most sensitive hearing at 200–400 Hz. In contrast, the two juvenile green turtles exhibited a slightly expanded overall hearing range of 100–800 Hz, with their most sensitive hearing occurring at
Appendix B: Effects of Airgun Sounds on Sea Turtles

600–700 Hz. The most restricted range of sensitive hearing (100–200 Hz) was found in the two juvenile Kemp’s ridleys turtles, whose overall frequency range was 100–500 Hz.

Preliminary data from a similar study of a trained, captive green turtle indicate that the animal heard and responded behaviorally to underwater tones ranging in frequency from 100 to 500 Hz. At 200 Hz, the threshold was between 107 and 119 dB, and at 400 Hz the threshold was between 121 and 131 dB [reference units not provided] (Streeter 2003; ONR N.D.).

In summary, the limited available data indicate that the frequency range of best hearing sensitivity of sea turtles extends from ~200 to 700 Hz. Sensitivity deteriorates as one moves away from this range to either lower or higher frequencies. However, there is some sensitivity to frequencies as low as 60 Hz, and probably as low as 30 Hz (Ridgway et al. 1969). Thus, there is substantial overlap in the frequencies that sea turtles detect vs. the dominant frequencies in airgun pulses. Given that, plus the high energy levels of airgun pulses, sea turtles undoubtedly hear airgun sounds. We are not aware of measurements of the absolute hearing thresholds of any sea turtle to waterborne sounds similar to airgun pulses. Given the high source levels of airgun pulses and the substantial received levels even at distances many km away from the source, sea turtles probably can also hear distant seismic vessels. However, in the absence of relevant absolute threshold data, we cannot estimate how far away an airgun array might be audible to a sea turtle.

2. Effects of Airgun Pulses on Behavior and Movement

The effects of exposure to airgun pulses on the behavior and distribution of various marine animals have been studied over the past three decades. Most such studies have concerned marine mammals (e.g., see reviews by Richardson et al. 1995; Gordon et al. 2004; Nowacek et al. 2007; Southall et al. 2007), but also fish (e.g., reviewed by Thomson et al. 2001; Herata 2007; Payne et al. 2008). There have been far fewer studies on the effects of airgun noise (or indeed any type of noise) on sea turtles, and little is known about the sound levels that will or will not elicit various types of behavioral reactions. There have been four directed studies that focused on short-term behavioral responses of sea turtles in enclosures to single airguns. However, comparisons of results among studies are difficult because experimental designs and reporting procedures have varied greatly, and few studies provided specific information about the levels of the airgun pulses received by the turtles. Although monitoring studies are now providing some information on responses (or lack of responses) of free-ranging sea turtles to seismic surveys, we are not aware of any directed studies on responses of free-ranging sea turtles to seismic sounds or on the long-term effects of seismic or other sounds on sea turtles.

Directed Studies.—The most recent of the studies of caged sea turtles exposed to airgun pulses was a study by McCauley et al. (2000a,b) off Western Australia. The authors exposed caged green and loggerhead sea turtles (one of each) to pulses from an approaching and then receding 20 in airgun operating at 1500 psi and a 5-m airgun depth. The single airgun fired every 10 s. There were two trials separated by two days; the first trial involved ~2 h of airgun exposure and the second ~1 h. The results from the two trials showed that, above a received level of 166 dB re 1 μPa (rms) \(^{11}\), the turtles noticeably

\(^{11}\) rms = root mean square. This measure represents the average received sound pressure over the duration of the pulse, with duration being defined in a specific way (from the time when 5% of the pulse energy has been received to the time when 95% of the energy has been received). The rms received level of a seismic pulse is typically about 10 dB less than its peak level, and about 16 dB less than its peak-to-peak level (Greene et al. 1997, 2000; McCauley et al. 1998, 2000a,b).
increased their swim speed relative to periods when no airguns were operating. The behavior of the sea turtles became more erratic when received levels exceeded 175 dB re 1 μPa rms. The authors suggested that the erratic behavior exhibited by the caged sea turtles would likely, in unrestrained turtles, be expressed as an avoidance response (McCauley et al. 2000a,b).

O’Hara and Wilcox (1990) tested the reactions to airguns by loggerhead sea turtles held in a 300 × 45 m area of a canal in Florida with a bottom depth of 10 m. Nine turtles were tested at different times. The sound source consisted of one 10 in³ airgun plus two 0.8 in³ “poppers” operating at 2000 psi \(^{12}\) and an airgun-depth of 2 m for prolonged periods of 20–36 h. The turtles maintained a standoff range of about 30 m when exposed to airgun pulses every 15 or 7.5 s. Some turtles may have remained on the bottom of the enclosure when exposed to airgun pulses. O’Hara and Wilcox (1990) did not measure the received airgun sound levels. McCauley et al. (2000a,b) estimated that “the level at which O’Hara saw avoidance was around 175–176 dB re 1 μPa rms.” The levels received by the turtles in the Florida study probably were actually a few dB less than 175–176 dB because the calculations by McCauley et al. apparently did not allow for the shallow 2-m airgun depth in the Florida study. The effective source level of airguns is less when they are at a depth of 2 m vs. 5 m (Greene et al. 2000).

Moein et al. (1994) investigated the avoidance behavior and physiological responses of loggerhead turtles exposed to an operating airgun, as well as the effects on their hearing. The turtles were held in a netted enclosure ~18 m by 61 m by 3.6 m deep, with an airgun of unspecified size at each end. Only one airgun was operated at any one time; the firing rate was one shot every 5–6 s. Ten turtles were tested individually, and seven of these were retested several days later. The airgun was initially discharged when the turtles were near the center of the enclosure and the subsequent movements of the turtles were documented. The turtles exhibited avoidance during the first presentation of airgun sounds at a mean range of 24 m, but the avoidance response waned quickly. Additional trials conducted on the same turtles several days later did not show statistically significant avoidance reactions. However, there was an indication of slight initial avoidance followed by rapid waning of the avoidance response which the authors described as “habituation”. Their auditory study indicated that exposure to the airgun pulses may have resulted in temporary threshold shift (TTS; see later section). Reduced hearing sensitivity may also have contributed to the waning response upon continued exposure. Based on physiological measurements, there was some evidence of increased stress in the sea turtles, but this stress could also have resulted from handling of the turtles.

Inconsistencies in reporting procedures and experimental design prevent direct comparison of this study with either McCauley et al. (2000a,b) or O’Hara and Wilcox (1990). Moein et al. (1994) stated, without further details, that “three different decibel levels (175, 177, 179) were utilized” during each test. These figures probably are received levels in dB re 1 μPa, and probably relate to the initial exposure distance (mean 24 m), but these details were not specified. Also, it was not specified whether these values were measured or estimated, or whether they are expressed in peak-peak, peak, rms, SEL, or some other units. Given the shallow water in the enclosure (3.6 m), any estimates based on simple assumptions about propagation would be suspect.

\(^{12}\) There was no significant reaction by five turtles during an initial series of tests with the airguns operating at the unusually low pressure of 1000 psi. The source and received levels of airgun sounds would have been substantially lower when the air pressure was only 1000 psi than when it was at the more typical operating pressure of 2000 psi.
Lenhardt (2002) exposed captive loggerhead sea turtles while underwater to seismic airgun (Bolt 600) sounds in a large net enclosure. At received levels of 151–161 dB, turtles were found to increase swimming speeds. Similar to the McCauley et al. studies (2000a,b--see above), near a received level of ~175 dB, an avoidance reaction was common in initial trials, but habituation then appeared to occur. Based on ABRs measured pre- and post-airgun exposures, a TTS of over 15 dB was found in one animal, with recovery two weeks later. Lenhardt (2002) suggested that exposure of sea turtles to airguns at water depths >10 m may result in exposure to more energy in the low frequencies with unknown biological effects.

Despite the problems in comparing these studies, they are consistent in showing that, at some received level, sea turtles show avoidance of an operating airgun. McCauley et al. (2000a,b) found evidence of behavioral responses when the received level from a single small airgun was 166 dB re 1 μPa rms and avoidance responses at 175 dB re 1 μPa rms. Based on these data, McCauley et al. estimated that, for a typical airgun array (2678 in³, 12-elements) operating in 100–120 m water depth, sea turtles may exhibit behavioral changes at ~2 km and avoidance around 1 km. These estimates are subject to great variation, depending on the seismic source and local propagation conditions.

A further potential complication is that sea turtles on or near the bottom may receive sediment-borne “headwave” signals from the airguns (McCauley et al. 2000a,b). As previously discussed, it is believed that sea turtles use bone conduction to hear. It is unknown how sea turtles might respond to the headwave component of an airgun impulse or to bottom vibrations.

Related studies involving stimuli other than airguns may also be relevant. (1) Two loggerhead turtles resting on the bottom of shallow tanks responded repeatedly to low-frequency (20–80 Hz) tones by becoming active and swimming to the surface. They remained at the surface or only slightly submerged for the remainder of the 1-min trial (Lenhardt 1994). Although no detailed data on sound levels at the bottom vs. surface were reported, the surfacing response probably reduced the levels of underwater sound to which the turtles were exposed. (2) In a separate study, a loggerhead and a Kemp’s ridley sea turtle responded similarly when vibratory stimuli at 250 or 500 Hz were applied to the head for 1 s (Lenhardt et al. 1983). There appeared to be rapid habituation to these vibratory stimuli. (3) Turtles in tanks showed agitated behaviour when exposed to simulated boat noise and recordings from the U.S. Navy’s Low Frequency Active (LFA) sonar (Samuel et al. 2005, 2006). The tones and vibratory stimuli used in these two studies were quite different from airgun pulses. However, it is possible that resting sea turtles may exhibit a similar “alarm” response, possibly including surfacing or alternatively diving, when exposed to any audible noise, regardless of whether it is a pulsed sound or tone.

Monitoring Results.—Data on sea turtle behavior near airgun operations have also been collected during marine mammal and sea turtle monitoring and mitigation programs associated with various seismic operations around the world. Although the primary objectives concerned marine mammals, sea turtle sightings have also been documented in some of monitoring projects. Results suggest that some sea turtles exhibit behavioral changes and/or avoidance within an area of unknown size near a seismic vessel. However, avoidance of approaching seismic vessels is sufficiently limited and small-scale such that sea turtles are often seen from operating seismic vessels. Also, average distances from the airguns to these sea turtles are usually not greatly increased when the airguns are operating as compared with times when airguns are silent.

For example, during six large-source (10–20 airguns; 3050–8760 in³) and small-source (up to six airguns or three GI guns; 75–1350 in³) surveys conducted by L-DEO during 2003–2005, the mean closest point of approach (CPA) for turtles was closer during non-seismic than seismic periods: 139 m vs. 228 m.
and 120 m vs. 285 m, respectively (Holst et al. 2006). During a large-source L-DEO seismic survey off the Pacific coast of Central America in 2008, the turtle sighting rate during non-seismic periods was seven times greater than that during seismic periods (Holst and Smultea 2008). In addition, distances of turtles seen from the seismic vessel were significantly farther from the airgun array when it was operating (mean 159 m, \(n = 77 \)) than when the airguns were off (mean 118 m, \(n = 69 \); Mann-Whitney \(U \) test, \(P < 0.001 \) (Holst and Smultea 2008). During another L-DEO survey in the Eastern Tropical Pacific in 2008, the turtle sighting rate during non-seismic periods was 1.5 times greater than that during seismic periods; however, turtles tended to be seen closer to the airgun array when it was operating, but this difference was not statistically significant (Hauser et al. 2008).

Weir (2007) reported on the behavior of sea turtles near seismic exploration operations off Angola, West Africa. A total of 240 sea turtles were seen during 676 h of vessel-based monitoring, mainly for associated marine mammals mitigation and monitoring observations. Airgun arrays with total volumes of 5085 and 3147 in\(^3\) were used at different times during the seismic program. Sea turtles tended to be seen slightly closer to the seismic source, and at sighting rates twice as high, during non-seismic vs. seismic periods (Weir 2007). However, there was no significant difference in the median distance of turtle sightings from the array during non-seismic vs. seismic periods, with means of 743 m (\(n = 112 \)) and 779 m (\(n = 57 \)).

Off northeastern Brazil, 46 sea turtles were seen during 2028 h of vessel-based monitoring of seismic exploration using 4–8 GI air guns (Parente et al. 2006). There were no apparent differences in turtle sighting rates during seismic and non-seismic periods, but detailed behavioral data during seismic operations were lacking (Parente et al. 2006).

Behavioral responses of marine mammals and fish to seismic surveys sometimes vary depending on species, time of year, activity of the animal, and other unknown factors. The same species may show different responses at different times of year or even on different days (e.g., Richardson et al. 1995; Thomson et al. 2001). Sea turtles of different ages vary in size, behavior, feeding habits, and preferred water depths. Nothing specific is known about the ways in which these factors may be related to airgun sound effects in sea turtles. However, it is reasonable to expect lesser effects in young turtles concentrated near the surface (where levels of airgun sounds are attenuated) as compared with older turtles that spend more time at depth where airgun sounds are generally stronger.

3. Possible Effects of Airgun Sounds on Distribution

In captive enclosures, sea turtles generally respond to seismic noise by startling, increasing swimming speed, and/or swimming away from the noise source. Animals resting on the bottom often become active and move toward the surface where received sound levels normally will be reduced, although some turtles dive upon exposure. Unfortunately, quantitative data for free-ranging sea turtles exposed to seismic pulses are very limited, and potential long-term behavioral effects of seismic exposure have not been investigated. The paucity of data precludes clear predictions of sea turtle responses to seismic noise. Available evidence suggests that localized behavioral and distributional effects on sea turtles are likely during seismic operations, including responses to the seismic vessel, airguns, and other gear (e.g., McCauley 1994; Pendoley 1997; Weir 2007). Pendoley (1997) summarized potential effects of seismic operations on the behavior and distribution of sea turtles and identified biological periods and habitats considered most sensitive to potential disturbance. The possible responses of free-ranging sea turtles to seismic pulses could include

- avoiding the entire seismic survey area to the extent that turtles move to less preferred habitat;
Appendix B: Effects of Airgun Sounds on Sea Turtles

- avoiding only the immediate area around the active seismic vessel (i.e., local avoidance of the source vessel but remain in the general area); and
- exhibiting no appreciable avoidance, although short-term behavioral reactions are likely.

Complete avoidance of an area, if it occurred, could exclude sea turtles from their preferred foraging area and could displace them to areas where foraging is sub-optimal. Avoidance of a preferred foraging area may prevent sea turtles from obtaining preferred prey species and hence could impact their nutritional status. The potential alteration of a migration route might also have negative impacts. However, it is not known whether avoidance by sea turtles would ever be on a sufficient geographic scale, or be sufficiently prolonged, to prevent turtles from reaching an important destination.

Available evidence suggests that the zone of avoidance around seismic sources is not likely to exceed a few kilometers (McCauley et al. 2000a,b). Avoidance reactions on that scale could prevent sea turtles from using an important coastal area or bay if there was a prolonged seismic operation in the area, particularly in shallow waters (e.g., Pendoley 1997). Sea turtles might be excluded from the area for the duration of the seismic operation, or they might remain but exhibit abnormal behavioral patterns (e.g., lingering longer than normal at the surface where received sound levels are lower). Whether those that were displaced would return quickly after the seismic operation ended is unknown.

It is unclear whether exclusion from a particular nesting beach by seismic operations, if it occurred, would prevent or decrease reproductive success. It is believed that females migrate to the region of their birth and select a nesting beach (Miller 1997). However, the degree of site fidelity varies between species and also intra-seasonally by individuals. If a sea turtle is excluded from a particular beach, it may select a more distant, undisturbed nesting site in the general area (Miller 1997). For instance, Bjorndal et al. (1983) reported a maximal intra-seasonal distance between nesting sites of 290 km, indicating that turtles use multiple nesting sites spaced up to a few hundred kilometers apart. Also, it is uncertain whether a turtle that failed to go ashore because of seismic survey activity would abandon the area for that full breeding cycle, or would simply delay going ashore until the seismic vessel moved to a different area.

Shallow coastal waters can contain relatively high densities of sea turtles during nesting, hatching, and foraging periods. Thus, seismic operations in these areas could correspondingly impact a relatively higher number of individual turtles during sensitive biological periods. Samuel et al. (2005) noted that anthropogenic noise in vital sea turtle habitats, such as a major coastal foraging area off Long Island, NY, could affect sea turtle behaviour and ecology. There are no specific data that demonstrate the consequences to sea turtles if seismic operations with large or small arrays of airguns occur in important areas at biologically important times of year. However, a number of mitigation measures can, on a case-by-case basis, be considered for application in areas important to sea turtles (e.g., Pendoley 1997).

4. Possible Impacts of Airgun Sounds on Hearing

Noise-induced hearing damage can be either temporary or permanent. In general, the received sound must be strong for either to occur, and must be especially strong and/or prolonged for permanent impairment to occur.

Few studies have directly investigated hearing or noise-induced hearing loss in sea turtles. Moein et al. (1994) used an evoked potential method to test the hearing of loggerhead sea turtles exposed to a few hundred pulses from a single airgun. Turtle hearing was tested before, within 24 h after, and two weeks after exposure to pulses of airgun sound. Levels of airgun sound to which the turtles were exposed were not specifically reported. The authors concluded that five turtles exhibited some change in their hearing when tested within 24 h after exposure relative to pre-exposure hearing, and that hearing had
reverted to normal when tested two weeks after exposure. The results are consistent with the occurrence of TTS upon exposure of the turtles to airgun pulses. Unfortunately, the report did not state the size of the airgun used, or the received sound levels at various distances. The distances of the turtles from the airgun were also variable during the tests; the turtle was about 30 m from the airgun at the start of each trial, but it could then either approach the airgun or move away to a maximum of about 65 m during subsequent airgun pulses. Thus, the levels of airgun sounds that apparently elicited TTS are not known. Nonetheless, it is noteworthy that there was evidence of TTS from exposure to pulses from a single airgun. However, the turtles were confined and unable to move more than about 65 m away. Similarly, Lenhardt (2002) exposed loggerhead turtles in a large net enclosure to airgun pulses. A TTS of >15 dB was evident for one loggerhead turtle, with recovery occurring in two weeks. Turtles in the open sea might have moved away from an airgun operating at a fixed location, and in the more typical case of a towed airgun or airgun array, very few shots would occur at or around one location. Thus, exposure to underwater sound during net-enclosure experiments was not typical of that expected during an operational seismic survey.

Studies with terrestrial reptiles have demonstrated that exposure to airborne impulse noise can cause hearing loss. For example, desert tortoises (Gopherus agassizii) exhibited TTS after exposure to repeated high-intensity sonic booms (Bowles et al. 1999). Recovery from these temporary hearing losses was usually rapid (<1 h), which suggested that tortoises can tolerate these exposures without permanent injury (Bowles et al. 1999).

The results from captive, restrained sea turtles exposed repeatedly to seismic sounds in enclosed areas indicate that TTS is possible under these artificial conditions. However, there are no data to indicate whether there are any plausible field situations in which exposure to repeated airgun pulses at close range could cause permanent threshold shift (PTS) or hearing impairment in sea turtles. Hearing impairment (whether temporary or permanent) from seismic sounds is considered unlikely to occur at sea; turtles are unlikely to be exposed to more than a few strong pulses close to the sound source, as individuals are mobile and the vessel travels relatively quickly compared to the swimming speed of a sea turtle. However, in the absence of specific information on received levels of impulse sound necessary to elicit TTS and PTS in sea turtles, it is uncertain whether there are circumstances where these effects could occur in the field. If sea turtles exhibit little or no behavioral avoidance, or if they acclimate to seismic noise to the extent that avoidance reactions cease, sea turtles might sustain hearing loss if they are close enough to seismic sources. Similarly, in the absence of quantitative data on behavioral responses, it is unclear whether turtles in the area of seismic operations prior to start-up move out of the area when standard ramp-up (=soft-start) procedures are in effect. It has been proposed that sea turtles require a longer ramp-up period because of their relatively slow swimming speeds (Eckert 2000). However, it is unclear at what distance (if any) from a seismic source sea turtles could sustain hearing impairment, and whether there would ever be a possibility of exposure to sufficiently high levels for a sufficiently long period to cause permanent hearing damage.

In theory, a reduction in hearing sensitivity, either temporary or permanent, may be harmful for sea turtles. However, very little is known about the role of sound perception in the sea turtle’s normal activities. While it is not possible to estimate how much of a problem it would be for a turtle to have either temporary or permanent hearing impairment, there is some evidence indicating that hearing plays an important role in sea turtle survival. (I) It has been suggested (Eckert et al. 1998; Eckert 2000) that sea turtles may use passive reception of acoustic signals to detect the hunting sonar of killer whales (Orcinus orca), a known predator of leatherback sea turtles Dermochelys coriacea (Fertl and Fulling 2007). Further investigation is needed before this hypothesis can be accepted. Some communication calls of
killer whales include components at frequencies low enough to overlap the frequency range where sea turtles hear. However, the echolocation signals of killer whales are at considerably higher frequencies and may be inaudible to sea turtles (e.g., Simon et al. 2007). \(2\) Hearing impairment, either temporary or permanent, might inhibit a turtle’s ability to avoid injury from vessels. A recent study found that green sea turtles often responded behaviorally to close, oncoming small vessels and that the nature of the response was related to vessel speed, with fewer turtles displaying a flee response as vessel speed increased (Hazel et al. 2007). However, Hazel et al. (2007) suggested that a turtles’ ability to detect an approaching vessel was vision-dependent. \(3\) Hearing may play a role in navigation. For example, it has been proposed that sea turtles may identify their breeding beaches by their acoustic signature (Lenhardt et al. 1983). However, available evidence suggests that visual, wave, and magnetic cues are the main navigational cues used by sea turtles, at least in the case of hatchlings and juveniles (Lohmann et al. 1997, 2001; Lohmann and Lohmann 1998).

5. Other Physical Effects

Other potential direct physical effects to sea turtles during seismic operations include entanglement with seismic gear (e.g., cables, buoys, streamers, etc.) and ship strikes (Pendoley 1997; Ketos Ecology 2007; Weir 2007; Hazel et al. 2007). Entanglement of sea turtles with marine debris, fishing gear, and other equipment has been documented; turtles can become entangled in cables, lines, nets, or other objects suspended in the water column and can become injured or fatally wounded, drowned, or suffocated (e.g., Lutcavage et al. 1997). Seismic-survey personnel have reported that sea turtles (number unspecified) became fatally entrapped between gaps in tail-buoys associated with industrial seismic vessel gear deployed off West Africa in 2003 (Weir 2007). However, no incidents of entanglement of sea turtles have been documented during NSF-funded seismic surveys, which since 2003 have included dedicated ship-based monitoring by trained biological observers, in some cases in areas with many sea turtles (e.g., Holst et al. 2005a,b; Holst and Smultea 2008; Hauser et al. 2008).

6. Conclusions

Based on available data concerning sea turtles and other marine animals, it is likely that some sea turtles exhibit behavioral changes and/or avoidance within an area of unknown size near an operating seismic survey vessel. There is also the possibility of temporary hearing impairment or perhaps even permanent hearing damage to turtles close to the airguns. However, there are very few data on temporary hearing loss and no data on permanent hearing loss in sea turtles exposed to airgun pulses. Although some information is available about effects of exposure to sounds from a single airgun on captive sea turtles, the long term acoustic effects (if any) of a full-scale marine seismic operation on free-ranging sea turtles are unknown. Entanglement of turtles in seismic gear and vessel strikes during seismic survey operations are also possible but do not seem to be common. The greatest impact is likely to occur if seismic operations occur in or near areas where turtles concentrate, and at seasons when turtles are concentrated there. However, there are no specific data that demonstrate the consequences of such seismic operations to sea turtles. Until more data become available, it would be prudent to avoid seismic operations near important nesting beaches or in areas of known concentrated feeding during times of year when those areas are in use by many sea turtles.

7. Literature Cited

Appendix B: Effects of Airgun Sounds on Sea Turtles

Appendix B: Effects of Airgun Sounds on Sea Turtles

Appendix B: Effects of Airgun Sounds on Sea Turtles

APPENDIX C:

REVIEW OF THE EFFECTS OF AIRGUN SOUNDS ON FISHES

Here we review literature about the effects of airgun sounds on fishes during seismic surveys. The potential effect of seismic sounds on fish has been studied with a variety of taxa, including marine, freshwater, and anadromous species (reviewed by Fay and Popper 2000; Ladich and Popper 2004; Hastings and Popper 2005; Popper and Hastings 2009a,b).

It is sometimes difficult to interpret studies on the effects of underwater sound on marine animals because authors often do not provide enough information, including received sound levels, source sound levels, and specific characteristics of the sound. Specific characteristics of the sound include units and references, whether the sound is continuous or impulsive, and its frequency range. Underwater sound pressure levels are typically reported as a number of decibels referenced to a reference level, usually 1 micro-Pascal (µPa). However, the sound pressure dB number can represent multiple types of measurements, including “zero to peak”, “peak to peak”, or averaged (“rms”). Sound exposure levels (SEL) may also be reported as dB. The SEL is the integration of all the acoustic energy contained within a single sound event. Unless precise measurement types are reported, it can be impossible to directly compare results from two or more independent studies.

1. Acoustic Capabilities

Sensory systems – like those that allow for hearing – provide information about an animal’s physical, biological, and social environments, in both air and water. Extensive work has been done to understand the structures, mechanisms, and functions of animal sensory systems in aquatic environments (Atema et al. 1988; Kapoor and Hara 2001; Collin and Marshall 2003). All fish species have hearing and skin-based mechanosensory systems (inner ear and lateral line systems, respectively) that provide information about their surroundings (Fay and Popper 2000). Fay (2009) and some others refer to the ambient sounds to which fishes are exposed as ‘underwater soundscapes’. Anthropogenic sounds can have important negative consequences for fish survival and reproduction if they disrupt an individual’s ability to sense its soundscape, which often tells of predation risk, prey items, or mating opportunities. Potential negative effects include masking of key environmental sounds or social signals, displacement of fish from their habitat, or interference with sensory orientation and navigation.

Fish hearing via the inner ear is typically restricted to low frequencies. As with other vertebrates, fish hearing involves a mechanism whereby the beds of hair cells (Howard et al. 1988; Hudspeth and Markin 1994) located in the inner ear are mechanically affected and cause a neural discharge (Popper and Fay 1999). At least two major pathways for sound transmittance between sound source and the inner ear have been identified for fishes. The most primitive pathway involves direct transmission to the inner ear’s otolith, a calcium carbonate mass enveloped by sensory hairs. The inertial difference between the dense otolith and the less-dense inner ear causes the otolith to stimulate the surrounding sensory hair cells. This motion differential is interpreted by the central nervous system as sound.

The second transmission pathway between sound source and the inner ear of fishes is via the swim bladder, a gas-filled structure that is much less dense than the rest of the fish’s body. The swim bladder, being more compressible and expandable than either water or fish tissue, will differentially contract and

expand relative to the rest of the fish in a sound field. The pulsating swim bladder transmits this mechanical disturbance directly to the inner ear (discussed below). Such a secondary source of sound detection may be more or less effective at stimulating the inner ear depending on the amplitude and frequency of the pulsation, and the distance and mechanical coupling between the swim bladder and the inner ear (Popper and Fay 1993).

A recent paper by Popper and Fay (2010) discusses the designation of fishes based on sound detection capabilities. They suggest that the designations ‘hearing specialist’ and ‘hearing generalist’ no longer be used for fishes because of their vague and sometimes contradictory definitions, and that there is instead a range of hearing capabilities across species that is more like a continuum, presumably based on the relative contributions of pressure to the overall hearing capabilities of a species.

According to Popper and Fay (2010), one end of this continuum is represented by fishes that only detect particle motion because they lack pressure-sensitive gas bubbles (e.g., swim bladder). These species include elasmobranchs (e.g., sharks) and jawless fishes, and some teleosts including flatfishes. Fishes at this end of the continuum are typically capable of detecting sound frequencies below 1500 Hz.

The other end of the fish hearing continuum is represented by fishes with highly specialized otophysic connections between pressure receptive organs, such as the swim bladder, and the inner ear. These fishes include some squirrelfish, mormyrids, herrings, and otophysan fishes (freshwater fishes with Weberian apparatus, an articulated series of small bones that extend from the swim bladder to the inner ear). Rather than being limited to 1.5 kHz or less in hearing, these fishes can typically hear up to several kHz. One group of fish in the anadromous herring sub-family Alosinae (shads and menhaden) can detect sounds to well over 180 kHz (Mann et al. 1997, 1998, 2001). This may be the widest hearing range of any vertebrate that has been studied to date. While the specific reason for this very high frequency hearing is not totally clear, there is strong evidence that this capability evolved for the detection of the ultrasonic sounds produced by echolocating dolphins to enable the fish to detect, and avoid, predation (Mann et al. 1997; Plachta and Popper 2003).

All other fishes have hearing capabilities that fall somewhere between these two extremes of the continuum. Some have unconnected swim bladders located relatively far from the inner ear (e.g., salmonids, tuna) while others have unconnected swim bladders located relatively close to the inner ear (e.g., Atlantic cod, Gadus morhua). There has also been the suggestion that Atlantic cod can detect 38 kHz (Astrup and Møhl 1993). However, the general consensus was that this was not hearing with the ear; probably the fish were responding to exceedingly high pressure signals from the 38-kHz source through some other receptor in the skin, such as touch receptors (Astrup and Møhl 1998).

It is important to recognize that the swim bladder itself is not a sensory end organ, but rather an intermediate part of the sound pathway between sound source and the inner ear of some fishes. The inner ear of fishes is ultimately the organ that translates the particle displacement component into neural signals for the brain to interpret as sound.

A third mechanosensory pathway found in most bony fishes and elasmobranchs (i.e., cartilaginous fishes) involves the lateral line system. It too relies on sensitivity to water particle motion. The basic sensory unit of the lateral line system is the neuromast, a bundle of sensory and supporting cells whose projecting cilia, similar to those in the ears, are encased in a gelatinous cap. Neuromasts detect distorted sound waves in the immediate vicinity of fishes. Generally, fishes use the lateral line system to detect the particle displacement component of low frequency acoustic signals (up to 160 to 200 Hz) over a distance of one to two body lengths. The lateral line is used in conjunction with other sensory systems, including hearing (Sand 1981; Coombs and Montgomery 1999).
2. Potential Effects on Fishes

Review papers on the effects of anthropogenic sources of underwater sound on fishes have been published recently (Popper 2009; Popper and Hastings 2009a,b). These papers consider various sources of anthropogenic sound, including seismic airguns. For the purposes of this review, only the effects of seismic airgun sound are considered.

2.1 Marine Fishes

Evidence for airgun-induced damage to fish ears has come from studies using pink snapper Pagrus auratus (McCauley et al. 2000a,b, 2003). In these experiments, fish were caged and exposed to the sound of a single moving seismic airgun every 10 s over a period of 1 h and 41 min. The source SPL at 1 m was about 223 dB re 1 µPa·m_p-p, and the received SPLs ranged from 165 to 209 dB re 1 µPa_p-p. The sound energy was highest over the 20–70 Hz frequency range. The pink snapper were exposed to more than 600 airgun discharges during the study. In some individual fish, the sensory epithelium of the inner ear sustained extensive damage as indicated by ablated hair cells. Damage was more extensive in fish examined 58 days post-exposure compared to those examined 18 h post-exposure. There was no evidence of repair or replacement of damaged sensory cells up to 58 days post-exposure. McCauley et al. (2000a,b, 2003) included the following caveats in the study reports: (1) fish were caged and unable to swim away from the seismic source, (2) only one species of fish was examined, (3) the impact on the ultimate survival of the fish is unclear, and (4) airgun exposure specifics required to cause the observed damage were not obtained (i.e., a few high SPL signals or the cumulative effect of many low to moderate SPL signals).

The fish exposed to sound from a single airgun in this study also exhibited startle responses to short range start up and high-level airgun signals (i.e., with received SPLs of 182 to 195 dB re 1 µPa_mms (McCauley et al. 2000a,b). Smaller fish were more likely to display a startle response. Responses were observed above received SPLs of 156 to 161 dB re 1 µPa_mms. The occurrence of both startle response (classic C-turn response) and alarm responses (e.g., darting movements, flash school expansion, fast swimming) decreased over time. Other observations included downward distributional shift that was restricted by the 10 m x 6 m x 3 m cages, increase in swimming speed, and the formation of denser aggregations. Fish behavior appeared to return to pre-exposure state 15–30 min after cessation of seismic firing.

Pearson et al. (1992) investigated the effects of seismic airgun sound on the behavior of captive rockfishes (Sebastes sp.) exposed to the sound of a single stationary airgun at a variety of distances. The airgun used in the study had a source SPL at 1 m of 223 dB re 1 µPa·m0-p, and measured received SPLs ranged from 137 to 206 dB re 1 µPa_0-p. The authors reported that rockfishes reacted to the airgun sounds by exhibiting varying degrees of startle and alarm responses, depending on the species of rockfish and the received SPL. Startle responses were observed at a minimum received SPL of 200 dB re 1 µPa_0-p, and alarm responses occurred at a minimum received SPL of 177 dB re 1 µPa_0-p. Other observed behavioral changes included the tightening of schools, downward distributional shift, and random movement and orientation. Some fishes ascended in the water column and commenced to mill (i.e., “eddy”) at increased speed, while others descended to the bottom of the enclosure and remained motionless. Pre-exposure behavior was reestablished from 20 to 60 min after cessation of seismic airgun discharge. Pearson et al. (1992) concluded that received SPL thresholds for overt rockfish behavioral response and more subtle rockfish behavioral response are 180 dB re 1 µPa_0-p and 161 dB re 1 µPa_0-p, respectively.
Using an experimental hook and line fishery approach, Skalski et al. (1992) studied the potential effects of seismic airgun sound on the distribution and catchability of rockfishes. The source SPL of the single airgun used in the study was 223 dB re 1 µPa·m0/p, and the received SPLs at the bases of the rockfish aggregations ranged from 186 to 191 dB re 1 µPa0/p. Characteristics of the fish aggregations were assessed using echosounders. During long-term stationary seismic airgun discharge, there was an overall downward shift in fish distribution. The authors also observed a significant decline in total catch of rockfishes during seismic discharge. It should be noted that this experimental approach was quite different from an actual seismic survey, in that duration of exposure was much longer.

In another study, caged European sea bass (*Dicentrarchus labrax*) were exposed to multiple discharges from a moving seismic airgun array with a source SPL of about 256 dB re 1 µPa·m0/p (unspecified measure type) (Santulli et al. 1999). The airguns were discharged every 25 s during a 2-h period. The minimum distance between fish and seismic source was 180 m. The authors did not indicate any observed pathological injury to the sea bass. Blood was collected from both exposed fish (6 h post-exposure) and control fish (6 h pre-exposure) and subsequently analyzed for cortisol, glucose, and lactate levels. Levels of cortisol, glucose, and lactate were significantly higher in the sera of exposed fish compared to sera of control fish. The elevated levels of all three chemicals returned to pre-exposure levels within 72 h of exposure (Santulli et al. 1999).

Santulli et al. (1999) also used underwater video cameras to monitor fish response to seismic airgun discharge. Resultant video indicated slight startle responses by some of the sea bass when the seismic airgun array discharged as far as 2.5 km from the cage. The proportion of sea bass that exhibited startle response increased as the airgun sound source approached the cage. Once the seismic array was within 180 m of the cage, the sea bass were densely packed at the middle of the enclosure, exhibiting random orientation, and appearing more active than they had been under pre-exposure conditions. Normal behavior resumed about 2 h after airgun discharge nearest the fish (Santulli et al. 1999).

Boeger et al. (2006) reported observations of coral reef fishes in field enclosures before, during and after exposure to seismic airgun sound. This Brazilian study used an array of eight airguns that was presented to the fishes as both a mobile sound source and a static sound source. Minimum distances between the sound source and the fish cage ranged from 0 to 7 m. Received sound levels were not reported by Boeger et al. (2006). Neither mortality nor external damage to the fishes was observed in any of the experimental scenarios. Most of the airgun array discharges resulted in startle responses although these behavioral changes lessened with repeated exposures, suggesting habituation.

Chapman and Hawkins (1969) investigated the reactions of free ranging whiting (silver hake), *Merluccius bilinearis*, to an intermittently discharging stationary airgun with a source SPL of 220 dB re 1 µPa·m0/p. Received SPLs were estimated to be 178 dB re 1 µPa0/p. The whiting were monitored with an echosounder. Prior to any airgun discharge, the fish were located at a depth range of 25 to 55 m. In apparent response to the airgun sound, the fish descended, forming a compact layer at depths greater than 55 m. After an hour of exposure to the airgun sound, the fish appeared to have habituated as indicated by their return to the pre-exposure depth range, despite the continuing airgun discharge. Airgun discharge ceased for a time and upon its resumption, the fish again descended to greater depths, indicating only temporary habituation.

Hassel et al. (2003, 2004) studied the potential effects of exposure to airgun sound on the behavior of captive lesser sandeel, *Ammodytes marinus*. Depth of the study enclosure used to hold the sandeel was about 55 m. The moving airgun array had an estimated source SPL of 256 dB re 1 µPa·m (unspecified measure type). Received SPLs were not measured. Exposures were conducted over a 3-day period in a
10 km × 10 km area with the cage at its center. The distance between airgun array and fish cage ranged from 55 m when the array was overhead to 7.5 km. No mortality attributable to exposure to the airgun sound was noted. Behavior of the fish was monitored using underwater video cameras, echosounders, and commercial fishery data collected close to the study area. The approach of the seismic vessel appeared to cause an increase in tail-beat frequency although the sandeels still appeared to swim calmly. During seismic airgun discharge, many fish exhibited startle responses, followed by flight from the immediate area. The frequency of occurrence of startle response seemed to increase as the operating seismic array moved closer to the fish. The sandeels stopped exhibiting the startle response once the airgun discharge ceased. The sandeel tended to remain higher in the water column during the airgun discharge, and none of them were observed burying themselves in the soft substrate. The commercial fishery catch data were inconclusive with respect to behavioral effects.

Various species of demersal fishes, blue whiting, and some small pelagic fishes were exposed to a moving seismic airgun array with a source SPL of about 250 dB re 1 μPa·m (unspecified measure type) (Dalen and Knutsen 1986). Received SPLs estimated using the assumption of spherical spreading ranged from 200 to 210 dB re 1 μPa (unspecified measure type). Seismic sound exposures were conducted every 10 s during a one week period. The authors used echosounders and sonars to assess the pre- and post-exposure fish distributions. The acoustic mapping results indicated a significant decrease in abundance of demersal fish (36%) after airgun discharge but comparative trawl catches did not support this. Non-significant reductions in the abundances of blue whiting and small pelagic fish were also indicated by post-exposure acoustic mapping.

La Bella et al. (1996) studied the effects of exposure to seismic airgun sound on fish distribution using echosounder monitoring and changes in catch rate of hake by trawl, and clupeoids by gill netting. The seismic array used was composed of 16 airguns and had a source SPL of 256 dB re 1 μPa·m0-p. The shot interval was 25 s, and exposure durations ranged from 4.6 to 12 h. Horizontal distributions did not appear to change as a result of exposure to seismic discharge, but there was some indication of a downward shift in the vertical distribution. The catch rates during experimental fishing did not differ significantly between pre- and post-seismic fishing periods.

Wardle et al. (2001) used video and telemetry to make behavioral observations of marine fishes (primarily juvenile saithe, adult pollock, juvenile cod, and adult mackerel) inhabiting an inshore reef off Scotland before, during, and after exposure to discharges of a stationary airgun. The received SPLs ranged from about 195 to 218 dB re 1 μPa0-p. Pollock did not move away from the reef in response to the seismic airgun sound, and their diurnal rhythm did not appear to be affected. However, there was an indication of a slight effect on the long-term day-to-night movements of the pollock. Video camera observations indicated that fish exhibited startle responses (“C-starts”) to all received levels. There were also indications of behavioral responses to visual stimuli. If the seismic source was visible to the fish, they fled from it. However, if the source was not visible to the fish, they often continued to move toward it.

The potential effects of exposure to seismic sound on fish abundance and distribution were also investigated by Slotte et al. (2004). Twelve days of seismic survey operations spread over a period of 1 month used a seismic airgun array with a source SPL of 222.6 dB re 1 μPa·m0-p. The SPLs received by the fish were not measured. Acoustic surveys of the local distributions of various kinds of pelagic fish, including herring, blue whiting, and mesopelagic species, were conducted during the seismic surveys. There was no strong evidence of short-term horizontal distributional effects. With respect to vertical distribution, blue whiting and mesopelagics were distributed deeper (20 to 50 m) during the seismic
Appendix C: Effects of Airgun Sounds and Fishes

Survey compared to pre-exposure. The average densities of fish aggregations were lower within the seismic survey area, and fish abundances appeared to increase in accordance with increasing distance from the seismic survey area.

Fertilized capelin (*Mallotus villosus*) eggs and monkfish (*Lophius americanus*) larvae were exposed to seismic airgun sound and subsequently examined and monitored for possible effects of the exposure (Payne et al. 2009). The laboratory exposure studies involved a single airgun. Approximate received SPLs measured in the capelin egg and monkfish larvae exposures were 199 to 205 dB re 1 µPa_{p-p} and 205 dB re 1 µPa_{p-p}, respectively. The capelin eggs were exposed to either 10 or 20 airgun discharges, and the monkfish larvae were exposed to either 10 or 30 discharges. No statistical differences in mortality/morbidity between control and exposed subjects were found at 1 to 4 days post-exposure in any of the exposure trials for either the capelin eggs or the monkfish larvae.

In uncontrolled experiments, Kostyvchenko (1973) exposed the eggs of numerous fish species (anchovy, red mullet, crucian carp, blue runner) to various sound sources, including seismic airguns. With the seismic airgun discharge as close as 0.5 m from the eggs, over 75% of them survived the exposure. Egg survival rate increased to over 90% when placed 10 m from the airgun sound source. The range of received SPLs was about 215 to 233 dB re 1 µPa_{p-p}.

Eggs, yolk sac larvae, post-yolk sac larvae, post-larvae, and fry of various commercially important fish species (cod, saithe, herring, turbot, and plaice) were exposed to received SPLs ranging from 220 to 242 dB re 1 µPa (unspecified measure type) (Booman et al. 1996). These received levels corresponded to exposure distances ranging from 0.75 to 6 m. The authors reported some cases of injury and mortality but most of these occurred as a result of exposures at very close range (i.e., <15 m). The rigor of anatomical and pathological assessments was questionable.

Saetre and Ona (1996) applied a “worst-case scenario” mathematical model to investigate the effects of seismic sound on fish eggs and larvae. They concluded that mortality rates caused by exposure to seismic airgun sound are so low compared to the natural mortality that the impact of seismic surveying on recruitment to a fish stock must be regarded as insignificant.

2.2 Freshwater Fishes

Popper et al. (2005) tested the hearing sensitivity of three Mackenzie River fish species after exposure to five discharges from a seismic airgun. The mean received peak SPL was 205 to 209 dB re 1 µPa per discharge, and the approximate mean received SEL was 176 to 180 dB re 1 µPa²·s per discharge. While the broad whitefish showed no Temporary Threshold Shift (TTS) as a result of the exposure, adult northern pike and lake chub exhibited TTSs of 10 to 15 dB, followed by complete recovery within 24 h of exposure. The same animals were also examined to determine whether there were observable effects on the sensory cells of the inner ear as a result of exposure to seismic sound (Song et al. 2008). No damage to the ears of the fishes was found, including those that exhibited TTS.

In another part of the same Mackenzie River project, Jorgenson and Gyselman (2009) investigated the behavioral responses of arctic riverine fishes to seismic airgun sound. They used hydroacoustic survey techniques to determine whether fish behavior upon exposure to airgun sound can either mitigate or enhance the potential impact of the sound. The study indicated that fish behavioral characteristics were generally unchanged by the exposure to airgun sound. The tracked fish did not exhibit herding behavior in front of the mobile airgun array and, therefore, were not exposed to sustained high sound levels.
2.3 Anadromous Fishes

In uncontrolled experiments using a very small sample of different groups of young salmonids, including Arctic cisco, fish were caged and exposed to various types of sound. One sound type was either a single firing or a series of four firings 10 to 15 s apart of a 300-in³ seismic airgun at 2000 to 2200 psi (Falk and Lawrence 1973). Swim bladder damage was reported but no mortality was observed when fish were exposed within 1 to 2 m of an airgun source with source level, as estimated by Turnpenny and Nedwell (1994), of ~230 dB re 1 µPa·m (unspecified measure).

Thomsen (2002) exposed rainbow trout and Atlantic salmon held in aquaculture enclosures to the sounds from a small airgun array. Received SPLs were 142 to 186 dB re 1 µPa_p-p. The fish were exposed to 124 pulses over a 3-day period. In addition to monitoring fish behavior with underwater video cameras, the authors also analyzed cod and haddock catch data from a longline fishing vessel operating in the immediate area. Only eight of the 124 shots appeared to evoke behavioral reactions by the salmonids, but overall impacts were minimal. No fish mortality was observed during or immediately after exposure. The author reported no significant effects on cod and haddock catch rates, and the behavioral effects were hard to differentiate from normal behavior.

Weinhold and Weaver (1972, cited in Turnpenny et al. 1994) exposed caged coho salmon smolts to impulses from 330 and 660-in³ airguns at distances ranging from 1 to 10 m, resulting in received levels estimated at ~214 to 216 dB (units not given). No lethal effects were observed.

It should be noted that, in a recent and comprehensive review, Hastings and Popper (2005) take issue with many of the authors cited above for problems with experimental design and execution, measurements, and interpretation. Hastings and Popper (2005) deal primarily with possible effects of pile-driving sounds (which, like airgun sounds, are impulsive and repetitive). However, that review provides an excellent and critical review of the impacts to fish from other underwater anthropogenic sounds.

3. Indirect Effects on Fisheries

The most comprehensive experimentation on the effects of seismic airgun sound on catchability of fishes was conducted in the Barents Sea by Engås et al. (1993, 1996). They investigated the effects of seismic airgun sound on distributions, abundances, and catch rates of cod and haddock using acoustic mapping and experimental fishing with trawls and longlines. The maximum source SPL was about 248 dB re 1 µPa·m_0-p based on back-calculations from measurements collected via a hydrophone at depth 80 m. No measurements of the received SPLs were made. Davis et al. (1998) estimated the received SPL at the sea bottom immediately below the array and at 18 km from the array to be 205 dB re 1 µPa_p-p and 178 dB re 1 µPa_0-p, respectively. Engås et al. (1993, 1996) concluded that there were indications of distributional change during and immediately following the seismic airgun discharge (45 to 64% decrease in acoustic density according to sonar data). The lowest densities were observed within 9.3 km of the seismic discharge area. The authors indicated that trawl catches of both cod and haddock declined after the seismic operations. While longline catches of haddock also showed decline after seismic airgun discharge, those for cod increased.

Løkkeborg (1991), Løkkeborg and Soldal (1993), and Dalen and Knutsen (1986) also examined the effects of seismic airgun sound on demersal fish catches. Løkkeborg (1991) examined the effects on cod catches. The source SPL of the airgun array used in his study was 239 dB re 1 µPa·m (unspecified measure type), but received SPLs were not measured. Approximately 43 h of seismic airgun discharge occurred during an 11-day period, with a five-second interval between pulses. Catch rate decreases
ranging from 55 to 80% within the seismic survey area were observed. This apparent effect persisted for at least 24 h within about 10 km of the survey area.

Turnpenny et al. (1994) examined results of these studies as well as the results of other studies on rockfish. They used rough estimations of received SPLs at catch locations and concluded that catchability is reduced when received SPLs exceed 160 to 180 dB re 1 µPa. They also concluded that reaction thresholds of fishes lacking a swim bladder (e.g., flatfish) would likely be about 20 dB higher. Given the considerable variability in sound transmission loss between different geographic locations, the SPLs that were assumed in these studies were likely quite inaccurate.

Turnpenny and Nedwell (1994) also reported on the effects of seismic airgun discharge on inshore bass fisheries in shallow U.K. waters (5 to 30 m deep). The airgun array used had a source level of 250 dB re 1 µPa·m0-p. Received levels in the fishing areas were estimated to be 163–191 dB re 1 µPa·m0-p. Using fish tagging and catch record methodologies, they concluded that there was not any distinguishable migration from the ensonified area, nor was there any reduction in bass catches on days when seismic airguns were discharged. The authors concluded that effects on fisheries would be smaller in shallow nearshore waters than in deep water because attenuation of sound is more rapid in shallow water.

Skalski et al. (1992) used a 100-in3 airgun with a source level of 223 dB re 1 µPa·m0-p to examine the potential effects of airgun sound on the catchability of rockfishes. The moving airgun was discharged along transects in the study fishing area, after which a fishing vessel deployed a set line, ran three echo-sounder transects, and then deployed two more set lines. Each fishing experiment lasted 1 h 25 min. Received SPLs at the base of the rockfish aggregations ranged from 186 to 191 dB re 1 µPa·m0-p. The catch-per-unit-effort (CPUE) for rockfish declined on average by 52.4% when the airguns were operating. Skalski et al. (1992) believed that the reduction in catch resulted from a change in behavior of the fishes. The fish schools descended towards the bottom and their swimming behavior changed during airgun discharge. Although fish dispersal was not observed, the authors hypothesized that it could have occurred at a different location with a different bottom type. Skalski et al. (1992) did not continue fishing after cessation of airgun discharge. They speculated that CPUE would quickly return to normal in the experimental area, because fish behavior appeared to normalize within minutes of cessation of airgun discharge. However, in an area where exposure to airgun sound might have caused the fish to disperse, the authors suggested that a lower CPUE might persist for a longer period.

European sea bass were exposed to sound from seismic airgun arrays with a source SPL of 262 dB re 1 µPa·m0-p (Pickett et al. 1994). The seismic survey was conducted over a period of 4 to 5 months. The study was intended to investigate the effects of seismic airgun discharge on inshore bass fisheries. Information was collected through a tag and release program, and from the logbooks of commercial fishermen. Most of the 152 recovered fish from the tagging program were caught within 10 km of the release site, and it was suggested that most of these bass did not leave the area for a prolonged period. With respect to the commercial fishery, no significant changes in catch rate were observed (Pickett et al. 1994).

4. Literature Cited

Appendix C: Effects of Airgun Sounds and Fishes

Appendix C: Effects of Airgun Sounds and Fishes

APPENDIX D:

REVIEW OF THE EFFECTS OF AIRGUN SOUNDS ON MARINE INVERTEBRATES

This review provides a detailed summary of the limited data and available literature on the observed effects (or lack of effects) of exposure to airgun sound on marine invertebrates. Specific conditions and results of the studies, including sound exposure levels and sound thresholds of responses, are discussed when available.

Sound caused by underwater seismic survey equipment results in energy pulses with very high peak pressures (Richardson et al. 1995). This was especially true when chemical explosives were used for underwater surveys. Virtually all underwater seismic surveying conducted today uses airguns which typically have lower peak pressures and longer rise times than chemical explosives. However, sound levels from underwater airgun discharges might still be high enough to potentially injure or kill animals located close to the source. Also, there is a potential for disturbance to normal behavior upon exposure to airgun sound. The following sections provide an overview of sound production and detection in marine invertebrates, and information on the effects of exposure to sound on marine invertebrates, with an emphasis on seismic survey sound. In addition, Fisheries and Oceans Canada has published two internal documents that provide a literature review of the effects of seismic and other underwater sound on invertebrates (Moriyasu et al. 2004; Payne et al. 2008). The available information as reviewed in those documents and here includes results of studies of varying degrees of scientific rigor as well as anecdotal information.

1. Sound Production

Much of the available information on acoustic abilities of marine invertebrates pertains to crustaceans, specifically lobsters, crabs and shrimps. Other acoustic-related studies have been conducted on cephalopods. Many invertebrates are capable of producing sound, including barnacles, amphipods, shrimp, crabs, and lobsters (Au and Banks 1998; Tolstoganova 2002). Invertebrates typically produce sound by scraping or rubbing various parts of their bodies, although they also produce sound in other ways. Sounds made by marine invertebrates may be associated with territorial behavior, mating, courtship, and aggression. On the other hand, some of these sounds may be incidental and not have any biological relevance. Sounds known to be produced by marine invertebrates have frequencies ranging from 87 Hz to 200 kHz, depending on the species.

Both male and female American lobsters *Homarus americanus* produce a buzzing vibration with the carapace when grasped (Pye and Watson III 2004; Henninger and Watson III 2005). Larger lobsters vibrate more consistently than smaller lobsters, suggesting that sound production may be involved with mating behavior. Sound production by other species of lobsters has also been studied. Among deep-sea lobsters, sound level was more variable at night than during the day, with the highest levels occurring at the lowest frequencies.

While feeding, king crab *Paralithodes camtschaticus* produce impulsive sounds that appear to stimulate movement by other crabs, including approach behavior (Tolstoganova 2002). King crab also appeared to produce ‘discomfort’ sounds when environmental conditions were manipulated. These discomfort sounds differ from the feeding sounds in terms of frequency range and pulse duration.

14 By **John Christian**, LGL Ltd., environmental research associates (revised Nov. 2009).
Snapping shrimp *Synalpheus parneomeris* are among the major sources of biological sound in temperate and tropical shallow-water areas (Au and Banks 1998). By rapidly closing one of its frontal chelae (claws), a snapping shrimp generates a forward jet of water and the cavitation of fast moving water produces a sound. Both the sound and the jet of water may function in feeding and territorial behaviors of alpheidae shrimp. Measured source sound pressure levels (SPLs) for snapping ship were 183–189 dB re 1 μPa · m²·p and extended over a frequency range of 2–200 kHz.

2. Sound Detection

There is considerable debate about the hearing capabilities of aquatic invertebrates. Whether they are able to hear or not depends on how underwater sound and underwater hearing are defined. In contrast to the situation in fish and marine mammals, no physical structures have been discovered in aquatic invertebrates that are stimulated by the pressure component of sound. However, vibrations (i.e., mechanical disturbances of the water) are also characteristic of sound waves. Rather than being pressure-sensitive, aquatic invertebrates appear to be most sensitive to the vibrational component of sound (Breithaupt 2002). Statocyst organs may provide one means of vibration detection for aquatic invertebrates.

More is known about the acoustic detection capabilities in decapod crustaceans than in any other marine invertebrate group, although cephalopod acoustic capabilities are now becoming a focus of study. Crustaceans appear to be most sensitive to sounds of low frequencies, i.e., <1000 Hz (Budelmann 1992; Popper et al. 2001). A study by Lovell et al. (2005) suggests greater sensitivity of the prawn *Palaemon serratus* to low-frequency sound than previously thought. Lovell et al. (2006) showed that *P. serratus* is capable of detecting a 500 Hz tone regardless of the prawn’s body size and the related number and size of statocyst hair cells. Studies of American lobsters suggest that these crustaceans are more sensitive to higher frequency sounds than previously realized (Pye and Watson III 2004).

It is possible that statocyst hair cells of cephalopods are directionally sensitive in a way that is similar to the responses of hair cells of the vertebrate vestibular and lateral line systems (Budelmann and Williamson 1994; Budelmann 1996). Kaifu et al. (2008) provided evidence that the cephalopod *Octopus ocellatus* detects particle motion with its statocyst. Studies by Packard et al. (1990), Rawizza (1995) and Komak et al. (2005) have tested the sensitivities of various cephalopods to water-borne vibrations, some of which were generated by low-frequency sound. Using the auditory brainstem response (ABR) approach, Hu et al. (2009) showed that auditory evoked potentials can be obtained in the frequency ranges 400 to 1500 Hz for the squid *Sepiotheutis lessoniana* and 400 to 1000 Hz for the octopus *Octopus vulgaris*, higher than frequencies previously observed to be detectable by cephalopods.

In summary, only a few studies have been conducted on the sensitivity of certain invertebrate species to underwater sound. Available data suggest that they are capable of detecting vibrations but they do not appear to be capable of detecting pressure fluctuations.

3. Potential Seismic Effects

In marine invertebrates, potential effects of exposure to sound can be categorized as pathological, physiological, and behavioral. Pathological effects include lethal and sub-lethal injury to the animals, physiological effects include temporary primary and secondary stress responses, and behavioral effects refer to changes in exhibited behaviors (i.e., disturbance). The three categories should not be considered as independent of one another and are likely interrelated in complex ways.
Pathological Effects.—In water, acute injury or death of organisms as a result of exposure to sound appears to depend on two features of the sound source: (1) the received peak pressure, and (2) the time required for the pressure to rise and decay. Generally, the higher the received pressure and the less time it takes for the pressure to rise and decay, the greater the chance of acute pathological effects. Considering the peak pressure and rise/decay time characteristics of seismic airgun arrays used today, the associated pathological zone for invertebrates would be expected to be small (i.e., within a few meters of the seismic source, at most). Few studies have assessed the potential for pathological effects on invertebrates from exposure to seismic sound.

The pathological impacts of seismic survey sound on marine invertebrates were investigated in a pilot study on snow crabs *Chionoecetes opilio* (Christian et al. 2003, 2004). Under controlled field experimental conditions, captive adult male snow crabs, egg-carrying female snow crabs, and fertilized snow crab eggs were exposed to variable SPLs (191–221 dB re 1 μPa_{0-p}) and sound energy levels (SELS) (<130–187 dB re 1 μPa^{2}·s). Neither acute nor chronic (12 weeks post-exposure) mortality was observed for the adult crabs. However, a significant difference in development rate was noted between the exposed and unexposed fertilized eggs/embryos. The egg mass exposed to seismic energy had a higher proportion of less-developed eggs than did the unexposed mass. It should be noted that both egg masses came from a single female and any measure of natural variability was unattainable (Christian et al. 2003, 2004).

In 2003, a collaborative study was conducted in the southern Gulf of St. Lawrence, Canada, to investigate the effects of exposure to sound from a commercial seismic survey on egg-bearing female snow crabs (DFO 2004). This study had design problems that impacted interpretation of some of the results (Chadwick 2004). Caged animals were placed on the ocean bottom at a location within the survey area and at a location outside of the survey area. The maximum received SPL was ~195 dB re 1 μPa_{0-p}. The crabs were exposed for 132 hr of the survey, equivalent to thousands of seismic shots of varying received SPLs. The animals were retrieved and transferred to laboratories for analyses. Neither acute nor chronic lethal or sub-lethal injury to the female crabs or crab embryos was indicated. DFO (2004) reported that some exposed individuals had short-term soiling of gills, antennules and statocysts, bruising of the hepatopancreas and ovary, and detached outer membranes of oocytes. However, these differences could not be linked conclusively to exposure to seismic survey sound. Boudreau et al. (2009) presented the proceedings of a workshop held to evaluate the results of additional studies conducted to answer some questions arising from the original study discussed in DFO (2004). Proceedings of the workshop did not include any more definitive conclusions regarding the original results.

Payne et al. (2007) recently conducted a pilot study of the effects of exposure to airgun sound on various health endpoints of the American lobster. Adult lobsters were exposed either 20 to 200 times to 202 dB re 1μPa_{p-p}, or 50 times to 227 dB re 1μPa_{p-p}, and then monitored for changes in survival, food consumption, turnover rate, serum protein level, serum enzyme levels, and serum calcium level. Observations extended over a period of a few days to several months. Results showed no delayed mortality or damage to the mechanosensory systems associated with animal equilibrium and posture (as assessed by turnover rate).

In a field study, Pearson et al. (1994) exposed Stage II larvae of the Dungeness crab *Cancer magister* to single discharges from a seven-airgun array and compared their mortality and development rates with those of unexposed larvae. No statistically significant differences were found in immediate survival, long-term survival, or time to molt between the exposed and unexposed larvae, even those exposed within 1 m of the seismic source.
In 2001 and 2003, there were two incidents of multiple strandings of the giant squid *Architeuthis dux* on the north coast of Spain, and there was speculation that the strandings were caused by exposure to geophysical seismic survey sounds occurring at about the same time in the Bay of Biscay (Guerra et al. 2004). A total of nine giant squid, either stranded or moribund and floating at the surface, were collected at these times. However, Guerra et al. (2004) did not present any evidence that conclusively links the giant squid strandings and floaters to seismic activity in the area. Based on necropsies of seven (six females and one male) specimens, there was evidence of acute tissue damage. The authors speculated that one female with extensive tissue damage was affected by the impact of acoustic waves. However, little is known about the impact of strong airgun signals on cephalopods and the authors did not describe the seismic sources, locations, and durations of the Bay of Biscay surveys. In addition, there were no controls, the observations were circumstantial, and the examined animals had been dead long enough for commencement of tissue degradation.

McCauley et al. (2000a,b) exposed caged cephalopods to noise from a single 20-in3 airgun with maximum SPLs of >200 dB re 1 μPa 0-p. Statocysts were removed and preserved, but at the time of publication, results of the statocyst analyses were not available. No squid or cuttlefish mortalities were reported as a result of these exposures.

Physiological Effects.—Biochemical responses by marine invertebrates to acoustic exposure have also been studied to a limited degree. Such studies of stress responses could possibly provide some indication of the physiological consequences of acoustic exposure and perhaps any subsequent chronic detrimental effects. Stress responses could potentially affect animal populations by reducing reproductive capacity and adult abundance.

Stress indicators in the haemolymph of adult male snow crabs were monitored immediately after exposure of the animals to seismic survey sound (Christian et al. 2003, 2004) and at various intervals after exposure. No significant acute or chronic differences were found between exposed and unexposed animals in which various stress indicators (e.g., proteins, enzymes, cell type count) were measured.

Payne et al. (2007), in their study of the effects of exposure of adult American lobsters to airgun sound, noted decreases in the levels of serum protein, particular serum enzymes and serum calcium, in the haemolymph of animals exposed to the sound pulses. Statistically significant differences ($P=0.05$) were noted in serum protein at 12 days post-exposure, serum enzymes at 5 days post-exposure, and serum calcium at 12 days post-exposure. During the histological analysis conducted 4 months post-exposure, Payne et al. (2007) noted more deposits of PAS-stained material, likely glycogen, in the hepatopancreas of some of the exposed lobsters. Accumulation of glycogen could be due to stress or disturbance of cellular processes.

Price (2007) found that blue mussels *Mytilus edulis* responded to a 10 kHz pure tone continuous signal by decreasing respiration. Smaller mussels did not appear to react until exposed for 30 min whereas larger mussels responded after 10 min of exposure. The oxygen uptake rate tended to be reduced to a greater degree in the larger mussels than in the smaller animals.

In general, the limited studies done to date on the effects of acoustic exposure on marine invertebrates have not demonstrated any serious pathological and physiological effects.

Behavioral Effects.—Some recent studies have focused on potential behavioral effects on marine invertebrates.
Christian et al. (2003) investigated the behavioral effects of exposure to airgun sound on snow crabs. Eight animals were equipped with ultrasonic tags, released, and monitored for multiple days prior to exposure and after exposure. Received SPL and SEL were ~191 dB re 1 µPa0-p and <130 dB re 1 µPa2·s, respectively. The crabs were exposed to 200 discharges over a 33-min period. None of the tagged animals left the immediate area after exposure to the seismic survey sound. Five animals were captured in the snow crab commercial fishery the following year, one at the release location, one 35 km from the release location, and three at intermediate distances from the release location.

Another study approach used by Christian et al. (2003) involved monitoring snow crabs with a remote video camera during their exposure to airgun sound. The caged animals were placed on the ocean bottom at a depth of 50 m. Received SPL and SEL were ~202 dB re 1 µPa0-p and 150 dB re 1 µPa2·s, respectively. The crabs were exposed to 200 discharges over a 33-min period. They did not exhibit any overt startle response during the exposure period.

Christian et al. (2003) also investigated the pre- and post-exposure catchability of snow crabs during a commercial fishery. Received SPLs and SELs were not measured directly and likely ranged widely considering the area fished. Maximum SPL and SEL were likely similar to those measured during the telemetry study. There were seven pre-exposure and six post-exposure trap sets. Unfortunately, there was considerable variability in set duration because of poor weather. Results indicated that the catch-per-unit-effort did not decrease after the crabs were exposed to seismic survey sound.

Parry and Gason (2006) statistically analyzed data related to rock lobster Jasus edwardsii commercial catches and seismic surveying in Australian waters from 1978 to 2004. They did not find any evidence that lobster catch rates were affected by seismic surveys.

Caged female snow crabs exposed to airgun sound associated with a recent commercial seismic survey conducted in the southern Gulf of St. Lawrence, Canada, exhibited a higher rate of ‘righting’ than those crabs not exposed to seismic survey sound (J. Payne, Research Scientist, DFO, St. John’s, Nfld., pers. comm.). ‘Righting’ refers to a crab’s ability to return itself to an upright position after being placed on its back. Christian et al. (2003) made the same observation in their study.

Payne et al. (2007), in their study of the effects of exposure to airgun sound on adult American lobsters, noted a trend for increased food consumption by the animals exposed to seismic sound.

Andriguetto-Filho et al. (2005) attempted to evaluate the impact of seismic survey sound on artisanal shrimp fisheries off Brazil. Bottom trawl yields were measured before and after multiple-day shooting of an airgun array. Water depth in the experimental area ranged between 2 and 15 m. Results of the study did not indicate any significant deleterious impact on shrimp catches. Anecdotal information from Newfoundland, Canada, indicated that catch rates of snow crabs showed a significant reduction immediately following a pass by a seismic survey vessel (G. Chidley, Newfoundland fisherman, pers. comm.). Additional anecdotal information from Newfoundland indicated that a school of shrimp observed via a fishing vessel sounder shifted downwards and away from a nearby seismic airgun sound source (H. Thorne, Newfoundland fisherman, pers. comm.). This observed effect was temporary.

Caged brown shrimp Crangon crangon reared under different acoustical conditions exhibited differences in aggressive behavior and feeding rate (Lagardère 1982). Those exposed to a continuous sound source showed more aggression and less feeding behavior. It should be noted that behavioral responses by caged animals may differ from behavioral responses of animals in the wild.

McCauley et al. (2000a,b) provided the first evidence of the behavioral response of southern calamari squid Sepioteuthis australis exposed to seismic survey sound. McCauley et al. reported on the
exposure of caged cephalopods (50 squid and two cuttlefish) to noise from a single 20-in\(^3\) airgun. The cephalopods were exposed to both stationary and mobile sound sources. The two-run total exposure times during the three trials ranged from 69 to 119 min. at a firing rate of once every 10–15 s. The maximum SPL was >200 dB re 1 µPa\(_{p-p}\). Some of the squid fired their ink sacs apparently in response to the first shot of one of the trials and then moved quickly away from the airgun. In addition to the above-described startle responses, some squid also moved towards the water surface as the airgun approached. McCauley et al. (2000a,b) reported that the startle and avoidance responses occurred at a received SPL of 174 dB re 1 µPa\(_{rms}\). They also exposed squid to a ramped approach-depart airgun signal whereby the received SPL was gradually increased over time. No strong startle response (i.e., ink discharge) was observed, but alarm responses, including increased swimming speed and movement to the surface, were observed once the received SPL reached a level in the 156–161 dB re 1 µPa\(_{rms}\) range.

Komak et al. (2005) also reported the results of a study of cephalopod behavioral responses to local water movements. In this case, juvenile cuttlefish *Sepia officinalis* exhibited various behavioral responses to local sinusoidal water movements of different frequencies between 0.01 and 1000 Hz. These responses included body pattern changing, movement, burrowing, reorientation, and swimming. Similarly, the behavioral responses of the octopus *Octopus ocellatus* to non-impulse sound have been investigated by Kaifu et al. (2007). The sound stimuli, reported as having levels 120 dB re 1 µPa\(_{rms}\), were at various frequencies: 50, 100, 150, 200 and 1000 Hz. The respiratory activity of the octopus changed when exposed to sound in the 50–150 Hz range but not for sound at 200–1,000 Hz. Respiratory suppression by the octopus might have represented a means of escaping detection by a predator.

Low-frequency sound (<200 Hz) has also been used as a means of preventing settling/fouling by aquatic invertebrates such as zebra mussels *Dreissena polymorpha* (Donskoy and Ludyanskiy 1995) and balanoid barnacles *Balanus* sp. (Branscomb and Rittschof 1984). Price (2007) observed that blue mussels *Mytilus edulis* closed their valves upon exposure to 10 kHz pure tone continuous sound.

Although not demonstrated in the invertebrate literature, masking can be considered a potential effect of anthropogenic underwater sound on marine invertebrates. Some invertebrates are known to produce sounds (Au and Banks 1998; Tolstogannova 2002; Latha et al. 2005). The functionality and biological relevance of these sounds are not understood (Jeffs et al. 2003, 2005; Lovell et al. 2005; Radford et al. 2007). If some of the sounds are of biological significance to some invertebrates, then masking of those sounds or of sounds produced by predators, at least the particle displacement component, could potentially have adverse effects on marine invertebrates. However, even if masking does occur in some invertebrates, the intermittent nature of airgun sound is expected to result in less masking effect than would occur with continuous sound.

4. Literature Cited

Appendix D: Airgun Sounds on Marine Invertebrates

