CHE/OAC Joint Office Hour

Dear Colleague Letter: Pilot Projects to Integrate Existing Data and Data-Focused Cyberinfrastructure to Enable Community-level Discovery Pathways

(NSF20-085, https://www.nsf.gov/pubs/2020/nsf20085/nsf20085.jsp)

June 26, 2020

Please mute your microphone

Submit relevant questions through the chat feature

Slides will be shared in the chem listserv email next week

NSF Office of Advanced Cyberinfrastructure (OAC)

Foster a cyberinfrastructure ecosystem to transform science and engineering research...

through Research CI and CI research

People, organizations, and communities

Coordination & User support

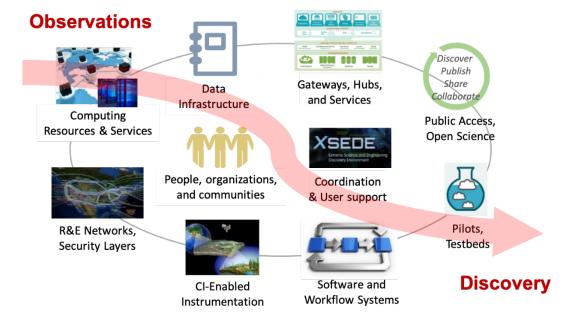
Gateways, Hubs, and Services

Data Infrastructure

Software and Workflow Systems

Public Access, Open Science

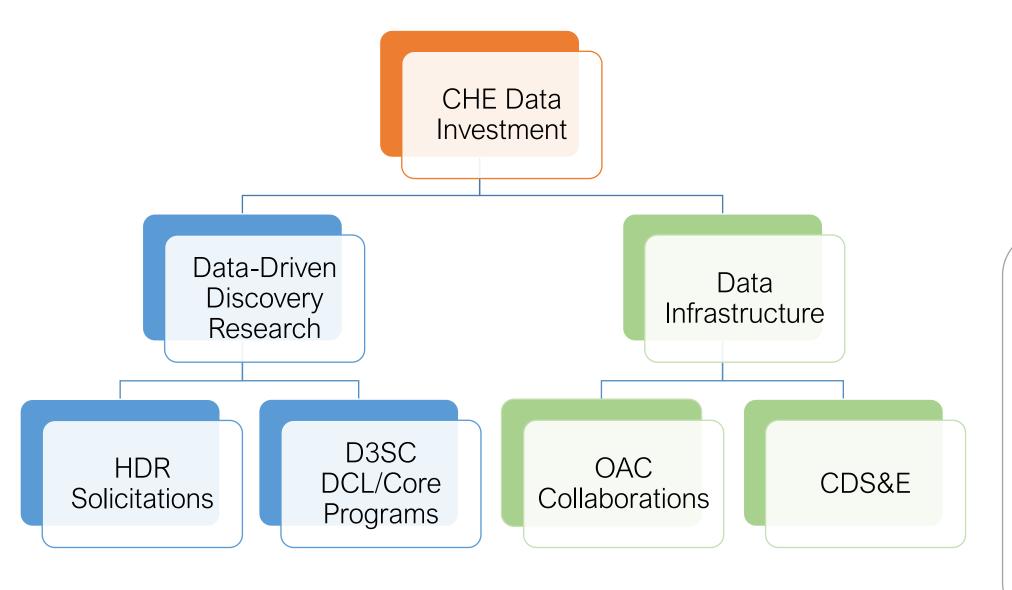
Pilots, Testbeds


Computing Resources & Services

R&E Networks, Security Layers

CI-Enabled Instrumentation

Rapid (disruptive) changes in S&E and CI landscapes → Our cyberinfrastructure ecosystem must evolve!


NSF's vision for a National Cyberinfrastructure Ecosystem for Science and Engineering in the 21st Century http://go.usa.gov/xm8bU

CHE Data Investment: Connecting to Community Needs and Agency Priorities (NSF Data Roadmap)

To support <u>research activities</u> and <u>infrastructure</u> <u>building</u> that seek to capitalize on the data revolution and promote data-driven discoveries that advance fundamental understanding of complex chemical systems.

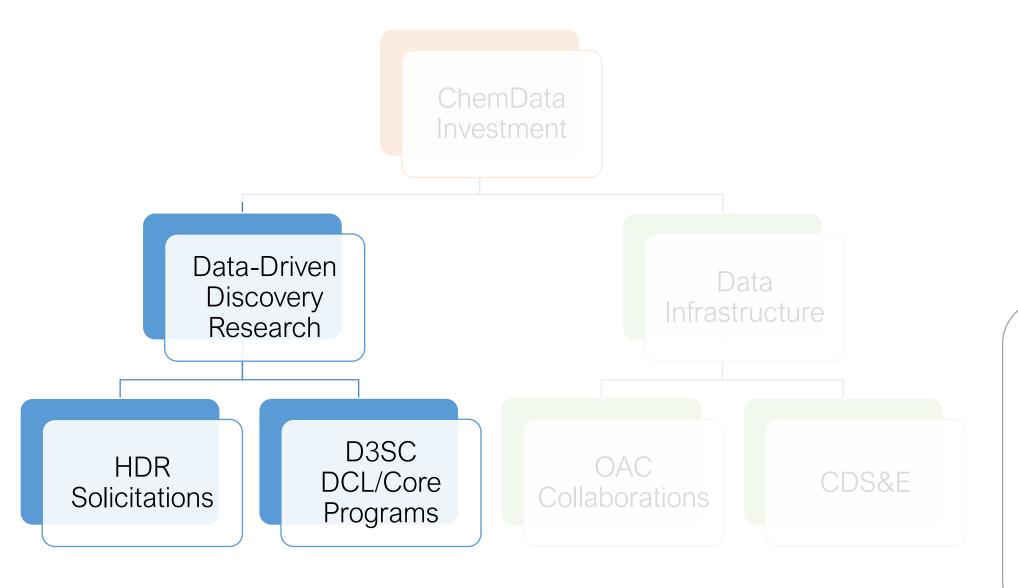
Acronym Table:

- CDS&E: Computational and Data-Enabled Science and Engineering
- D3SC: Data-Driven
 Discovery Science in
 Chemistry
- DCL: Dear Colleague Letter
- **HDR:** Harnessing Data Revolution
- OAC: Office of Advanced Infrastructure
- RFI: Request For Information

Sought Input from the Community

Workshop

CHE Data Workshops:


- NSF Data-Rich Organic Chemistry Workshop, September 11-12, 2014
- Mass Spectrometry: Data to Knowledge, May 11-12, 2015
- Framing the Role of Big Data and Modern Data Science in Chemistry, April 18-19, 2017
- CHE/DMS Innovation Lab: Learning the Power of Data in Chemistry, December 17-21, 2018

OAC RFI

OAC Request for Information (RFI) DCLs:

- DCL: RFI on Future Needs for Advanced Cyberinfrastructure to Support Science and Engineering Research (NSF CI 2030) (NSF 17-031)
- DCL: RFI on Data-Focused Cyberinfrastructure Needed to Support Future Data-Intensive Science and Engineering Research (NSF 20-015)

Acronym Table:

- CDS&E: Computational and Data-Enabled Science and Engineering
- D3SC: Data-Driven Discovery Science in Chemistry
- DCL: Dear Colleague Letter
- HDR: Harnessing Data Revolution
- OAC: Office of Advanced Infrastructure

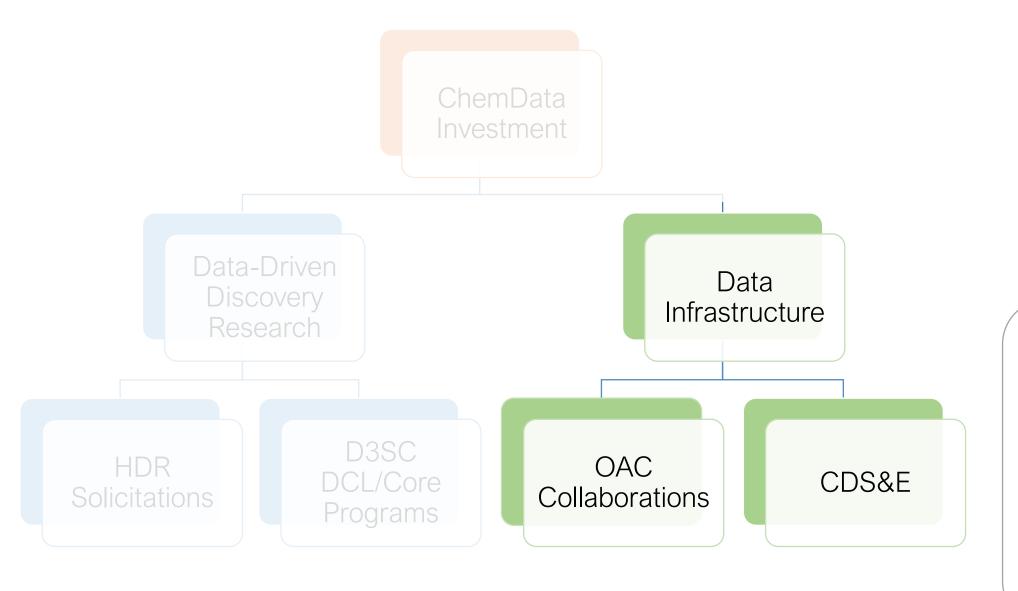
Data-Driven Discovery Research in Chemistry

HDR Solicitations

Harnessing the Data Revolution (HDR) Big Idea:

- The foundation of data science;
- Algorithms and systems for data science;
- Data-intensive science and engineering (NSF 19-543, 19-549);
- Data cyberinfrastructure; and
- Education and workforce development

Recent Awards:


Collaborative Research: Atomic Level Structural Dynamics in Catalysts, NSF-1940263/Crozier DELTA: Descriptors of Energy Landscape by Topological Analysis, NSF-1934725/Clark

D3SC DCL/Core Programs Dear Colleague Letter: Data-Driven Discovery Science in Chemistry (D3SC) (NSF 18-075):

- Utilize modern data science in the context of chemical research;
- Emphasize new information from better utilization of data and how this can lead to new research directions.

Recent Awards:

D3SC: Discovery and Optimization of Chiral Catalysts Guided by Chemoinformatics, NSF-1900617/Denmark D3SC: EAGER: Collaborative Research: A probabilistic framework for automated force field parameterization from experimental datasets, NSF-1738975/Shirts and NSF-1738979/Chodera

Acronym Table:

- CDS&E: Computational and Data-Enabled Science and Engineering
- D3SC: Data-Driven Discovery Science in Chemistry
- DCL: Dear Colleague Letter
- HDR: Harnessing Data Revolution
- OAC: Office of Advanced Infrastructure

Data Infrastructure for Chemistry Research

OAC Collaborations

Infrastructure: Cyberinfrastructure for Sustained Scientific Innovation (CSSI):

 Data Infrastructure Building Blocks (DIBBs) and Software Infrastructure for Sustained Innovation (SI2) programs

Recent Awards:

S2I2: Impl: The Molecular Sciences Software Institute, NSF-1547580/Crawford CSSI Elements: FLARE infrastructure for reproducible active learning of Bayesian force fields for ex-machina exascale molecular dynamics, NSF-2003725/Kozinsky

CDS&E

Computational and Data-Enabled Science and Engineering (CDS&E):

• New paradigms in algorithms, software design, and data techniques that impact chemistry research.

Recent Awards:

CDS&E: Adaptive Learning for Multivariate Calibration with Big Data Attributes, NSF-1904166/ Kalivas CDS&E: Development and application of computational methods: from quantum statistical mechanics calculations to data processing in Fourier transform spectroscopy, NSF-1566334/ Mandelshtam

Other Data-related Activities Relevant to Chemists

- <u>National Artificial Intelligence (AI) Research Institutes</u> seeks to support the development of AI
 advances and AI-based tools to drive molecular discovery and identify chemical transformation
 pathways that support energy-efficient, sustainable chemical manufacturing
- <u>Data Science Corps (DSC)</u> aims to build capacity at the local, state, national, and international levels to help unleash the power of data in the service of science and society
- <u>Transdisciplinary Research in Principles of Data Science</u> (TRIPODS) supports developing the theoretical foundations of data science through integrated research and training activities;
- NSF Convergence Accelerator: Al-Driven Innovation via Data and Model Sharing seeks to support multidisciplinary, use-inspired, research projects leading to the development of a Model Commons—for sharing data and data-driven models, for open as well as sensitive data and data-driven models.

DCL: Pilot Projects to Integrate Existing Data and Data-Focused CI to Enable Community-level Discovery Pathways (NSF20-085)

DCL Goal: bring together researchers and CI experts to develop the means of *combining existing* community data resources and shared data-focused CI into new integrative and highly performing data-intensive discovery workflows that empower new scientific pathways.

Sample projects include:

- 1. Improving **end-to-end process** of accessing, integrating and transforming research and education data to knowledge and discovery for one or more communities;
- Creating new workflows and new usage modes to address multi-disciplinary and cross-domain scientific objectives;
- 3. Addressing emerging **community-scale scientific data challenges** such as real-time, streaming and ondemand data access; data discovery; data fusion, integration and interoperability; data privacy concerns;
- 4. Enhancing the performance and robustness of **community-scale data integration and discovery** workflows such as through automated curation, end-to-end performance monitoring, provenance tracking;
- 5. Federating learner data to empower innovative assessment tools for large-scale modeling of learning gains.

DCL does NOT support:

- activities aimed at conducting the targeted discovery-oriented research
 activities themselves including but not limited to creation of datasets or creation or
 maintenance of databases or repositories; proposers are discouraged from
 including these activities in their proposals beyond a limited degree of data
 collection that is necessary to verify the performance of the CI.
- project ideas which do not align with the cross-disciplinary and dataintegration expectations of this DCL.
- proposals previously submitted to, or otherwise designed for, those other CI programs may not be submitted to the CESER program in response to this DCL.

• CHE Scope:

- to explore the scientific and technical challenges facing big data
 standardization, storage, dissemination and repurposing in electrochemistry, including electrosynthesis, electrocatalysis, electrochemical sensor and battery development;
- to facilitate exploration of new research areas (as a pilot project), reuse of legacy data for emerging applications, (re)evaluation of new and previous findings, and comparison of data with future models;
- Project Budget Range: \$300,000 to \$1,500,000
- POC PD: CHE: Lin He and Rebecca Peebles; OAC: William Miller and Tevfik Kosar
- Submit questions to: CESERQueries@nsf.gov

A few commonly asked questions

- What is the submission deadline?
- Will my research idea of ... fit into this funding call?
- Do I need to have at least one chemist and one data scientist on my team to be eligible for submission?
- Will this count against my proposal submission limit to CHE?
- How will these proposals be reviewed?
- When can I start the project if awarded?
- What should be the next step? prepare a whitepaper and contact the PDs at <u>CESERQueries@nsf.gov</u>

