Market Structures for Efficient Spectrum Sharing

Randall Berry
Northwestern University

Co-Pl's: Michael Honig, Vijay Subramanian, Rakesh Vohra

Other collaborators: Hang Zhou, Thanh Nguyen

Research Motivation

- Much work on design of spectrum markets
 - e.g. auction design.
- Instead focus here is on the broader impact of different market structures and spectrum sharing technologies.
 - e.g. incentives to invest, competition with existing providers.

Two Initial Examples

- Competition with open spectrum.
- Investment and sharing among licensed providers.

Open Spectrum

- Great success in supporting WiFi services.
 - Operates at higher frequencies, relatively short propagation distances.
- Interest in having open spectrum at lower frequencies
 - e.g. TV white spaces.
 - Can support much longer propagation distances
- Our focus: open spectrum that can offer competitive service to licensed providers.

Openness

- The good: lower barriers to entry, increased competition
- The bad: risk of excessive interference, "tragedy of the commons"

SP 1 SP 2 • • • SP n

SP 1 SP 2 • • • SP n

- Consider a set of service providers (SPs).
 - Incumbent SPs have exclusive licensed bands
 - Entrant SPs have no licensed bands

SP 1 SP 2 • • • SP n Open

- Consider a set of service providers (SPs).
 - Incumbent SPs have exclusive licensed bands
 - Entrant SPs have no licensed bands
- Study the effect on total welfare from adding open spectrum.
 - All incumbents and new entrants can use the open band.

• Adapt model for competition in congested markets (e.g. [Acemoglu, Ozdaglar '07]).

• Adapt model for competition in congested markets (e.g. [Acemoglu, Ozdaglar '07]).

• Adapt model for competition in congested markets (e.g. [Acemoglu, Ozdaglar '07]).

 SPs compete for pool of customers by announcing prices for licensed and unlicensed service.

• Adapt model for competition in congested markets (e.g. [Acemoglu, Ozdaglar '07]).

 SPs compete for pool of customers by announcing prices for licensed and unlicensed service.

 Adapt model for competition in congested markets (e.g. [Acemoglu, Ozdaglar '07]).

 SPs compete for pool of customers by announcing prices for licensed and unlicensed service.

Customers choose provider based on delivered price
 = price + congestion cost.

Congestion Externalities

Congestion Externalities

- All customers in *i*th licensed band experience *congestion cost* of $l_i(x_i)$.
 - Increasing, convex.

Congestion Externalities

- All customers in *i*th licensed band experience *congestion cost* of $l_i(x_i)$.
 - Increasing, convex.

- Customers in unlicensed band experience congestion cost $g(X^w)$
 - $X^w = \sum_i x_i^w$ (total number of unlicensed users)
 - Also increasing, convex.

Results

- Prices in open spectrum go to zero.
- Adding an insufficient amount of open spectrum can result in overall economic welfare decreasing.

Extensions

- Multiple users classes
 - consumer welfare can decrease do to "sorting" of users.
- Adding investment.
 - may see only a single monopolist arise

Capacity Sharing

- Currently wireless providers share capacity via roaming agreements.
 - Main motivation is to increase coverage.
 - Also various forms of tower/infrastructure sharing.
- Here consider more extensive capacity sharing for meeting variable demand during times of congestion.
- Main question: how does sharing influence providers investment decisions?

Problem Set-up

- Two Service providers
- Each with own pool of customers (fixed).
- Demand is variable.
- Fixed payment for each customer served.
- Without sharing: demand > capacity => revenue lost.

Sharing Scenario

- Allow Sharing at times of congestion
- Providers share revenue
- Customers see no extra cost.

- Adapt newsvendor model to model capacity procurement in face of uncertain demand.
- Newsvendor model applies to single firm.
- With sharing, firms capacity choices become coupled.
- Model this as a game.

Results

- Can characterize the equilibria of sharing game under different demand distributions and sharing rules.
- More profit from sharing going to spectrum owner encourages greater investment
- More investment with less positive correlation in demands.

Conclusion

- Some simple models to shed light on how different approaches to spectrum sharing can impact overall welfare and investment incentives.
- often in counter-intuitive ways!
- Models can be enriched in many ways from both an economic and wireless networking perspective.