Reconfigurable Wireless Platforms for Spectrally Agile Coexistence

Samuel MacMullan (PI), ORB Analytics, Inc. Alexander Wyglinski (Co-PI), Worcester Polytechnic Institute

sam@orbanalytics.com (978) 371-9700

The work was sponsored by the National Science Foundation via award number 1212340.

NEED ADDRESSED - RURAL BROADBAND

- 14.5M rural Americans lack broadband access
 Too expensive for many other rural Americans
- Low population density and oftentimes difficult terrain hinders infrastructure development
- Impact:
 - Higher unemployment/lower earnings
 - Fewer educational opportunities
 - Lower quality healthcare at higher cost

Technologies are needed to supply low-cost rural broadband communications

OPPORTUNITY/IMPACT

- FCC has approved rules for <u>unlicensed</u> use of Television White Spaces (TVWS) from 54-698 MHz
 - Long range, penetrates buildings & foliage
 - Highest availability in rural areas

- Initial U.S. rural broadband opportunity is \$100M-200M per year
 - White space device market projected to be ~\$10B/year

ISSUES

- Current proprietary TVWS solutions cannot achieve economies of scale
 - High cost
 - Lack benefit of community-wide innovations
- No TVWS standard has achieved traction
 - 802.22 best for long-range TVWS operation
 - Non-Contiguous Orthogonal Frequency Division Multiple Access (NC-OFDMA)
 - Alternatives (e.g., 802.11af, 802.15.4m) are not suitable for rural broadband
- Technical challenges with 802.22 include:
 - Out-of-Band (OOB) emissions
 - Coexistence with other TVWS networks
 - Interference mitigation
 - Operation in areas without internet and/or GPS
 - Sensing only operation

TVWS SPECTRUM MASK

- Cannot easily repurpose existing OFDM designs for TVWS operation
- New methods required to limit out-of-band (OOB) emissions

SPECTRUM SENSING

RURAL BROADBAND SOLUTION USING 802.22

WPI

IIR FILTERING

- Designed and demonstrated on FPGA tunable and practical IIR filters to:
 - Mitigate in-band interference
 - Reduce OOB emissions

NOTCH FILTER CREATION

 Store high-pass IIR filters spanning range of bandwidths. Choose filter with desired bandwidth and frequency shift to create notch at desired center frequency.

REDUCED COMPLEXITY SPECTRUM SENSING IMPLEMENTED ON FPGA

- Cyclostationary processing for sensing OFDM:
 - Low-SNR

 operation even
 when noise and
 interference
 levels cannot be
 accurately
 estimated
 - Known signal features allow reduced bifrequency search space

RURAL BROADBAND PROTOTYPE

CONCLUSION

- Reduced complexity and effective filtering and sensing needed for practical and compliant TVWS solutions
- Proposed 802.22-based design promises low-cost, robust, and widespread rural broadband deployment

