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Spectral Tweets: A Community Paradigm for
Spatio-temporal Cognitive Sensing and Access

Research Goals R

» Crowdsource spectrum sensing - spectrum
sensing web of mobile devices

« Efficient distributed power spectrum
compression

* Dictionary learning (DL) and quantized
compressed sensing (CS) — based spectrum
sensing, primary user and interference
channel estimation and tracking

» Measurement-based spectrum management

(Potential Payoff )

* Mobile spectrum sensing web can reveal
abundant transmission opportunities -
enhance access for millions of people

* Distributed spectral analysis, rate-distortion,
guantized DL/CS tools

Education

 Sensing/twitting app development & demo
senior/honors design. Top talent trained in
spectrum sensing, CR, wireless app

k programming )

compress &
tweet

measure
local spectrum

tweet simple, quantized measurements
of local spectrum

..and “map” the spectrum! 'l




Spectral Tweets: Research Thrusts

4 0\

« Nonparametric power spectrum compression

* Distributed power spectrum compression and |
sensing o7

» Dimensionality reduction — quantized
canonical correlation analysis 0

 Dictionary learning for blind primary user o
fingerprinting and tracking 107

* Distributed DL
* Dynamic DL
* Quantized DL and CS
* Measurement-based spectrum management
. Jo_i_nt CR power control and interference
mitigation
« Cognitive resource management
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Proof of concept prototyping

@ SpectralTweetersPoster pdf Adobe Acrobat Pro
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Android Application
Introduction to Dynamic Spectrum Access and

‘The Android application is the data - s

gatherinz aspct of this project. The Localization

application” X o
- finds the phone's current GP5 location Pmpqu: Uuwmwmuﬂﬁ-hwmAMB

- runs a scan of all available Wi-Fi E

natworks it can detect

- parses the Wi-Fi scan results into

useable mformation for each of 11

is implementad wx
PC Twitter Client, and a Matlab Analysis Script. This solution is
) 2lmost fully automated, has robust error checking, and consumes few
« formats the GPS coordinates TeSouEs.

Fmally it adds a Twitter hashtag and
tweets the information so our PC Twitter
Client can further process it.
Example Tweet

Analysis, Conclusions, and
Recommendations
Overall, this project was a success. Our team was able to
determine the approximate location of access points in Keller
Hall

Test Results - Localization of an access point

Applications: Can be expanded to the cellular signal
frequency. This would be exemely useful in the cell phone
industry right now as companies expand cellular infrastructure.

Welumad_holmnﬁeﬂmulyuamb-w

improvement:
uphmswlmbm(}?sm'lnhmxmm
~ improve user interface to take advantage of crowdsourcing
and greater download options
- use a more robust Matlab eror correction algonthm . /

\_—/’



http://youtu.be/zfYs8vON-pA

Power Spectrum Sensing

* Only power spectrum (PSD) needed for cognitive radio

— No need to reconstruct the spectrum of the original signal

— Can estimate from Fourier transform of truncated autocorrelation
- finite parameterization

— Sampling rate requirements significantly decreased without
requiring frequency-domain sparsity??

* Collaborative spectrum sensing

— Exploit spatial diversity in distributed sensors to avoid hidden
terminal problem, mitigate fading, enhance sensing reliability

Challenge: collaborative power spectrum sensing using
low-end sensors with limited communication capabilities

1D.D. Ariananda, and G. Leus, “Compressive wideband power spectrum estimation,” IEEE Transactions on Signal Processing, vol. 60, no. 9, pp. 4775-4789, Sept. 2012.
2 M. Lexa, M. Davies, J. Thompson, and J. Nikolic, “Compressive power spectral density estimation,” Proc. ICASSP, pp.3884-3887, Prague, Czech Republic, May 2011.



Frugal Sensing

Primary User

M sensors

O. Mehanna, and N.D. Sidiropoulos, “Frugal Sensing: Wideband Power Spectrum Sensing from Few Bits”,
IEEE Trans. on Signal Processing, vol. 61, no. 10, pp. 2693-2703, May 2013. M



Sensor Measurement Chain

Complex PN - known at the FC

(n) = {(Ux/ﬁ)(ilij) if 0<n<K-—1 Q1= [Jf”;(”)’Q]
) } 0 otherwise - 1 V=
\ Om = Z:J [z () ?

Random, length-K
ADC y(n)> FIR Filter zm(n)>

Nyquist Rate
(1/Ts) g m (n)

Analog N |-f N J' j(

Filter Sub-Nyquist Rate
1/(NT,)

Equivalent analog measurement




Model-Based Power Spectrum

° Model-based power spectrum

Z Pe‘Ife

unknown positive weights

known spectral density primitives

* Received signal at sensor m

Zh O)\/pexze(n)

Random fading

* Random filter output

K—1 L
=Y gk ymn—k) = an = Ellzm(n Z 2 pevm, e
k=0 —

Um = Z "/)E’ jkw{fgz )

k=1-K
Deterministic filter

I-DTFT of ¥(w)  autocorrelation M



1-Bit Power Measurement

Sensor power measurement

A

7% :ﬂv,z,; Pt En

ST

Zero-mean Gaussian (via CLT)
1-bit measurement

ading & insufficient sample averaging

b, = sign(v%p + em — tm)

Omar Mehanna, Nicholas D. Sidiropoulos, Efthymios Tsakonas (2013). MODEL-BASED POWER SPECTRUM SENSING
FROM A FEW BITS. 21st European Signal Processing Conference - EUSIPCO 2013. Marrakech, Morocco. M




Convex ML Formulation

b = Sign(vg,;p —|—7\em —tm) My = {mlb,, =1}
I.i.d Gaussian M_ = {m’bm = —1}
f(bla “ ey bM|P) — H Pl(ngP + em = tm) H PI(V;‘CLP + ém < tm)
meMy meM_
T, _ T o _
_ H o (Vmp tm) H o (_Vmp tm)
meM 4 Om meM_ ’\ Om

Gaussian CDF

* Convex (sparse) ML control sparsity

Omar Mehanna, Nicholas D. Sidiropoulos, Efthymios Tsakonas (2013). MODEL-BASED POWER SPECTRUM SENSING
FROM A FEW BITS. 21st European Signal Processing Conference - EUSIPCO 2013. Marrakech, Morocco. M



Example

L = 8 equispaced raised-cosine ¥,(w), M = 150 sensors, t.=t, 50 sensors send b=1,
random errors flipped 10 sensor measurement bits, sparsity parameter A = 50
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1-Bit Quantization Loss

Rayleigh fading: random errors flipped 30% of sensor measurement bits on average

f f F F F

Fe —6— 1-Bit Power Measurement
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Omar Mehanna, Nicholas D. Sidiropoulos, Efthymios Tsakonas (2013). MODEL-BASED POWER SPECTRUM SENSING
FROM A FEW BITS. 21st European Signal Processing Conference - EUSIPCO 2013. Marrakech, Morocco. M
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Cognitive Transmit Beamforming

Transmit beamforming - Use multiple —®—T )
antennas to steer radiated power along x__g_? Y
specific directions that provide good QoS @ Rx

Also need to protect primary Rx _@_T

Need CSI @ Tx - for both secondary target’ Rx, and primary Rx to avoid

Impractical, especially in cognitive radio networks where the primary Rx
has no incentive (or ability) to cooperate

CSI feedback overhead ~ number of users and antennas




Cognitive Transmit Beamforming

* Wish list:

1. Low overhead transmit beamforming techniques that
learn sTx-sRx and sTx-pRx channel correlation matrices
and approach near-optimal performance without
explicit CSI feedback or changing legacy protocols ...

* Free lunch?

Balasubramanian Gopalakrishnan, and Nicholas D. Sidiropoulos, submitted. M



Almost! - exciting preliminary results!

Cognitive Transmit Beamforming N, = 5
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Balasubramanian Gopalakrishnan, and Nicholas D. Sidiropoulos, submitted.

Avg. Rx SINR at secondary
asymptotically converges to max.
SINR with perfect CSI!

The interference power for Fix mu
varying P method, converges to the
primary interference threshold
(not known at sec. Tx)!




PHY sensing via RF cartography

B Power spectral density (PSD) maps

» Capture ambient power in space-time-
frequency

» ldentify regions with high interference
temperature

B Channel gain (CG) maps N
» Time-frequency channel from any-to-any N
point =

» CRs adjust Tx power to minimize PU i
disruption .

-90
20 40 &0 80 100 120 140 160 180 200 [dB]

(m]

S.-J. Kim, E. Dall'Anese, J. A. Bazerque, K. Rajawat, and G. B. Giannakis, "Advances in Spectrum Sensing
and Cross-Layer Design for Cognitive Radio Networks," EURASIP, E-Ref. Signal Processing, Nov. 2012. M



Any-to-any channel gain estimation

B Shadowing model-free approach Estimated CG map

» Slow variations in shadow fading
» Low-rank any-to-any CG matrix G

Approach: low-rank matrix completion

€ 100

win [Ps(G — CW')[3 + A(CJ3 + [W]3)

Payoffs: global view of any-to-any CG
real-time propagation metrics; efficient
resource allocation

1 1 1 1 Il
20 40 B0 BO 100 120 140 160 180 200

Outlook: kernel-based extrapolator for missing CR-to-PU
measurements, look-ahead intervals; quantized DL tweets

S.-J. Kim and G. B. Giannakis, “Dynamic Network Learning for Cognitive Radio Spectrum Sensing,”
Proc. of Intl. Workshop on Comp. Advances in Multi-Sensor Adaptive Process., Saint Martin, 2013. M



PU power and CR-PU link learning

Detection of PU activity

1

B Reduce overhead in any-to-any CG mapping s .. .~

» Learn CGs only between CRs and PUs g:":

> Online detection of active PU
transmitters ooy |
Approach: DL (RX-power=CG x TX power); 1t I e 1|
bllnd eStlmatlon ° o1 Fa.lgézalarm proboaigility o4 0s

Estimated CG
. 2 ! | | | ‘ | | | ‘ True‘

mln HH —_ GP”F —|— Al HPH1 0.9 Estimated:

G.P 0.8f
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Payoffs: tracking PU activities; and
efficient resource allocation
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Scaled channel gain g,
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a
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w

Outlook: missing data due to limited
sensing; distributed robust algorithms
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S.-J. Kim, N. Jain, and G. B. Giannakis, “Joint Link Learning and Cognitive Radio Sensing," IEEE
Trans. on SP, Nov. 2013 (submitted); also in Proc. of Asilomar Conf. , Pacific Grove, CA, Nov. 2012. M



Publications, dissemination, outreach

e Journal
1. B. Gopalakrishnan, and N.D. Sidiropoulos (2013). Joint Back-Pressure Power Control and Interference
Cancellation in Wireless Multi-Hop Networks. IEEE Trans. on Wireless Communications. 12 (7), 3484.
2. Daniele Angelosante, Georgios B. Giannakis, and Nicholas D. Sidiropoulos (2013). Sparse Parametric

Models for Robust Nonstationary Signal Analysis. IEEE Signal Processing Magazine, to appear.

3. S.-J. Kim, N. Y. Soltani, and G. B. Giannakis (2013). Resource Allocation for OFDMA Cognitive Radios
under Channel Uncertainty. IEEE Transactions on Wireless Communications. 12 (10).

4. A. G. Marqués, E. Dall'Anese, and G. B. Giannakis (2014). Cross-Layer Optimization and Receiver
Localization for Cognitive Networks Using Interference Tweets. IEEE Journal of Selected Topics in
Communications, submitted.

* Conference

1. Omar Mehanna, Nicholas D. Sidiropoulos, Efthymios Tsakonas (2013). MODEL-BASED POWER SPECTRUM
SENSING FROM A FEW BITS. 21st European Signal Processing Conference - EUSIPCO 2013. Marrakech,
Morocco.

2. S.-J. Kim and G. B. Giannakis (2013). Cognitive Radio Spectrum Prediction using Dictionary Learning.
Globecom Conference. Atlanta, GA.

* Plenaries
1. IEEE SPAWC 2013, Darmstadt, Germany, June 2013 (Sidiropoulos)
2. IFAC Workshop on Distr. Est. & Control in Networked Systems, Santa Barbara, CA, Sept. 2012 (Giannakis)
3. ISWCS 2013, limenau, Germany (Giannakis)
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