

Fourier-Based Transmission Line Ultrawideband Wilkinson Power Divider for EARS Applications

By K. Shamaileh, M. Almalkawi, V. Devabhaktuni, N. Dib, B. Henin, A. Abbosh

NSF EARS Award 1247946Program Director George Haddad

Outline

- \bullet Motivation and Challenges
- \bullet Research on Power Dividers
- \bullet Wilkinson Power Divider Design
	- \bullet Conventional *Vs* Proposed Ultra-wideband Schematics
- \bullet Simulation and Experimental Results
- \bullet Summary
- \bullet Acknowledgment

Motivation and Challenges

- Most of the frequency spectrum is allocated to different wireless services
- Typically, some of these assigned bands remain idle some of the time
- Cognitive Radios (CRs) are gaining attention as an attractive solution to maximizing bandwidth utilization and channel capacity

Motivation and Challenges

- \bullet In CR, the temporarily unallocated frequencies are loaned to secondary users as long as the "legitimate/primary" users are not receiving/transmitting data
- The concep^t of CR *enhances access to the radio spectrum*

However

 \bullet To bring this concept to reality, we require front-end microwave components that suppor^t CR operation over wide frequency range (e.g. spectrum sensing)

CR Framework

Examples of Front-end Components

Power divider

Antenna array

Ultra-wideband Spectrum

- \bullet The frequency spectrum ranges between 3.1 GHz and 10.6 GHz
- Approved for commercial applications (FCC, 2002)
- \bullet Most widely used in medical treatments, tactical and strategic communication, through-the-wall imaging, high data rate transmission, etc.

Research on Power Dividers

Different approaches have been recently reported:

Proposed UWB Wilkinson Power Divider

Each uniform impedance branch in the power divider is replaced by ^a single non-uniform transmission line (NTL) transformer

Design Objectives

 \bullet Objective 1: NTL that matches a source impedance Z_s to a load impedance Z_l

Even Mode Analysis

 \bullet Objective 2: Achieve optimum output ports isolation and matching conditions

Odd Mode Analysis

Even Mode Analysis

- Accomplished by enforcing the magnitude of the reflection coefficient | Γ| to be zero (or close to zero) over UWB frequency range
- $\mathbf C$ |
|
| $|\Gamma|$ at the input port can be expressed in terms of Z *e in*

Even Mode Analysis

 \bullet • *Z^e_{in}* is calculated from *ABCD* parameters of NTL

$$
\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} A_1 & B_1 \\ C_1 & D_1 \end{bmatrix} \cdots \begin{bmatrix} A_i & B_i \\ C_i & D_i \end{bmatrix} \cdots \begin{bmatrix} A_K & B_K \\ C_K & D_K \end{bmatrix}, i = 1, 2, ...K
$$

 \bullet *B* and *C* values are calculated in terms of ^a truncated Fourier series

$$
\ln\left(\frac{Z(z)}{Z_c}\right) = c_0 + \sum_{n=1}^{N} \left[a_n \cos\left(\frac{2\pi nz}{d}\right) + b_n \sin\left(\frac{2\pi nz}{d}\right) \right]
$$

 \bullet Optimum values of the Fourier coefficients are obtained by minimizing an error function in MATLAB

$$
Error_{in} = \max(E_{f_1}^{in},...E_{f_j}^{in}...E_{f_m}^{in})
$$

where

$$
E_{f_j}^{\text{in}} = \left| \Gamma_{in}(f_j) \right|^2 \qquad \qquad \Gamma_{in}(f_j) = \frac{Z_{in}^e(f_j) - Z_s}{Z_{in}^e(f_j) + Z_s} \qquad \qquad Z_{in}^e(f_j) = \frac{A(f_j)Z_l + B(f_j)}{C(f_j)Z_l + D(f_j)}
$$

Odd Mode Analysis

 \bullet Carried out to obtain the resistor values *R1*, *R2* and *R3* for achieving the optimum output ports isolation and matching conditions

 \bullet *ABCD* matrix of the network is calculated as follows:

> $[ABCD]_{\text{Total}} = [ABCD]_{R_3}$. $[ABCD]_{1st}$ Section . $[ABCD]_{R_2}$ $\left[ABCD\right]_{\rm 2nd\ Section}$. $\left[ABCD\right]_{\frac{R_{1}}{2}}$. $\left[ABCD\right]$ 2 and 2 and 2 and 2 and 2 and 2 \geq 1st Section 2nd Section $\cdot 1^{ADCD}$ $\underline{N_1}$ $\cdot 1^{ADCD}$ 3rd Section $\langle ABCD \vert_{\text{Total}} \rangle = |ABCD \vert_{R_2}$. $|ABCD \vert_{\text{Let Section}}$. $|ABCD \vert_{R_2}$. $\left[ABCD\right]_{2nd}$ Soction $\left[ABCD\right]$ R_1 $\left[ABCD\right]$

Odd Mode Analysis

 \bullet Finally, we have:

$$
\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}_{\text{Total}} \begin{bmatrix} V_2 \\ I_2 \end{bmatrix}
$$

 \bullet • Setting V_2 to zero, and solving for $\frac{V_1}{L}$, we obtain: 1*V I*

$$
\frac{V_1}{I_1} = \frac{B}{D} = Z_{in}^o
$$

 \bullet For perfect output ports matching over the UWB range, the below error needs to be minimized over the *R1*, *R2*, *R3* design space

$$
Error_{out} = \max(E_{f_1}^{out}, ... E_{f_j}^{out} ... E_{f_m}^{out}), \quad E_{f_j}^{out} = \left| \Gamma_{out}(f_j) \right|^2
$$

Simulation and Experimental Results

 \bullet • Characteristic impedance of 50Ω

- \bullet Rogers RO4003C substrate with relative permittivity of 3.55, thickness of 0.813 mm, and loss tangent of 0.0027 is employed
- \bullet Length of each NTL arm of the proposed WPD is set to 10 mm

S-Parameters

- \bullet • Input and output ports matching parameters S_{11} and S_{22} , respectively, and the isolation parameter S_{23} are below -10 dB over the UWB range.
- $\mathbf C$ • S_{21} is in the range -3.2 dB to -4.2 dB over the UWB frequency range.

Imbalance

- \bullet The measured phase imbalance is less than $\pm 10^{\circ}$ over the entire design frequency range
- \bullet The obtained amplitude imbalance is around \pm 0.1 dB over the entire UWB range

Group Delay

Simulated and measured group delay are:

- Almost flat over the UWB range
- \triangleright Less than 0.2 ns

3-D IIR Digital Beam Filters for Space-Time White Space Detection in Cognitive Radio

- •Four sub-systems are proposed for space-time white space detection (Univ. of Akron Contribution)
- in S-1! (Univ. of Toledo Contribution)

 \bullet After S-4, an algorithm to solve the link scheduling and routing problem efficiently utilizing 3D sensing information is required (Univ. of Norfolk Contribution)

Summary

- \bullet For the first time, ^a CAD method for the design of an UWB WPD based on Fourier impedance profiles has been presented.
- \bullet The design optimizes both cost and real estate!
- \bullet The proposed WPD has been fabricated. There is ^a close match between simulations and measurements.
- \bullet The proposed WPD can serve as ^a front-end module in realizing EARS hardware.

Acknowledgment

- \bullet This research is supported in par^t by NSF EARS Award 1247946 (Collaborators – Norfolk State, Ohio Northern, University of Akron)
- \bullet The authors gratefully acknowledge the motivation and suppor^t from NSF EARS Program Director Dr. George Haddad

Thank You

