Manifold-Based System for
Passive-Active Spectrum Sharing

Albin J. Gasiewski O, Dirk Grunwald 2
and Joshua Chong

1) Department of Electrical, Computer, and Energy Engineering — Center
for Environmental Technology, University of Colorado, Boulder,
Colorado, USA

2) Department of Computer Science, University of Colorado, Boulder,
Colorado, USA

—_— =,

NSF EARS Pl Meeting October 7-8, 2013 Arlington, VA



'%Mm tatement !

— S

Passive Spectrum Needs: EESS applications are impacted by RFI at levels as low as
50 mK, but not detectable as RFI below several Kelvins. Required bands are
rapidly becoming illuminated by active devices, but the underlying “electrospace”
is inefficiently used.

Efficient Real-Time Allocation of Spectrum: Develop a decentralized scalable
system for near real-time brokering of spectrum requests:

- Based on intersection of electrospace manifolds

- Provides incentive to participate

- Does not consider prioritization

- Focuses on what spectrum can be used, not what should be used

usa 5.995Y THx TOOB0513 {Ascanding 1:30PNM) K AWSE-E BFI [ndex, 8.9 GHz V-Pal, 7/11/08, 7/18,/08

Latitude {dag)

-1 =1En =110 -109 = -4 il -0
Lonzitnde {deg)

[ IS DS

0 1 L 30 40 L] 0]

1834



Merit and Impact %
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Intellectual Merit: This work will contribute a basic knowledge
of how active and passive uses of the same spectrum can co-
exist, and how emerging technologies, such as frequency
agility and the use of network rerouting algorithms to avoid
interference can be implemented.

Broader Impact: The use of passive spectrum sensing is
important for our society, but there is little communication
between the radio science community and the networking,
technology and regulatory communities on ways to achieve
shared use of spectrum while reducing interference. Useful
discussions require an evaluation framework, and a central
component of this proposal is the development of a
demonstration to support such a framework.



Passive Microwave Environmental Observables
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Passwe Active ectrum Shgrmg

Objective: To develop an automated scalable technique for identifying
interference in 7-dimensional “electrospace” (f, x, v, z, 6, ¢, 1).

The spectral, spatial, angular, and temporal needs of each eligible service within a
band can be defined by a manifold (i.e., hypervolume) in 7-D electrospace.

Intersections of manifolds identify competitive hypervolumes for which priority-
based arbitration or interference flagging can be used.

Competitive volumes
in 3-D space

illustrated

by the intersection
of one or more 2-D
manifolds (i.e.,
differentiable

surfaces) ..




Visualization of Manifelds
Ground-Based Terminal Area Radar

Manifolds are most easily visualized by their 3-D slices. For example, a conically-
scanned terminal area radar uses a transmit manifold that when sliced in (x, ¢, )
appears as on the right:
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- Visualization of Manifolds T
' _Ground-Based Terminal Area Radar

Manifolds can also be depicted as time-dependent hypervolumes sliced in 3-D
space. The same conically-scanned terminal area radar uses a transmit manifold
that when sliced in (x, y, ¢) appears as:
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Visualization of Manifolds...
~_ Spaceborne Cross-Track Sounder

The receive manifold for a spaceborne cross-track scanned sounder when sliced
in (x, 0, ) appears as:
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The receive manifold for a spaceborne cross-track scanned sounder when sliced

in (-x; y) 9) appears a6
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Green dots suggest the numbers of
spectrum users across the globe.
Each dot represents a fixed
number of users. Dots around the
Earth represent satellites or
aircraft.

Blue dots suggest the numbers of spectrum users in
the contiguous U.S. Such a user distribution could
be constructed using data from FCC ULS databases.

Recursively subdivide the Earth into
geographical user domains.

(An example of a suitable smallest domain
might be the Chicago downtown loop area.)
Perform manifold intersection study in a
distributed fashion after suitable culling of
non-intersecting regions.



Culling %

S S

e For N users around the globe, number of RFI tests is N(N-1)/2

e Each test yields a 2-bit output (xx), global interference vector
is of length N(N-1) bits

e Can’t perform the above centrally for many reasons

— Time frame and propagation delay
— Computer resources

e Within each user domain, cull transmit-receive user pairs
(i.e. eliminate, transmitter-receiver pairs that are not going to
mutually interfere) based on increasingly complex criteria

— 1st-order: Subdomain minimum distance
— 2nd-order: Cone maintersection
— 3rd-order: Friis calculation

e Remaining T/R pairs are flagged for RFI, eligible for
interference mitigation based on prioritization, trading
schemes, etc...



First=Order (Distance) Culling %

* Criteria #1.:
— Subdomain pairs without LoS are immediately culled

e Criteria #2:

— Subdomain pairs not close enough to mutually
interfere are culled

— Satellite with large footprints may be a registered as a
user in a number of subdomains

 Requires geographical regions of equal
computational burden, thus proportional to ratio
of computational resources (FLOPS) to expected

number of users.



D Equalizing Computational Burden: 1-D %
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e Let p(x) be the # of users per unit distance

e Total # of users is NV, domain limits are x4 and xp

e Computing capacity at in each subdomain at
location x; is c(x;)

e Extent of each region is Ax;, which is not uniform

p(x) Ax;
«—> k :
A ; : Az; = (2 )(C[Ii)}
Axq : Pit:
! : Constraints:
|
! I
(c(x:))
o} = TR — TA
= ‘ > X Z,; p(x;)
xA xl xZ xB
User distribution p(x) for users along a /j_:r(_r)d;t" =N

line xg - x4



First Order Culling: 2-D T %
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e Subdivide (tesselate) region 4
into 2-D triangular subdomains

e Area of each subdomain
A; determined subject to
constraints

e Total of P subdomains for N
users
Constraints:

f/p(;l‘. y) dedy = N
A P

Number density of users per unit area

p(x,y) can slowly vary with user numbers, Z A =.
as can subdomains |i ‘ c
A, s max |7, —T,| < -
plas, yi) A o< (e, ;) Tmpn DT ) 2At
f alc(x;, yi)) Where m and n designate the two
Aj = furthest points in the it triangle,

(i, yi) and A7~ 0.001 — 0.250 sec



First Order Culling: 2-D %
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Determine if users in i-th triangle can’t interfere with
users in i’-th triangle

— If d,,, greater than a prescribed distance (see next slide)
The distance from vertex (x;, y;) to (x;,, Vi) is:

\/£4rir' — 5’32")2 + {'yz- — y?-r]i’

Complexity to determine the closest vertex-vertex
distance between two triangles, d,,,, from all 9 possible
vertex pairs is:

9(2A + 2M + 1T) + 8C + 4.5S

Update culling mask periodically as subdomains
grow/shrink




First Order Culling:2-D
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.y e First order culling constructs an interference
A adjacency matrix to proceed with further

' culling

Diagonal square user sets represent potential
interference between users in the same
subdomain

Off-diagonal user sets represents potential
interference across adjacent or nearby
subdomains
— Computational burden assigned to subdomain with
larger # of users
e P computational centers proceed to solve for
interference vector for E[N/P]* users each:

— Interference vector for each subdomain is

00 |1 . N (N .
approximately A bits long, more or

01 | 00

less depending on computational resources

— Number of flops required per T/R pair is 2"d+3rd
order

_'n"ﬁr _'n"ﬁl-
* E[N/P] is the expected value of (N/P), complexity times pF—1

both N and P are random variables 2




Sec

ond-Order (Manifold) Culling
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Sample output interference vector for

each subdomain considers all pairs (i,i"):

0000111100011100000011 ...

0 — no interference
1 — possible interfe

to user
rence to user,

proceed to Friis calculation

For remaining T/R pairs within a subdomain,
perform intersection test of their electrospace
manifolds in position and angle (Example
graphics depict only 2-D space and 1-D angle.
actual involves all 5-D)

Based on idealized and conservative cone
approximation to antenna pattern

Yields a 2-bit output

T/R pairs with 00 output are culled, others (11)
considered for user class and Friis calculation

User classes determine if interference is
possible:

— e.g. If the green manifold is a passive system, and
the blue manifold is an active system, then there is
interference to the passive system when the
output is 11 (thus set bits to 10)

Complexity of intersection algorithm for two
cones of infinite extent is found to be

19A + 10M + 5T

Number of culled pairs determine # of flops
required to produce the interference vector
within the required time discretization At
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e Final stage of culling yielding RFI flag vector within each subdomain

e Perform Friis calculation between all remaining T/R pairs to
determine if EIRP of the it T/R pair at the receiver of the i’ t T/R
pair exceeds an RFI threshold for user

 Propagation models can be included for more accurate calculations
— Atmospheric attenuation
— Building and window penetration
— Multipath reflection and diffraction (approximate models)

e Complexityis 9A + 19M + 4T



Spectrum User Classification %
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Spectrum Users

/N

Fixed Mobile Satellites

- WiFi - Cellular - Passive e.g.

- Time Doppler communications WindSat, AMSR-2,
Weather Radar - Police/fire SMAP (future
Radio astronomy department mission), SMOS,

commes. Aquarius
Active e.g.
CloudSat, CALIPSO

Descriptor language must define manifold spatial and angular
extent as dependent on user type, along with transmitted power
and band, and RFI receive power threshold and bandwidth.



Grag Spectrum User Classification %
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e Current work includes defining a suitable manifold
descriptor language for each class of users

— Antenna gain (parameterized for fast lookup)

— Position, or position vs time (e.g., Keplerian orbital elements
for satellites can provide position velocity information)

— Attitude, or attitude vs time (e.g.,. scanning task schedule)
— Transmit power (active systems) and band

— Receiver RFI sensitivity threshold (all receiver systems) and
bandwidth

— Polarization (useful for multipath calculations)

e Submitted binary descriptor for any user must be a
highly compact string of bits.

* “Spectrum Usage Descriptor Language” (SUDL)



Manifold Based Sharing:
Objectives and Challenges
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Planned Engineering Demonstrations:

Queries into existing databases (e.g., ULS) using standard query language (SQL)
to develop experimental user data base

WindSat and C-band wifi network experiment: Demonstrate seamless delay-
intolerant rerouting of network traffic during overpass of WindSat footprint.
Interlaced ground-based radiometer scanned observations and C-band WiFi
network experiment

Fundamental Challenges:

Demonstration of N-scalable rapid manifold algorithm and optimization of
algorithm complexity: System must be able to handle large number of user
service requests.

Potential applications on distributed GPUs using constructive solid geometry
algorithms

Consideration of optimum At given backhaul latency, propagation, and
computation delays




Summary

The CU EARS project focuses on:

Developing and demonstrating a scalable distributed
manifold-based method for identifying RFI and allocating
spectrum requests in real time

The goal is to improve use of electrospace and expand bands
for which passive environmental measurements can be made

Applicability is aimed at arbitrary active and passive users of
the spectrum, and provides incentives to participate.

A project goal is the limited demonstration of a system using
a C-band spaceborne radiometer and local WiFi network.
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