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EXECUTIVE SUMMARY 

The 2-day workshop “Framing the Role of Big Data and Modern Data Science in Chemistry” 

was conducted in order to spearhead a broad discussion about the role of big data research and 

modern data science in chemistry. The workshop set out to articulate the tremendous potential of 

this emerging field, to address the needs that have to be met – both now and in the long term – in 

order to fully develop this potential, and to offer suggestions on how this development could be 

supported beyond existing funding mechanisms. While there is now broad agreement on the value 

of data-driven approaches and the closely related ideas of rational design, there is still a significant 

disconnect between its possibilities and the realities of every-day research in the chemical domain. 

Data science and the use of advanced data mining tools are not part of the regular training of 

chemists, and the community is thus oftentimes reluctant to engage them. Conversely, chemical 

applications are generally well beyond the scope of most data and computer scientists, who are the 

actual experts with respect to these powerful methods. This workshop attempts to chart a path that 

will allow us to bridge this disconnect, to support and guide the activities of researchers, to provide 

consensus community directions, and to ultimately advance and shape this emerging field as a 

focus area. Our long-term objective is to help pioneer a fundamental transformation of the 

discovery process in chemistry.  
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I. BACKGROUND AND MOTIVATION 

Principal Challenges.  Two of the main challenges in creating new chemistry are that the behavior 

of chemical systems is governed by complicated structure-property and structure-activity 

relationships,1-3 and that chemical space is practically infinite.4-6 Traditional trial-and-error 

research approaches that focus on individual compounds, materials, and chemical transformations 

and that are driven by experimental work are increasingly ill-equipped to meet these challenges, 

in particular since advanced chemical applications require more and more intricate property 

profiles.7-9 While there is obvious value in studying particular systems of interest, the insights 

gained in these small-scale studies cannot easily be transferred or generalized.  

Opportunities.  Experimentally-driven trial-and-error research is typically motivated by 

experience, intuition, conceptual insights, and guiding hypotheses, but it still often comes with 

distinct inefficiencies, shortcomings, and limitations due to its time-, labor-, and cost-intensive 

nature. The shift towards a data-driven research paradigm and the use of modern data science 

promises to mitigate many of the prevalent issues and there is now a growing recognition of the 

tremendous opportunities that are arising with this development. High-throughput methods can 

facilitate the large-scale exploration of chemical space, and its uncharted domains are expected to 

hold new classes of compounds and chemical transformations with game-changing characteristics. 

Machine learning and informatics are ideally suited to mine the large-scale data sets that result 

from such investigations in order to develop an understanding of the hidden mechanisms that 

govern chemical behavior. These insights are a prerequisite for rational design and inverse 

engineering capabilities.10-19 Data-driven research thus promises to advance our capacity to tackle 

complex discovery and design challenges, facilitate an increased rate and quality of innovation, 

and improve our understanding of the associated molecular and condensed matter systems. It will 

dramatically accelerate, streamline, and ultimately transform the chemical development process. 

The benefits of moving away from trial-and-error searches towards a rational design process have 

become increasingly evident. The Materials Genome Initiative20 and other high-profile funding 

programs (including those from industrial sponsors) reflect this visionary development. A 

multitude of investments have already been made to advance big data science in chemistry and 

other disciplines. Past U.S. federal investments include for example the Big Data Research and 

Development (R&D) initiative started in 2010 and designed “to transform our ability to use Big 

Data for scientific discovery, environmental and biomedical research, education, and national 

security”.21 Three years later a National Strategic Computing Initiative (NSCI), which also 

included “increasing coherence between the technology base used for modeling and simulation 

and that used for data analytic computing” as one of its five objectives.22 In addition, several other 

initiatives have been launched such as NSF Earthcube and CyVerse programs, focused at 

developing cyberinfrastructure collaboratives in geoscience and plant science respectively; the 

NSF TRIPODS (Transdisciplinary Research in Principles of Data Science) program and DARPA’s 

Big Mechanism program; or the NIH Big Data to Knowledge (BD2K) program, the NSF 
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Cyberinfrastructure Framework for 21st Century (CIF21) program, and the NASA/NOAA/EPA 

Remote Sensing Information Gateway (RSIG), whose goal it is to enhance the interoperability of 

data.23-30 The NSF Division of Chemistry (CHE) is investing in promoting not only data-driven 

discovery research for an advanced understanding of chemical systems through initiatives related 

to NSF Big Idea “Harnessing the Data Revolution”, but is also providing infrastructure and 

offering training opportunities for workforce expansion as an active participant in NSF 

Computational and Data-Enabled Science and Engineering (CDS&E), Software Infrastructure for 

Sustained Innovation (SI2), Data Infrastructure Building Blocks (DIBBs) and the BD Hubs/Spokes 

programs.31-35 

At the same time, similar investments have been made globally and the European Union’s 

BIGCHEM program for example was started to enable collaborations of academia, the 

pharmaceutical industry, large academic societies, as well as small to medium-sized businesses in 

order to “develop computational methods specially for Big Data analysis”.36 

Finally, as of this writing, the NSF CSSI program has already released a new solicitation focused 

on research and tool development for an advanced data and software cyberinfrastructure.37 

Key Obstacles.  Despite the apparent value of adopting data science for chemistry, there is still a 

significant disconnect between its possibilities and the realities of every-day research in the 

chemical disciplines. The three key obstacles that need to be addressed are: (i) data-driven research 

is beyond the scope and reach of most chemists due to a lack of available and accessible tools; (ii) 

many fundamental and practical questions on how to make data science work for chemical research 

remain unresolved; (iii) data science and the use of advanced data mining tools are not part of the 

formal training of chemists, and the community thus oftentimes lacks the necessary experience 

and expertise to utilize them (see Fig.1). Conversely, chemical applications are generally well 

beyond the comfort zone of most data and computer scientists, who are the experts on these 

powerful tools. 

The Goal.  The notion of utilizing modern data science in the chemical context is so recent that 

much of the basic infrastructure has not yet been developed, or is still in its infancy.38-40 The 

existing tools and expertise tend to be in-house, specialized, or otherwise unavailable to the 

community at large, so that data science is practically beyond the scope and reach of most 

researchers in the field. The goal is to overcome this situation, to fill the prevalent infrastructure 

gap, to enable and advance this emerging field by building the foundations that will make data-

driven research a viable and widely accessible proposition in our community and thus an integral 

part of the chemical enterprise. 
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Fig. 1. A typical workflow and mathematical setup of a machine learning application in chemistry  

(example from the ChemML program package). 

 

The NSF Division of Chemistry already recognizes and supports this paradigm shift as is evident 

from the recent Dear Colleague Letter on Data-Driven Discovery Science in Chemistry (D3SC)41, 

and it has signaled an interest in making it a priority. Concrete challenges that need to be addressed 

in order to deliver a transformative impact include: 

I. Identifying the main scientific challenges, drivers, and opportunities for big data research 

in chemistry. 

II. Aiding experimental and computational efforts for big data acquisition, storage, and 

dissemination (including advances in database technology; ontologies and semantics; 

hardware). 

III. Adopting data science techniques for the chemical domain.42-46  

IV. Facilitating the use of data science for the creation of predictive models, innovative 

method developments, and decision making in chemical research.  

V. Coordinating the development of comprehensive, integrated, general-purpose, user-

friendly tools. 

VI. Building a data-driven research community, fostering collaborations between key 

stakeholders and engaging the data and computer science community.  

VII. Promoting education at all levels and workforce development in modern data science for 

chemists. 
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This workshop explored the above aspects of big data and modern data science in chemistry by 

bringing together a diverse group of research leaders in the chemical sciences with specific interest 

and expertise in the development of this field, and to leverage the experience from their pioneering 

efforts (see Appendix A for a list of workshop participants). 

II. GRAND CHALLENGES 

II.1.   Identifying the main scientific challenges, drivers, and opportunities for big 

data research in chemistry 

In the following paragraphs, key aspects of drivers and challenges are outlined as they were 

discussed during the workshop: 

Outreach Opportunities.  The use of modern data science offers an opportunity to extend 

the scope of chemical research from specific scientific questions to a broader conceptual 

scope, thus enabling the work of the wider chemistry community. A prerequisite for these 

opportunities to materialize, however, is that the chemical community has to become 

equipped with knowledge of the capabilities of data science. Opportunities exist for 

gathering, analyzing, and merging vast amounts of experimental and computational data 

generated by labs of varying sizes, from single principal investigators to large multi-

institutional centers. Further impact can be achieved by using data science approaches to 

dramatically lower the cost of computational research, and by integrating data-driven 

research into the evaluation or prediction properties of both chemical compounds and 

transformations. The true potential of employing modern data science is that it can yield 

insights beyond such individual studies, i.e., by facilitating the exploration of chemical 

space and by revealing underlying patterns and relationships. Chemical research is 

generally hampered by issues such as the complexity of processes, variable length and time 

scales, and incompatibility of modeling approaches. These challenges must be accounted 

for in the application of data science in order to build models that are capable of driving 

the research forward and reducing the cost and time associated with experimental research. 

Scientific Challenges and Opportunities.  Specific scientific challenges were discussed 

during the workshop, encompassing a breadth of opportunities for future data science 

endeavors. Representative examples include: mapping the covalent versus noncovalent 

chemisphere in order to apply multiscale methods connecting molecular mechanisms to 

cell-signaling, designing medicinal chemicals, identifying peaks in experimental spectra, 

determining functional descriptors leading to the development of novel catalysts for 

energy, and designing optic and photonic materials that have difficult to model non-linear 

optical properties. The ability of data science to advance analytical chemistry was 
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discussed during a breakout session. Chemistry’s abundance of analytical data can be 

harnessed and organized, enabling the use of molecular features with the most predictive 

power to avoiding biases from human cognition. Therefore, a systematic exploration may 

begin with a screening that considers synthetic accessibility as well as broad regions of 

chemical space with high uncertainty (i.e., a high risk of synthetic inaccessibility, but high 

payoff if success is found). These efforts have a wide range of applications including 

monitoring environments, drugs, and food for safety, security and defense. The key 

findings are summarized as: 

 Expose traditional researchers to big data and modern data science so that they may 

realize and further the potential applications of this developing field. Conversely, 

data scientists need to be versed in chemistry problems, for example by submitting 

data to Machine Learning competitions that chemists find important as well. Macro-

exposure environments may include short-courses, conference presentations, 

publications, and symposia. Micro-exposure environments could include 

collaborations and direct integration and acceptance of data scientists into 

experimental research environments.  

II.2.   Aiding experimental and computational efforts for big data acquisition, 

storage, and dissemination (including advances in database technology; 

ontologies and semantics; hardware) 

Background.  Experimental and computational high-throughput screening are used to 

explore a variety of research areas including drug discovery (combinatorial biochemistry), 

bioassay screening, polymer science (e.g., organic semiconductors, photovoltaics, energy 

harvesting), organometallic catalysts, and mechanistic applications (catalysis). High-

throughput screening research often requires a multi-disciplinary team (e.g., robotics, 

chemistry, biology, data science) to generate a broad, diverse set of data that is publicly 

accessible and manipulable. In addition, maintenance of this data for re-evaluation or novel 

assessment is a crucial component of data science. This should generate an appropriate 

amount of data necessary for downstream analyses (e.g., machine learning) as acquisition 

of orthogonal data is important for differentiating relevant from irrelevant information and 

for refining models. Though experimental datasets tend to be much smaller than 

computational datasets, the abundance of data, particularly for –omics measurements, is 

arduous to analyze given the speed of instrumentation for acquiring multi-dimensional data 

relative to the human time required to interrogate complex systems. Further, since 

analytical and biological variability is a concern for experimental screening efforts, 

metadata and sample variables are used to assess biases or batch effects that may be masked 

and thus maintaining knowledge of them is imperative. 
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Expectations to remain transparent and disseminate data have been realized, but a 

consensus of best practices for data acquisition, storage, and dissemination has yet to be 

achieved or defined. Data sets continue to become more complex and larger in size. New, 

improved, or faster computational methods are useful for high-throughput screens. 

However, there is often little incentive for authors to develop, maintain, and publish 

software for the community because of the time and effort involved. 

The following paragraphs elaborate on key aspects of big data acquisition, storage, and 

dissemination as they were discussed during the workshop: 

Data Access.  One of the cardinal problems of data-driven research in chemistry today is 

access to suitable data sets. This mirrors, to a certain degree, the situation of the 

cheminformatics and quantitative structure-activity relationship (QSAR) field during its 

heyday in the 1990s.5 This field was in some sense well ahead of its time, but it often lacked 

in key aspects, including access to training data with the necessary volume and veracity.47 

(It also often had to rely on early, relatively simplistic data mining techniques.) These 

issues had a negative impact on the utility and reputation of the field. 

Natural Language Processing and Machine Learning.  In the wake of the booming field 

of bioinformatics and the Materials Genome Initiative, there have been concerted efforts 

at solving the data volume and veracity problem (both in chemical and materials research), 

e.g., by combining first-principles electronic structure theory with high-throughput 

computation and by combining robotics with chemical synthesis and characterization.48,49 

A significant portion of the data of interest is only available in the literature. While there 

has also been early progress in automated text recognition applications for the extraction 

of structured data from the published literature,50,51 there is still much room for 

improvement in literature data mining. There is a critical need to use natural language 

processing and machine learning to derive more meaningful information beyond merely 

identifying chemicals in text, such as adding context (e.g., the chemical’s role in synthesis 

– precursor, catalyst, coordinating solvent). Even so, the generation and collection of large-

scale data sets has consequently never been easier than today. 

Data Complexity and Retention.  Workshop participants note that they desire access to 

comprehensive data collections including legacy data, however, logistical concerns exist. 

Computational data can in principle be reproduced on demand (albeit with some cost of 

effort) so the desire to retain inputs as well as primary results is often present. Many other 

properties are computed incidentally. Quantum chemistry methods are already getting 

more complex (combinations of approximations, multi-step local correlation models, etc.), 

so the ability to store the relevant cutoffs and tolerances to guarantee reproducibility will 

become even more important in the future. Access to legacy data is valuable – even in cases 

where the underlying methods may not be state-of-the-art any more – as it allows the 
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community to build on prior results in order to streamline the exploration of new areas of 

chemical space, re-mine old data for new applications, re-evaluate original findings with 

respect to their errors and predictive uncertainty, and compare data with future models. 

Another important aspect of the reusability of legacy data is its annotation with meta-data. 

Data Storage Resource Needs.  The availability of and access to legacy data sets are still 

difficult issues. Data collections oftentimes remain siloed in the groups that generate or 

compile them for a number of reasons, including ownership considerations, desire for 

competitive advantages, but also due to lack of a central repository, i.e., a physical 

infrastructure that would make data sharing practically viable. In addition, groups that 

generate large-scale data sets often face the problem of storing their data in the first place, 

as it is difficult to apply for such resources through regular research grants. The Harvard 

Clean Energy Project52-55 for instance generated about one petabyte of results from density 

functional theory calculations on organic semiconductor compounds for photovoltaic 

applications. The storage of this data was only financially viable through a generous 

donation by the hard drive company Hitachi/HGST and by constructing an in-house, low-

budget storage array (see Fig. 1).  

 

   

Fig. 1: The Harvard Clean Energy Project has harnessed distributed volunteer computing via a  

screensaver application of the IBM World Community Grid to generate quantum chemistry data on  

organic electronic compounds at a massive scale. The disc-based, home-built storage solution  

for this project called ‘Jabba’ is shown on the right.52-55 

However, such a storage solution (not to mention the corresponding backup) is generally 

not accessible to most research groups, i.e., data sets generated as part of data-driven 

investigations may not be stored (at least not in their entirety), which represents a 

significant loss and missed opportunities for the field. When research teams do make their 

data available through website front ends, the richness and accessibility of the 

corresponding database backend is typically lost (see Fig. 2 and the NIST WebBook56 for 

examples).  

Data Quality and Accuracy.  Database content and inaccuracies are a concern during 

evaluation of many high-throughput findings, including –omics analyses. There are a 
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multitude of open databases and libraries that can be used for the purposes of screening 

and non-targeted analyses. However, many have issues in terms of data quality. Though 

they are recognized as imperfect, these databases are accepted and widely-used as they are 

free and widely accessible. A need exists for data-checking, manual curation to validate 

content, and to indicate uncertainty estimates as it is not uncommon for different answers 

to be generated for the same data. To the extent possible, automated validation tools should 

be developed to ensure integrity and internal consistency, such as with the Protein Data 

Bank (PDB) and the Cambridge Crystallographic Data Centre (CCDC).57,58 In addition, 

data repositories should be archival (e.g., who entered what data, when, and how), 

provenance/audit logs should be retained and unusual or irreproducible results should be 

reported. Ideally, the community should push for research standards via a peer review 

mechanism. Indeed, even failed or negative results are of great use in the machine learning 

context59, if properly annotated, and the gathering and curation of the failed data should be 

encouraged. One of the data sharing issues discussed is that constraints placed by the 

journals on the type/extent of data to be published may increase the barrier to entry for 

publication. For many types of data (e.g., in crystallography) it is an established norm that 

data is published in community data hubs as a prerequisite for publication. This publisher-

accepted approach could likely be leveraged, though a challenge is to broaden it to new 

types of data. The latter will require the formation of multidisciplinary teams that can 

successfully implement such repositories in other fields, which will then allow researchers 

to easily share, publish, and extract open data in a centralized fashion. 

       
Fig. 2. Web frontend of the Harvard Clean Energy Project Database.52-55  

Data Sharing Limitations.  For data analysis, the backend is considerably more valuable. 

However, complete database dumps are rarely shared by the owners of such data sets. 

Complete databases or even raw data compilations may also be too large for electronic data 

transfer and may thus require physical shipping. For instance, the Harvard Clean Energy 

Project shared about 10TB of its data with the Open Chemistry Project for benchmarking 

and testing purposes, and the only viable option for the data transfer was shipping of hard 

drives by mail. This and similar situations could be avoided if the analysis and mining work 
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on the data were performed on site, where the corresponding tools have direct access to the 

underlying data architectures (see example in Fig. 3).    

 

     
Fig. 3. Application of the Vortex drug discovery data mining tool on the Harvard Clean Energy Project 

Database backend.52-55 

Differences in Data Formats.  Finally, data sharing has been established for several 

disciplines, with funders setting expectations and publishers driving community norms. 

Within the materials community there are several repositories of data aimed at materials 

genome applications. Similarly, there are several different formats for sharing chemical 

structures and data. A standard format/database for data within the chemical data-driven 

discovery field is highly desirable. As the field of data-driven research is still relatively 

young and most researchers have not had the benefit of formal training in data science, 

there is a lack of established (or at least widely adopted) data standards, formats, 

architectures, etc. There is also very limited experience with domain specific issues with 

respect to hardware, database management systems and engines, etc.  

Data in Supplementary Materials.  Many publishers have traditionally been satisfied 

with the generation of PDFs of supplementary materials, which severely limited the 

accessibility and utility of the data it contained. However, there is a distinct shift towards 

requiring comprehensive compilations of supplementary data (including details of both 

physics- and data-derived models) in formats that are readily accessible and reproducible. 

As such, the community should continue advocating and pushing for improved 

accessibility, and enable data parsing by making available supplementary materials (e.g., 

Jupyter notebooks, Python scripts, Docker containers, databases, electronic notebooks60).  

Data collections should be housed on publicly accessible sites and associated with digital 

object identifiers (DOIs), so that they can be adequately cited. To support this concept, 

perhaps grants could include researchers from different fields such as computer science. 

These supplementary material repositories may potentially be funded through public-

private partnerships, i.e., by the funding agency that supported the research and by the 

publisher that disseminated the results. 
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In summary, it has become evident that the lack of a central, shared hardware infrastructure 

that hosts the important data sets of the chemistry community, that provides access and a 

storage solution for this data, and that offers an on-site platform for data mining and the 

exploration of the afore-mentioned issues, is a major roadblock on the path to progress in 

this emerging field. Recommendations to the community to resolve these roadblocks 

include: 

 Implement a consensus of best practices for data acquisition, storage, and 

dissemination while the field is still young. 

 Develop a community published data hub to ensure transparency. Users should be 

able to share and extract open data in a centralized fashion. 

 Promote a push for research standards via a peer review mechanism for data quality; 

motivate publishers to drive community norms. 

II.3.   Adopting data science techniques for the chemical domain 

Background.  One of the greatest assets of data science is that it is (at least in principle) 

agnostic to the question it is applied to. There is thus no good reason why the successes of 

data science in other domains should not translate to chemistry. In fact, applications in the 

natural sciences are on much firmer footing than, e.g., in the social and behavioral sciences, 

since they are dealing with much more deterministic questions. There is also the option to 

incorporate fundamental physics into data science approaches. That being said, there are 

many challenges for how to adapt data science techniques for the chemical domain, in 

particular in the area of feature representations, dealing with the peculiarities of chemical 

data (size, bias, etc), model selection, and efficiency. 

Data Set Variations.  Even with data being accessible, curated, and manipulatable, the 

type and amount of data and the data representation and structure to be used in the ML 

algorithms are essential components to the success of applying the algorithms to the 

scientific problem to be explored. In chemistry, these components can be highly dependent 

on the type of problem to be solved. Some of the research areas such as reaction 

mechanisms have small data-sets with biased distributions that only include positive 

results, while others such as molecular dynamics simulations and structure data involve 

very large sets of data that are dependent on the parameters of the simulations and 

experiments. For the former case, the workshop participants suggest that one-shot methods 

that are more interpolative instead of extrapolative may be appropriate. For the latter case, 

there may be a need to reduce high-dimensional data in a principled way, while avoiding 

overfitting. In addition, integration of different data sources is challenging, especially with 

contradictory data in the sources. Consequently, there is an essential need for research to 

identify the types of data for the spectra of data and problems to be examined. 
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Descriptors.  While there has been some progress in identifying appropriate descriptors 

for specific chemical contexts, more research is required to identify new descriptors – and 

perhaps identifying the distinction between structural (connectivity, spacial orientation), 

property (electronic, thermal, dynamic), and functional descriptors (catalytic activity and 

selectivity). However, as the wide-ranging viewpoints expressed by the workshop 

participants attest, it may be too early yet to identify which representations and feature 

spaces will yield results across the varied needs of the chemical ecosystem. Therefore, 

there is a need for a continuum of representations from raw data to higher representations 

that humans can appreciate. Even with the descriptors that have already been identified, 

there are issues of nontransferability of descriptors across types of matter. For example, 

descriptors that work well for organic molecules fail for inorganic solids and molecules. 

Only by creating a wide pool of descriptors and using them for various scientific purposes 

will the answers be found for what descriptors will perform best. Therefore, additional 

research will be required to make significant advancements in the use of machine learning 

techiques.   

Data Bias.  Related to the representations is the question of which data to include. For 

example, data with lower inherent error bars should not be used on the same footing as data 

with larger error bars. Not all data even has associated error bars, such as results from some 

computational methods. While this is managable within the machine learning framework, 

it may cause unintended biases in the data. In addition, inclusion of negative results is 

useful in machine learning, but these are often not available in the data, which may result 

in biases that influence the algorithms. Resolving these issues requires close collaboration 

with data scientists and statisticians. Additionally, benchmarking studies that produce at 

least average error bars for data without error bars are required.  

Hybrid Models. There is significant interest in exploring the benefits of merging physics-

based and data-derived prediction models.61 This hybrid approach is expected to yield more 

robust, reliable, and accurate models with a greater range of applicability, as the underlying 

physics provides the correct framework for the overall approach. A related concept is that 

of delta models that bridge the gap between physics-based modeling results of idealized 

systems and observations in complex, non-ideal reality. There are also downsides of 

incorporating physics into data-derived models, i.e., cost and potential bias of the physics-

based components (e.g., issues of DFT results would propagate into derived models). There 

is thus also a legitimate space for pure data-models. 

Summary recommendations to the community for the transformation of data for machine 

learning purposes in the chemical domain thus are: 
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 Develop a wide pool of publicly accessible data and descriptors to be used in various 

chemical machine learning contexts to determine appropriate descriptors for 

particular chemical problems. 

 Develop centers of excellence that combine chemists (experimental, computational 

and theoretical), data scientists and statisticians to resolve issues associated with data 

bias and uncertainty. 

 Encourage benchmarking activities to produce better data with error bars to calibrate 

machine learning techniques and research. 

II.4.   Facilitating the use of data science for the creation of predictive models, 

innovative method developments, and decision making in chemical research 

Machine Learning Applications.  There are many different “scales” along which to 

invoke a machine learning approach such as solving the Schrödinger equation, predicting 

solvation energies, determining accurate molecular properties with a speed comparable to 

molecular mechanics, predicting reaction products, guiding experimental investigations, 

etc. Outcomes from each level can serve as inputs to a higher level that includes more 

complexity of the target system. For example, information from quantum mechanics-based 

benchmark sets (calculated in the traditional manner) can serve as data for machine 

learning in deriving density functional methods62-64 or predicting atomic interactions65,66 

that do not have a traditional functional form. However, machine learning should not be 

narrowed down to applications in quantum mechanics, molecular dynamics, or material 

sciences but be broadly defined as an approach to investigate chemical systems that feature 

a high chemical complexity. Applications may also include environmental chemistry or 

chemical analyses of biological samples that are internally governed by many reaction 

pathways and/or interact with their chemical environment.  

Hypothesis Extraction and Decision Making.  Additional research is needed to support 

data-driven studies by extracting higher-level emergent models from data or to identify 

hypotheses of interest for transfer of knowledge from data scientists to experiments. In 

addition, high level models can be developed from the data using prior knowledge of 

systems in a hypothesis-driven approach. Important questions include:  

o What is the mathematical structure of the data?  

o Why is that math working?  

o What is the physical interpretation?  

Statistical and Machine Learning.  Pure statistical learning can help discover interesting 

topics to explore in a discovery-driven approach. Machine learning tools can help in 



  

NSF CHE WORKSHOP: Framing the Role of Big Data and Modern Data Science in Chemistry Report 16 

 

exploration of chemical space in a more systematic and less-biased manner and, hopefully, 

increase creativity at the same time. For example, inductive logic programming can be used 

to generate new hypotheses automatically and in synthesizing contextual information. 

Uncertainty Quantification.  Related to hypothesis- and data-driven research is the need 

to decrease uncertainty in order to develop and improve decision-making processes. Active 

learning and domain learning can help in identifying outliers in data sets, determining the 

biggest factors of uncertainty in the models and evaluating systematic errors versus white 

noise. This uncertainty quantification helps evaluate the predictive capabilities of the 

developed models and provides a basis for decision making. The workshop suggests that 

examples of questions that could be answered in a decision-making process include:  

o What should be done next? Data methods could help determine new experiments, 

improve models, find model problems that will generate significant insight at a low 

cost, evaluate the predictive capabilities of the models, plan synthesis, or determine 

when to stop an unprofitable line of research. 

o How should an experiment or computation be performed? Machine learning 

could be used for synthetic accessibility and cost/difficulty metrics, or as a scientific 

digital assistant/advisor that advises on the best model and manner to perform a 

calculation in complex situations. 

o Was there value added? For example, did a new technique provide a substantial 

advantage over existing alternatives? Machine learning could give provable quality 

of advice by providing confidence bounds, theoretical guarantees, etc. 

o Why is the prediction working? Current work on attribution or interpretation of 

nonlinear models to understand important features needs to be continued to extract 

design rules latent in the data. 

Data Interpretation Approaches.  The latter question directly relates to the need to create 

models that are interpretable. Often machine learning is primarily heuristic knowledge of 

correlations, whereas physical interpretation is needed to extract causality from these 

correlations. While chemically relevant descriptors can help, they insufficiently capture 

physical interpretations from the machine learning models. Workshop participants are not 

in agreement on the appropriate approach to obtain interpretability. One tactic would be to 

combine machine learning approaches for predictions with Hamiltonian-based methods to 

understand the physical properties. Another approach could be to build physics into the 

models. This can be accomplished, for example, by using chemical knowledge and prior 

insights into the chemistry through constraints in the model or by ensuring that model 

components are chemically relevant. For example, in a neutral network model, latent layer 

engineering might add an atomic latent layer that discovers insights that might look like 

oxidation number, coordination, etc. Then a diatomics-in-molecules latent layer could 
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discover bond length/strength correlations.67 By building multiple layers, chemical insights 

could be obtained. 

Collaborations for Continuous Machine Learning.  Inherent in all of these approaches 

is the deep integration among experiment, computation and data modeling. As the data 

modeling makes new predictions, experiments and computations will be required to verify 

or reject the predictions, which will then need to be propagated back into the algorithms. 

This includes predictions of both positive and negative results if the machine learning 

algorithms are to be improved to the point of predictability for a large variety of situations. 

These types of collaborations could be supported through the development of centers of 

excellence in data science. 

Machine Learning Standards.  Standards for determining the correct machine learning 

approach for a given application will be necessary to enable broad applicability within 

chemistry. It is also useful to identify poor or weak machine learning techniques to 

facilitate reviews and development in the field. While there is still significant research 

required to determine these standards, collaborations with data scientists and knowledge 

gained from machine learning in other fields will facilitate these standard development 

activities. Ensuring that the train/validation/test sets are chosen responsibly is a well-

developed and understood method in the data sciences. Identifying the number of layers 

and nodes in a network and understanding the expense of training in the data generation 

are all considerations that must be taken into account. Finally, version control methods will 

be required to ensure that results are reproducible, especially if on-the-fly generation of 

models are used. 

Summary example requirements include: 

 Research is needed to understand what makes for useful and reproducible data-driven 

studies. 

 Uncertainty in predictions must decrease to enable decision-based processes. This 

will require collaborative efforts among experimental and computational chemists, 

data scientists and statisticians. 

 Research is needed to enable interpretability of the machine learning models. 

 Standards for determining the correct machine learning approach for a given 

application will be necessary to enable broad applicability within chemistry. 
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II.5.   Coordinating the development of comprehensive, integrated, general-

purpose, user-friendly tools 

Background.  The workshop calls for the creation of open, general-purpose software tools 

for big data analysis (i.e., the use of machine learning, informatics, and database 

technology for the validation, mining, and modeling of resulting datasets).68 A key 

consideration is to make these tools as comprehensive and user-friendly as possible, so that 

they can readily be employed by interested researchers without the need for excessive 

expert knowledge. This implies the use of grey-box solutions that provide established 

workflows and default settings that encapsulate best practices, while simultaneously giving 

users the flexibility to fully customize their work, if desired, and thus explore the largely 

uncharted utility of data science in chemistry. In addition to delivering production-level 

capabilities to the community, these tools should also provide development evaluation 

facilities for innovation in the underlying methods, algorithms, and protocols. These would 

allow the community to gain insights into the performance of existing techniques as well 

as new ones that emerge as the field is evolving. Approaches to establish guidelines and 

best practices that will provide added value to these tools is another area of interest. Many 

of these developments will be driven by concrete molecular design problems, which will 

allow the community to assess the efficacy of these new research approaches. The bottom-

up formulation of grand challenges will help to move the field forward. 

In the following paragraphs, key aspects of open software tools and tool development are 

outlined as discussed during the workshop: 

User- and Contributor-Friendliness.  There are many examples of available codes (e.g., 

in genomics) that are limited to in-house use due to a lack of user-friendliness and 

intuitiveness. It is generally agreed that user-friendliness is a central concern, as tools are 

oftentimes not created to serve the community at large. There are many interesting 

methods, algorithms, and techniques that are often limited to the creator’s own group. 

Modular software design and the use of well-articulated libraries are the complementary 

issues for contributor-friendliness, as the community seeks flexibility and extensibility of 

software packages and the broad buy-in by stakeholders. Other factors are documentation, 

tutorials, training resources, and the development of (virtual) support communities (e.g., 

software forums, email lists, blogs). Workshops, online courses, and other means of user- 

and developer-community building also tie in with the issue of user- and contributor-

friendliness and are discussed in more detail in Sec. 2.6 and 2.7. 

Extensibility and Sustainability.  As previously stated, there is a need to encourage a 

broad buy-in and engagement in the software development process. The community should 

strive for a smaller number of comprehensive, high-performance program packages 

developed by larger teams rather than a large number of single-use scripts with low 
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performance and very limited capabilities developed by individuals. However, there is 

value in having some code diversity and the difficulty of reconciling the interests and 

preferences of many stakeholders, while acknowledging that constantly reinventing the 

proverbial wheel and starting projects from scratch is not a productive development model. 

A notable parallel to the computational chemistry field is the increasing number of quantum 

chemistry log file parsers, molecular dynamics post-processors, and viewer applications. 

To address this issue, the community should strive for the creation of infrastructure that is 

modular, library-centered, and that offers better application program interfaces. Patches 

and features that are already developed can then be easily integrated. Moreover, adding 

technical information to the code, guides on how to contribute, and teaching best practices 

can motivate users to extend existing tools rather than redevelop them. Easily extensible 

codes are likely to be more sustainable, too. The consistent use of file formats, well-

documented manuals, and regular software workshops/tutorials are also pointed out as 

practical approaches to achieve sustainability. The commitment for the support is an 

important concern, since the extensibility and sustainability of the software development 

efforts depend on a longer project assurance, and ideally will include hiring staff 

programmers. It is crucial to have careful project management and a good point-person, 

e.g., professional software developer, who can take incoming contributions and 

standardize, test, document, clean them up, etc. For open source projects, it is unrealistic 

to ask developers to also provide the support. Access to experienced staff programmers 

would thus be very desirable, but may not be a realistic expectation from a funding 

perspective. Adequate training (including in software engineering best practices) for the 

graduate student researchers that often perform the hands-on implementation of new codes 

is another important issue in order to achieve extensibility and sustainability. Finally, the 

workshop discussed the cultural barriers that can potentially prevent a major contribution 

to existing development efforts. When it comes to evaluation, researchers usually prefer to 

see the original contribution (i.e., their own implementations), which potentially causes 

conflicts of interest (e.g., regarding the uniqueness, attribution, tenure, citations, or 

convenience). This workshop suggests that evaluation metrics can be changed for software 

developers (e.g., by number of downloads, contributions, or software citations) to 

encourage collaborations or at least to lower contribution barriers. 

Validation.  Proper software and method validation is another significant aspect in the 

successful creation of open software tools. The validation can be achieved by developing 

good test cases with corresponding data sets, creating blind competitions (similar to the 

crystal structure prediction field), and allowing for user comments such as Github issue 

tracking, forums, wikis, etc. Consistent benchmarking of codes and techniques will also 

help in delivering higher quality tools to the community. One significant challenge is the 

interplay of commercial, closed-source codes, as companies can be reluctant to provide 

benchmarking and validation. 
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Funding and Resources.  Several participants are concerned about the existing resources 

and funding needed to realize the above points. There are no straightforward funding 

mechanisms, in particular for the long-term support and maintenance of open-source 

software. Many development efforts in the community have been supported in an ad hoc 

fashion or were performed without support. Developing and maintaining open source 

software takes time and energy, so it is understandable if groups are reluctant to take their 

tools mainstream and forfeit technical advantages. This workshop recognizes the 

importance of adequate incentives to develop and support open source code from funding 

agencies and other stakeholders. 

Overall, there are many important lessons – both positive and negative – to be learned from 

the field of computational chemistry. The field of data-driven research can thus build on 

50 years of experience from computational chemistry tool development, and can avoid 

mistakes that result from a completely organically evolving field that did not have a 

template to follow. The main concerns covered in this section can be addressed only if the 

community and funding organizations work together to tailor the field in the right direction: 

 Create open, general-purpose software tools. 

 Make these tools as user-friendly as possible to reach non-expert users. 

II.6.   Building a community for data-driven chemistry, fostering collaborations 

between stakeholders, and engaging the data and computer science field 

Background.  While data-driven research is important in all scientific areas, data-driven 

chemistry is not yet well established as a cohesive and distinct field. A particular challenge 

is that data-driven chemistry draws its stakeholders from many different areas that 

represent traditional chemical domains (which at times have co-existed in a siloed fashion). 

There is a need to develop a core community that will drive the new field of data-driven 

chemistry (e.g., by creating the scientific foundations, techniques, and tools that underpin 

it). At the same time, it should also advance the notion that data-driven research can play 

an important role in all branches of chemistry and that it should become a ubiquitous 

approach in the every-day chemical enterprise at large. To achieve such a widespread 

adoption in chemistry, the core community should strive to democratize the use of data 

science (similar to the approach the computational chemistry community has been 

pursuing) and thus maximize its reach and impact. 

Opportunities for Interaction and Collaboration.  One of the consequences of the 

absence of a well-established community is the lack of opportunities to interact, exchange 

ideas and experiences, and collaborate. This is, e.g., reflected in the deficit of dedicated 

topical conferences, meetings, and workshops that would bring together investigators from 
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different backgrounds with a common interest in data science. Forging alliances between 

academia, industry, and government (including international partners) is another important 

action item. Partnerships and joint ventures on all levels (ranging from specific studies by 

small research teams to large-scale initiatives by institutions and agencies) will allow the 

community to better identify and frame common problem settings for which common 

solutions can be developed. There are great opportunities for cross-fertilization and transfer 

of knowledge between different domains that can be facilitated by researchers of different 

backgrounds. The diversity from which the data-driven chemistry community will be able 

to draw is clearly a strength. The common issues of the underlying chemical data problem 

may thus help bridge gaps of traditional fields for which data science questions represent 

a unifying theme.  

Collaborations with Computer and Data Scientists.  A related concern is the 

engagement of the data and computer science community, which has obviously much 

expertise to contribute to the field of data-driven chemistry. A key prerequisite is that 

communication barriers have to be torn down or at least reduced. The challenge for the 

data-driven chemistry community is to encourage interactions with computer and data 

scientists, and to identify ways in which these interactions can yield more valuable 

outcomes. Given the differences in priorities, perspectives, and educational background, 

this is a non-trivial task and may require new incentives. Interdisciplinary workshops and 

funding programs that specifically target collaborations between chemists and data 

scientists are two ideas that were offered by the workshop. The workshop participants 

suggest including investigators from the computer and data science field in planning 

meetings to harness their critical input and offer them the opportunity for active 

participation in the implementation of the resulting action items. 

Institutionalized Support Framework.  In order to facilitate the goal of community 

building and the fostering of collaborations in a sustained and lasting fashion, an 

institutionalized support framework is required. Such a framework should include a center-

level structure and corresponding funding to provide data hardware, data tool building, data 

education and outreach, and the data science support of chemistry grand challenge projects. 

The Molecular Sciences Software Institute (MolSSI) that was launched in 2017 for the 

computational chemistry community could serve as a template for the data-driven 

chemistry community. In fact, MolSSI and the data-driven chemistry community share 

many common goals – for instance in establishing data standards and accessibility. Other 

suitable avenues would be a topical Big Data Innovation Spoke or Center for Chemical 

Innovation.69,70 In the spirit of a true community effort, any center-level initiative should 

cast a wide net to engage as many leaders and pioneers of this emerging field as possible. 

They all have a vested interest in the success of the field and can contribute their unique 

expertise. Workshops and planning meetings can be used to gain initial input and 

subsequent feedback. Any interested stakeholder should have the opportunity to actively 
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contribute to its implementation and the corresponding creative process. Contributing 

partners should also be rewarded for their work by having access to the resources created 

as part of this initiative. In addition, other funding mechanisms that address the specific 

needs for data-driven research, e.g., for data storage and mining hardware as well as the 

corresponding software developments are required. Another cornerstone of the 

institutionalized framework of a new community could be a new topical subdivision of the 

American Chemical Society, ideally affiliated with all the relevant divisions, i.e., PHYS, 

COMP, and CINF. The workshop participants recognize that by building an 

institutionalized support framework the community will be in a stronger position to meet 

the needs – both now and in the long term – in order to fully develop the potential of this 

emerging field. 

The MGI Template.  One important question is how to define success for an emerging 

community, field of research, and potentially a corresponding center-level effort. There is 

much to learn from the successes and failures of the Materials Genome Initiative (MGI).71 

The MGI had the clear missions of “materials discovery” and delivering for the 

“marketplace”. Similarly, data-driven chemistry is interested in fundamental 

methodological advances, the application of these methods to real-world problem settings, 

and tangible successes (i.e., the creation of new chemistry) resulting from these projects. It 

is worth contemplating if the MGI actually achieved its marketplace aspect, although the 

ultimate judgement is probably still out. The MGI has suffered from across-the-board 

funding cuts due to the 2012 Sequester, but fluctuating funding levels are beyond the 

community’s control. Another problem of MGI was the lag in the integration of 

experimental work. The workshop suggests that funding mechanisms tailored to 

incentivizing more integrated efforts between experimental, computational, and data 

thrusts may help improve this situation. 

Vital tactics to building a community for data-driven chemistry, fostering collaborations 

between stakeholders, and engaging the data and computer science field thus include: 

 Build a core community to drive the field. 

 Democratize the field to maximize its reach and impact. 

 Harness the interdisciplinary nature of the field for cross-fertilization.  

 Create an institutionalized support framework for sustainability and longevity of the 

field. 



  

NSF CHE WORKSHOP: Framing the Role of Big Data and Modern Data Science in Chemistry Report 23 

 

II.7.   Promoting education and workforce development in modern data science for 

chemists  

The final grand challenge considered in this workshop is that data science and the use of 

advanced data mining tools are not part of the regular training of chemists, and the wider 

community thus oftentimes lacks the necessary experience and expertise to utilize them. 

Correspondingly, the workshop set out to outline a strategy to bridge this disconnect by 

supporting and guiding the activities of educators. 

Education and Workforce Development Need.  The paradigm shift towards data-driven 

research is disruptive and changes the playing field for the chemistry community. The 

qualitative novelty and inherent interdisciplinarity of this approach give rise to numerous 

educational challenges and opportunities. Means to addressing these issues include cross-

cutting curricular and course developments, the creation of interactive teaching materials, 

skill-building (e.g., in partnership with industry and other stakeholders), and outreach. The 

goal of any education and workforce development initiative has to be to help update and 

adapt education to this changing research landscape in order to adequately equip the next 

generation of scientists and engineers, to build a competent and skilled workforce for the 

cutting-edge R&D of the future, and to ensure the competitiveness of our students in the 

job market. If the community succeeds in creating such an innovative and timely 

educational framework (including the necessary education of educators), then it will be in 

a strong position to attract more bright young minds to the emerging field and secure its 

future. There are several funding programs (e.g., the NSF NRT program72), which the 

community may be able to harness for these efforts. 

Multi-Disciplinarity.  The overarching theme of the community’s educational efforts 

should be the harnessing of the cross-cutting nature of data-driven work, as well as of the 

benefits of transferring skills and techniques into new application domains. This includes 

the need for a broadened horizon, new skills, and the pooling and integration of specialized 

expertise from different backgrounds. There is a need to promote communication and 

problem awareness that will transcend the boundaries of traditional disciplines. This 

approach promises to trigger creative, out-of-the-box thinking and to instill new 

perspectives on problem solving.  

Contemporary Chemistry Curricula.  The inclusion of data science ideas into chemistry 

curricula (both at the undergraduate and graduate level) should be promoted. Traditional 

curricula do not consider them. Currently, most students are settled with chemical core 

courses and have very limited opportunities/freedom to complete coursework offered in 

other domains such as computer science, statistics, and applied mathematics. Most students 

thus learn about data science in an ad hoc manner without formal coursework, which can 

easily result in critical gaps in their data science knowledge. Curricular rigidity can in part 
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be traced back to a traditionalist understanding of what constitutes the essence of chemical 

knowledge, i.e., content that needs to be conveyed by any university-level program. 

Another reason may be the assumption that students (and potential employers) are not 

interested in data science. Given the ever-expanding chemical knowledge, it is undoubtedly 

a great challenge to find the right content balance for contemporary curricula, in particular 

since the rise of data-driven chemistry is not the only new direction. It is an important task 

to advocate for flexibility, openness, and for a redefining of what represents the core of 

chemical knowledge. As instant changes to the curriculum will be difficult to adapt, the 

workshop suggests focusing on creating awareness in the short-term and collaborating with 

the chemistry community at large to affect long-term change. 

Data-Driven Chemistry Education Tracks.  While some essential data science content 

must become part of every chemistry curriculum, other content will have to remain optional 

as part of electives that students can choose to specialize in. Some universities have already 

implemented elective tracks that are relevant for data-driven chemistry, and this may be a 

model for other schools and degree levels as well. Specialized degree tracks and certificate 

programs may increase the visibility and marketability of chemistry programs, in particular 

in areas that emphasize skills (such as data science) that can be transferred, are in high 

demand, and can help recruit top students. Students with a strong interest in data science 

or applied mathematics will generally join other departments if chemistry does not offer 

suitable and attractive options. This could result in chemistry departments missing out on 

good students and potentially creating a shortage of mathematical skills in our discipline.  

Course Content.  Data science content may either be taught by other departments, as part 

of new courses within chemistry, or as new modules/sections within existing chemical core 

courses. Topics for new foundational courses could include scientific programming and 

computing, data mining and machine learning in chemistry, uncertainty quantification, and 

cheminformatics. These courses should be augmented by modules covering basic concepts 

of probability, statistics, informatics, programming, and numerical methods, which will 

provide the vertical integration of data science in other classes. Introducing these modules 

early and revisiting data science topics on a regular basis will help build interest in the 

students and a sense of the importance for the subject matter. The workshop also suggests 

revisiting the design of lab courses to incorporate hands-on data science questions. Making 

graduate level courses open to undergraduates was another suggestion.  

Further, there is a need to contribute to the development of corresponding courses and 

common core course contents that meet the needs of the data-driven research field (see 

details below). These should connect key aspects of traditional computational work with 

techniques that enable data-driven approaches. A comprehensive training will put students 

in a position to perform data-driven research without the need farm out the technical 

aspects to third party experts. 
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Educational Materials and Resources. Due to the nascent nature of the subject matter, 

the shape of new courses and modules in this area is at this point still in flux. Data-driven 

research requires specialized expertise from many directions across different departments, 

and the community will have to put particular emphasis on accommodating these demands. 

Aside from teaching basic concepts, the community should focus on translating success 

stories of data-driven chemistry to engage students in data science while keeping their 

interest in chemistry. Teaching the scientific/societal importance of data science can further 

motivate students to learn and understand. Deep expertise is not required for every student, 

but general foundations and an understanding of basic data science concepts will be vital 

for every student. In addition, students would benefit from a basic understanding of what 

cheminformatics, computational chemistry, and data science can do for them, and the kinds 

of questions these techniques can help answer. 

Central Repository and Training Modules.  In addition to framing and coordinating new 

course contents, the community should also work on efficient ways to deliver them. To this 

end, stakeholders should contribute to the development and dissemination of course 

materials and resources that should be made available to the community at large. The 

workshop participants suggest the creation of a central repository for lectures and other 

educational material.  

In addition to creating dedicated teaching material, the community should also augment 

research codes with extensive tutorials and training modules. The notion to integrate 

educational functionality into research software offers an opportunity to reduce the 

perceived discrepancy between research and classroom education. 

Workshops on Educational Challenges.  Workshops (or even a workshop series) can be 

used to raise awareness, bring together stakeholders from different backgrounds, and thus 

advance educational and workforce development issues associated with data science in 

chemistry. This includes hands-on training for educators on new tools and techniques (e.g., 

on the utility of Python machine learning libraries in research and education or cloud-based 

platforms such as Jupyter HUB). These workshops can also tackle the creation of new 

courses, programs, curricula, course contents, teaching materials, guidelines, and 

recommendations as discussed above. Concrete pilot implementations of educational and 

outreach initiatives, materials, and resources are expected to result from these meetings. 

Workshops like IPAM and PASC are good examples to build on, as they have played a 

valuable role in the initial development of the field.  

Industry-Education Partnerships.  A particular point to workshop participants is that 

industry collaborations could play a considerable role in the rapid adaptation of data 

science in the chemistry community. With the industry sponsoring ACS symposia on data 

issues (in particular within the CINF division) and an increase in job postings requiring 
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both data science and computational chemistry skills, it is evident that industry has both a 

vested interest in and specific demands for this new field. Industry can offer internships 

that directly involve students in its data-centric work as well as feedback on specific data 

science needs. This feedback will allow the academic community to also tailor its 

educational mission to real-world industry requirements. One suggestion is to follow the 

Semiconductor Research Corp (SRC) model for industrial involvement, i.e., to create 

funding programs that support direct cross-disciplinary collaborations for both research 

and education. This model will also create opportunities for students to enter the job 

market.  

Diversity.  Notably, outreach and educational efforts have to promote diversity and 

participation that do not discard any talent and human capital, as neither society nor science 

can afford to pass on the contributions that stakeholders promise to make. 

The education and workforce development in modern data science for chemists would thus 

benefit from the following: 

 Pursue cross-cutting curricular and course developments to put data-driven chemistry 

on a solid educational foundation. 

 Advance the creation of interactive teaching materials that address the needs of our 

educational mission. 

 Seek the input of and collaboration with industry stakeholders to benefit from their 

unique perspective. 

 Emphasize outreach to harness the potential of underrepresented racial, ethnic, 

gender, and socioeconomic groups in the development of the field. 

III. BROADER IMPACT OF DATA SCIENCE IN CHEMISTRY 

Practical solutions to many of the grand challenges of our time can be found in the discovery and 

development of novel compounds, materials, and processes. These drive innovation, which in turn 

drives economic development, prosperity, and a rising standard of living in both developed and 

developing countries.73 They also offer answers to pressing questions in the areas of energy, 

sustainability, economic competitiveness, human well-being, and national security. Our capacity 

to address these questions will – perhaps more than ever before – shape the future of our society 

and planet. Prime examples for this notion are renewable energy capture, conversion, and storage; 

green catalysts and solvents that drive our industry, conserve resources, and protect the 

environment; as well as semi- and superconductors for the technologies, devices, and consumer 

products of the future. The application of big data and modern data science will boost our capacity 
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to address these grand challenges by transforming the process that creates innovation. A paradigm 

shift away from trial-and-error searches and towards data-driven discovery and rational design – 

as outlined by the NSF CHE Dear Colleague Letter on Data-Driven Discovery Science in 

Chemisty41 – has far-reaching technological implications. It also promises a significant increase in 

the return on public and private investments, both in terms of resources and time. Educational 

programs and initiatives will have to complement these ideas: there is an evident need (i) to adapt 

education to such a changing research landscape in order to adequately equip the next generation 

of scientists and engineers, (ii) to build a competent and skilled workforce for the cutting-edge 

R&D of the future, and (iii) to ensure the competitiveness of our students in the job market, and 

the global competitiveness of the United States economy. 

IV. CONCLUSION  

There is great excitement about the promise and prospects for the emerging field of machine 

learning and data-driven research in chemistry. The rise of modern data science has been 

transformative in many application domains, and it is now primed to make an impact in the 

chemical sciences and engineering disciplines. An interesting aspect of this development is that 

the chemistry community does not have to start this development from scratch, but can build on 

extensive experience and strong foundations from the both the data science and application domain 

communities (including the materials community). Considering that this field is really only a few 

years old, there are already numerous impressive and inspiring success stories from pioneering 

efforts that underscore the potential of this new research paradigm. Nonetheless, there is still much 

work to be done to make this field a success, ranging from fundamental, basic science questions, 

to the development of robust techniques, methods, and tools, to the challenge of engaging and 

taking along the chemistry community at large. Opinions differ on the current state of the field, 

i.e., on how far along we have already come and how much more progress is necessary for machine 

learning and data-driven research to become a viable approach for the community and ultimately 

a cornerstone of chemistry. However, there is little doubt about the tremendous impact this field 

can have on the future of chemistry.  
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APPENDIX B: Workshop Program Schedule 

 

DAY 0: MONDAY, APRIL 17  

RUSTICO RESTAURANT & BAR (4075 WILSON BLVD, ARLINGTON, VA 22203)  

Workshop Opening: 7:00 – 10:00 pm 

Registration, seated opening dinner, opening remarks by the organizers on the 

motivation and goals for the workshop; discussion of program, schedule, and report 

writing process. 

 

DAY 1: TUESDAY, APRIL 18 

HOLIDAY INN ARLINGTON AT BALLSTON (4610 FAIRFAX DR., ARLINGTON, VA 

22203) 

Meeting room: Arlington/Clarendon Room 

Breakfast, breaks, and working lunch will be catered by the Holiday Inn. Dinner on 

your own.   
 

Continental Breakfast: 7:30 – 8:20 am 
 

Welcome Remarks by the NSF CHE Director Dr. Angela Wilson: 8:20-8:30 am 

Presentation on the NSF Division of Chemistry’s ongoing activities and interests. 

Session A: 8:30 – 10:30 am (Moderator: Dr. John McLean; Protocol: Workshop 

aides) 

The session will address lead issues 1-3:  

Introduction 1 (Invited Speaker: Dr. Erin Baker): 8:30 – 8:45 am 

What is the current state of experimental high-throughput screening 

techniques? 

Discussion 1: 8:45 – 9:10 am 

What is the future role of experimental high-throughput screening techniques? 

Introduction 2 (Invited Speaker: Dr. Goeff Hutchison): 9:10 – 9:25 am 

What is the current state of computational high-throughput screening 

techniques? 

Discussion 2: 9:25 – 9:50 am  

What is the future role of computational high-throughput screening techniques? 

Introduction 3 (Invited Speaker: Dr. Steven Kearnes): 9:50 – 10:05 am 

What is the current state of data science (including database, descriptor, data 

mining, and informatics) techniques? 

Discussion 3: 10:05 – 10:30 am  

What is the future role of data science (including database, descriptor, data 

mining, and informatics) techniques? 
 

Coffee Break: 10:30 – 10:50 am 
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Panel Discussion A: 10:50 – 11:20 am (Moderator: Dr. John McLean; Protocol: 

Workshop aides) 

Panelists: TBD 

Session B: 11:20 – 12:00 noon (Moderator: Dr. Johannes Hachmann; Protocol: 

Workshop aides) 

The session will address lead issue 4:  

Introduction 4 (Invited Speaker: Dr. David Yaron): 11:20 – 11:35 am 

What is the current state of data science for the creation of predictive models? 

Discussion 4: 11:35 – 12:00 noon  

What is the future role of data science for the creation of predictive models? 
 

Working lunch: 12:00 noon – 1:00 pm 

Writing of the draft report will commence during the working lunch. 

 

Overview of Break-Out Sessions: 12:45 – 1:00 pm (Presenter: John McLean) 

Break-Out Session 1: 1:00 – 2:40 pm  
~10 participants for each of 4 break-out groups – each break-out group to be assigned 

a specific question/task based on lead issues 1-4 discussed so far. Each group is 

assigned a facilitator and scribe. 

Reports from Break-Out Sessions by Facilitators: 2:15 – 2:40 pm 

 

Coffee Break: 2:40 – 3:00 pm 
 

Session C: 3:00 – 4:20 pm (Moderator: Dr. Johannes Hachmann; Protocol: Workshop 

aides) 

The session will address lead issues 5-6. 

Introduction 5 (Invited Speaker: Dr. Adrian Roitberg): 3:00 – 3:15 pm 

What is the current state of data science for method development? 

Discussion 5: 3:15 – 3:40 pm 

What is the future role of data science for method development? 

Introduction 6 (Invited Speaker: Dr. Joshua Schrier): 3:40 – 3:55 pm 

What is the current state of data science to support decision making in chemical 

research? 

Discussion 6: 3:55 – 4:20 pm 

What is the future role of data science to support decision making in chemical 

research? 

Panel Discussion B/C: 4:20 – 4:50 pm (Moderator: Dr. Johannes Hachmann; 

Protocol: Workshop aides) 

Wrap-Up: 4:50 – 5:00 pm (Presenter: Dr. John McLean) 

Summarizing the results of the day. 
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Break 5:00 – 6:00 pm 
 

Working dinner 6:00 – 9:00 pm (as individual break-out groups)  

Writing of the draft report will commence during the working dinner. 

 

Day 2: Tuesday, April 19 

Holiday Inn Arlington at Ballston (4610 Fairfax Dr., Arlington, VA 22203)   

Meeting room: Arlington/Clarendon Room 

Breakfast, breaks, and working lunch will be catered by the Holiday Inn. 
 

Continental Breakfast 8:00 – 8:30 am 
 

Session D: 8:30 – 10:30 am (Moderator: Dr. Johannes Hachmann; Protocol: 

Workshop aides) 

The session will address lead issues 7-12. 

Introduction 7 (Invited Speaker: Dr. Markus Hanwell): 8:30 – 8:45 am 

What is the current state of comprehensive, integrated, general-purpose, user-

friendly tools and their development? 

What are the main science successes of data-driven research? 

Discussion 7: 8:45 – 9:10 am 

What is the future role of comprehensive, integrated, general-purpose, user-

friendly tools and their development? 

What are the main science challenges and opportunities for data-driven 

research? 

Introduction 8 (Invited Speaker: Dr. Cecilia Clementi): 9:10 – 9:25 am 

What is the current state of education in modern data science for chemists? 

What is the current state of engagement of the data and computer science 

community? 

Discussion 8: 9:25 – 9:50 am 

What is the future of education in modern data science for chemists? 

What is the future of engagement of the data and computer science 

community? 

Introduction 9 (Invited Speaker: Dr. Krishna Rajan): 9:50 – 10:05 am 

What are the lessons from the Materials Genome Initiative and other big data 

initiatives? 

What are the funding mechanisms to support the specific needs for data-driven 

research? 

Discussion 9: 10:05 – 10:30 am 

What are the lessons from the Materials Genome Initiative and other big data 

initiatives? 

What are the funding mechanisms to support the specific needs for data-driven 

research? 
 

Coffee Break 10:30 – 10:50 am 
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Break-Out Session 2: 10:50 – 12:20 pm  
~10 participants for each of 4 break-out groups – each breakout group to be 

assigned a specific question/task based on lead issues – each group assigned a 

facilitator and scribe. 

Reports from Break-Out Sessions by Facilitators: 12:00 – 12:20 pm 

 

Working lunch: 12:20 – 1:20 pm 

Writing of the draft report will commence during the working lunch. 
 

Break-Out Session 3, pt 1: 1:20 – 2:40 pm  
Summary of the Break-Out reports and task force organization for elaborating key 

ideas for the initial version of the workshop report. 
 

Coffee Break: 2:40pm – 3:00 pm 
 

Break-Out Session 3, pt 2: 3:00 – 3:50 pm  
Summary of the Break-Out reports and task force organization for elaborating key 

ideas for the initial version of the workshop report. 

Wrap-Up: 3:50 – 4:00 pm  
Organizers summarizing the day’s results 

Closing Remarks and Adjourn: 4:00 pm 

 

 

 

 

 


