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Executive Summary

We report on a workshop, “Discovery in Complex or Massive Data Sets: Com-
mon Statistical Themes”, held in Washington, October 16-17, 2007, funded by
NSF’s Division of Mathematical Sciences. We connect with a later workshop, “Data
Enabled Science in the Mathematical and Physical Sciences” held in Washington,
March 29-30, 2010, funded by NSF’s Directorate of Mathematical and Physical
Sciences.

Research responding to important scientific and societal questions now requires the
generation and understanding of vast amounts of often highly complex data. The 2007
workshop dealt with crosscutting issues arising in the analysis of such data sets with a
particular focus on the role of statistical analysis. This was done through selected examples
matching scientific and societal interests. In particular there were sessions on:

• Genomics and other areas of the biosciences that play a key role both in fundamental
biology and in our current efforts to cure human diseases.
• Computer models with an emphasis on modeling in the atmospheric sciences that

plays a critical role in climate change forecasting.
• Finance, economics, and risk management focusing on problems of financial and other

economic forecasting and also on analysis of the flow of potential new regulatory data.
• Particle and astrophysics pointing to a plethora of needs and issues, including scientific

questions such as solving massive inverse problems as they arise in the study of dark energy,
statistical modeling of galactic filamentary structures, and policy issues such as determining
resource allocation among expensive experiments.
• Network modeling pointing to an old type of data appearing with new complexity and

size from many sources: the Internet, ecological networks, biochemical pathways, etc.

In addition, there were two cross cutting sessions,

• Sparsity, which reflects how simply we can represent information, has been recognized
as the key feature that the new massive data sets must have for us to analyze them at all.
Sparsity figures prominently in compressed sensing, now a major topic as the number and
types of detectors and the amount of data they can generate has grown exponentially.
• Machine Learning developed in computer science and statistics to integrate computa-

tional considerations with data modeling. Methods such as clustering look for sparsity or
more generally structure in the data. The field’s principles are entirely statistical. Its meth-
ods play an important role in speech recognition, document retrieval, web-search, computer
vision, bioinformatics, neuroscience, and many other areas.

The activity of the 2007 Workshop foreshadowed in its treatment of analysis the 2010
Data Enabled Science Workshop1, although the latter examined and gave policy recom-
mendations for all divisions in the directorate, rather than focusing on the nature of the
science in one sub discipline. But the same themes came up, with all or most divisional
sections stressing the growth in size and complexity of data, interdisciplinary collaboration
as key to modern progress, and the need for the development of common large databases
for analysis. The use of such existing databases in the biomedical sciences and astrophysics
was implicit in the presentations of the 2007 workshop. More broadly, advances in statistics
and mathematics will be crucial for developments of DES in other disciplines.

In their respective ways both workshops point to the need to support organization and
analysis of our massive and high-dimensional data sets as a key to future advances.

1and a 2010 E.U. report “Riding the wave: How Europe can gain from the rising tide of scientific data”
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1 Background

This document is the report of a Workshop on Discovery in Complex or Massive Datasets:
Common Statistical Themes, held October 16-17, 2007 in Washington, D.C. The idea and
funding for the workshop came from Dr. Peter March, Director of the Divison of Mathe-
matical Sciences (DMS) at the National Science Foundation (NSF).

The impetus for the meeting was the observation that interdisciplinary research in
statistics engages with so many fields of science that it is neither possible, nor perhaps
appropriate, for DMS to fund all of it, either alone, or through partnerships – though
successful examples of the latter certainly exist. At the same time, DMS is the primary
disciplinary home for statistics within NSF, and so in particular is the primary locus within
the Foundation for workforce develpment efforts in statistics. In such an environment, what
ideas might guide DMS in its funding of statistics research?

The workshop and report develop the notion of “intersections” – that part of statistical
methods and theory that has, or seems likely to have, impact in multiple scientific domains.
The intent for the short workshop was to be illustrative rather than encylopedic. It is not,
therefore, a report on the ’future of statistics’, and deliberately does not contain formal
consensus recommendations. However, we hope that the sampling of research areas in
this short report illustrates the existence of these intersectional topics and importance of
research into their development.

2 Introduction

The amount and complexity of data generated to support contemporary scientific investi-
gation continues to grow rapidly, following its own type of Moore’s Law [11]. In domains
from genomics to climate science, statisticians are actively engaged in interdisciplinary re-
search teams. In some areas, automated processes collect and process huge amounts of
information; in others simulations of complex systems are designed to generate information
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about large scale behavior, and in still other areas, the very sources of data are products
of the information age.

There is substantial current activity to develop statistical ideas, methods and software
in many of these domains, which include astronomy, genomics, climate science, financial
market analysis and sensor networks. Statisticians are engaged in (often large) interdisci-
plinary teams, and frequently receive significant research support from the relevant scientific
discipline.

The history of statistics shows that, while frequently initially arising in response to
challenges in specific scientific domains, statistical methods and associated theory often
achieve broader success and power by being subsequently applied to subjects far remote
from those of origin. Well known examples include the analysis of variance, proportional
hazard models and the application of sparsity ideas in signal recovery.

We see enormous opportunity, then, in advancing the study of the “intersections” aris-
ing from statistical research in today’s Age of Information – statistical problems, theories
(including probabilistic models), tools and methods that arise in or are relevant to multiple
domains of scientific enquiry, and as such, are moving or should move into the “core”.

The workshop aimed to enumerate some of today’s most intellectually compelling chal-
lenges arising out of these intersections, and was guided by the hope of stimulating future
research advances that will extend and enhance our data analytic toolkit for scientific dis-
covery.

In order to have a title that both has some focus, and yet is broadly inclusive, we
chose “Discovery from Complex or Massive Datasets: Common Statistical Themes”. Here
“massive” means large relative to existing capability in some way, including, but not re-
stricted to, many cases (sample size), many variables (dimension), or many datasets (sensor
networks).

The workshop took a broad view of research in statistics, and included researchers who
may not identify themselves as statisticians yet who feel that advances in statistics are
central to advances in science and society.

The body of the report contains short summaries of each of the sessions at the workshop.
In this introduction, we illustrate three of the themes with brief paragraphs, indicating
in parentheses the sessions in which these themes come up explicitly or implicity. We
conclude with some reflections on national needs that will be served by a focus on statistical
intersections.

Sparsity. [§3.1, 3.2, 3.3, 3.4, 3.6] A preference for parsimony in scientific theories –
captured in principles such as “Occam’s razor” – has long influenced statistical modeling
and estimation. The size of contemporary datasets and the number of variables collected
makes the search for, and exploitation of, sparsity even more important. For example, out
of a huge list of proteins or genes, only an (unknown) few may be active in a particular
metabolic or disease process, or sharp changes in a generally smooth signal or image may
occur at a small number of points or boundaries The sparsity of representation may be
“hidden”: revealed only with the use of new function systems such as wavelets or curvelets.

The theme of sparsity draws upon and stimulates research in many areas of mathe-
matics, statistics and computing: harmonic analysis and approximation theory (for the
development and properties of representations), numerical analysis and scientific computa-
tion (the associated algorithms), statistical theory and methods (techniques and properties
when applied to noisy data).

Sparsity ideas have recently given birth to a new circle of ideas and technologies known
collectively as “Compressed Sensing”. It is common experience that many images can
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be compressed greatly without significant loss of information. So, why not design a data
collection, or sensing, mechanism that need collect only roughly the number of bits required
for the compressed representation? It has recently be shown that this can be done in a
variety of settings, in which sparsity is present, by a judicious introduction of random
sampling.

A number of intellectual trends in mathematics and statistics have pointed toward and
culminated in the articulation of the Compressed Sensing phenomenon: approximation the-
ory, geometric functional analysis, random matrices and polytopes, robust statistics and sta-
tistical decision theory. Once articulated mathematically, CS has stimulated development
of new algorithms in fields ranging from magnetic resonance imaging to analog-to-digital
conversion to seismic imaging.

Computer and Simulation-Based Models. [§3.1, 3.3, 3.4, 3.5] Mathematical models
intended for computational simulation of complex real-world processes are a crucial ingre-
dient in virtually every field of science, engineering, medicine, and business, and in everyday
life as well. Cellular telephones attempt to meet a caller’s needs by optimizing a network
model that adapts to local data, and people threatened by hurricanes decide whether to
stay or flee depending on the predictions of a continuously updated computational model.

Growth in computing power and matching gains in algorithmic speed and accuracy
have vastly increased the applicability and reliability of simulation—not only by drastically
reducing simulation time, thus permitting solution of larger and larger problems, but also
by allowing simulation of previously intractable problems.

The intellectual content of computational modeling comes from a variety of disciplines,
including statistics and probability, applied mathematics, operations research, and com-
puter science, and the application areas are remarkably diverse. Despite this diversity
of methodology and application, there are a variety of common challenges in developing,
evaluating and using complex computer models of processes. In trying to predict reality
(with uncertainty bounds), some of the key issues that have arisen are: use of model ap-
proximations (emulators) as surrogates for expensive simulators, for calibration/prediction
tasks and in optimization or decision support; dealing with high dimensional input spaces;
validation and utilization of computer models in situations with very little data, and/or
functional (possibly multivariate) outputs; non-homogeneity, including jumps and phase
changes as we move around the input space; implementation and transference methodology
to current practice; efficient MCMC algorithms and prior assessments; optimization and
design.

Clustering. [§3.1, 3.6, 3.7] Clustering is another important core problem in data analy-
sis. It is analogous to sparsity in that (1) it involves statistically-sound methods for reducing
the dimensionality of data, and (2) it is a nexus for the research efforts of multiple overlap-
ping communities. One general motivation for clustering is that there are often limitations
on resources available for data analysis, an issue that is particularly pertinent for massive
data sets. Most statistical algorithms run in time that is at least proportional to the number
of data points, and many algorithms run in quadratic or cubic time (e.g., linear regression).
In terabyte-size data sets, these algorithms may be infeasible, and the only hope is that the
data can be broken into smaller clusters that can be processed separately. Thus cluster-
ing can be viewed from a computational point of view as an instance of the computational
principle of divide-and-conquer. Similarly, there may be bandwidth limitations in the trans-
port of data, and the branch of information theory concerned with compression provides a
foundation for the design of clustering algorithms that allow bandwidth limitations to be
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surmounted. Another general motivation for clustering arises in exploratory data analysis,
where the goal is to find relatively homogeneous subsets of data (or subsets of variables)
that correspond to meaningful entities in some problem domain. Many research commu-
nities have pursued such an agenda—notable examples include bioinformatics, astronomy,
medicine, psychology, marketing, linguistics and artificial intelligence.

The result of this intense effort has been the development of literally hundreds of spe-
cific clustering algorithms, including recent contributions from statistical mechanics, graph
theory and error-control coding. Statistics has also contributed many specific algorithms
(including the prominent K-means algorithm), but even more importantly, statistics pro-
vides a general framework for the evaluation of clustering methods, both from a theoretical
point of view and am empirical point of view. Such analyses make it possible to expose the
tradeoffs involved in clustering, such that appropriate methods can be chosen for specific
problems.

Another key contribution of statistics is to provide methods for assessing uncertainty in
clustering. As in any area of inference, it is essential to assess uncertainty in order to be able
to make statements about whether a phenomenon is likely to be meaningful or could have
arisen solely by chance. Assessments of uncertainty are also necessary in order to compare
multiple competing models. In fact, one useful view of clustering is as a collection of
statistical models, one model for each cluster, where the problem is to decide which models
account for which data points. This brings clustering into contact with general problems of
model selection and model averaging, areas that have been very active in statistics in recent
years. Finally, though, clustering is the area where statistics and subject matter science
meet most intimately since the ultimate validation of a cluster has to be science based.

These three common themes are but examples. Other examples of crosscutting themes
might include data complexity, modelling at multiple scales, and the tradeoff between com-
putational and optimality considerations.

General Remarks: Complexity and massive data sets go together: enormous numbers
of huge vectors of categorical data as in the output of the second-generation sequencing
machines in genomics, images in fields ranging from physics, for instance, particle tracks,
galactic filaments to neuroscience, for instance CAT scans, to spacetime fields in atmo-
spheric sciences, to general graphical structure in network models. All these types of data
are found in combined form creating higher levels ad infinitem.

Statisticians have a long history of modeling complex data types, for instance the pro-
portional hazards model with time varying covariates which has established itself in epi-
demiology, but the challenges of the current types of data are unprecedented. This theme
was stressed in each of the sessions. A consequence is an imperative for statisticians to to
work closely with other applied mathematicians and computer scientists with their exper-
tise in data structures and numerical stability of algorithms and also pure mathematicians
who have long studied abstract structures for their own sake. A second imperative, again
apparent in all sessions, is the need to work closely in the development of methods and
models with specialists in substantive fields of interest. Methods can become generic in
many fields only if they have proved their success in some field of application.

Another consequence of the data explosion, also apparent in many of the sessions,
that has direct impact on theory as well as practice is the need to consider computational
efficiency as well as statistical optimality in the construction of new methods.

Comments on national needs: Support for research on “intersectional” topics will
advance the capability of statistical theories and methods to contribute to contemporary

7



challenges of discovery from massive and/or complex datasets, thus enhancing the nation’s
“methodologic infrastructure” for research.

In conjuction with support for collaboration (and appropriate joint training with spe-
cialists), research on ‘intersections’ offers the prospect of fostering the flow of ideas between
disciplines, as analysis methods developed in one domain are transferred in other areas.

The vitality of both these enterprises is and will remain an important component of
maintaining the competitiveness, and indeed, the leading character of the U.S. scientific
research effort.

Turning to workforce issues, we are in an era of expansion in graduate and undergraduate
programs in statistics nationally, while at the same time retirements of faculty hired in the
1960’s and 1970’s are accelerating. Interdisciplinary research is mostly (though of course
not always) done by younger and mid-career faculty. Thus many retirements will deplete
the strength of graduate programs in ‘core’ statistical theory and methods. Support for
research on statistical intersections will enhance the pre- and post- doctoral level training
of research statisticians who will be critically needed as replacement core faculty members
in expanding statistics programs around the country.

There is a second aspect of workforce development worth comment. Many statistics fac-
ulty will obtain research support for their cross-disciplinary research from agencies focused
on a specific discipline. When such research yields methods or theory of potentially broader
scientific utility (an ‘intersection’), that funding agency may well not regard support for
research into realizing that potential as part of its mission. Yet it is precisely such research
that may help early career statistics faculty receive the kind of broader recognition within
the statistics community that will help with promotion and career advancement.

3 Session Summaries

3.1 Statistics in Biological and Health Sciences

The biosciences, particularly molecular biology and the fields it has spawned, provide an
almost paradigmatic view of the statistical themes that have emerged with the advent of
complex, massive data sets.

Over the last several years, biological research has undergone a major transformation as
scientists have been assimilating the implications of the genetic revolution, developing new
technology for high-throughput genotyping and characterization of the activity of genes,
messenger RNAs, and proteins, and studying interplay of genes and the environment, and
genes and clinical treatments, in causing human diseases. Technological platforms have
advanced to a stage where many biological entities, e.g., genes, transcripts, proteins, lipids
and sugars, can be measured on the whole genome scale, yielding massive high-throughput
“omics” data, such as genomic, epigenomic, proteomic and metabolomic data. These mas-
sive datasets need to be analyzed using biologically meaningful and computationally efficient
statistical and computational models with the goals of understanding the mechanisms of
experimental and biological systems and to study the associations of genetic and environ-
mental factors and disease phenotypes.

The sequencing of the human genome with its 3 billion basepairs was a landmark pre-
ceded by the sequencing of the yeast genome and followed up to the present time by genomes
of multiple species. The rapid advance of next generation sequencing technology makes
genome-wide sequencing of a large number of subjects feasible in the next few years. The
genomes are enormous instruction manuals for producing the complex organisms of life.
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To try to determine functions, an enormous variety of data are being generated, such as
expression of mRNAs by genes, binding sites of proteins produced by genes, images of
hundreds to thousands of individual cells with intensities of various processes measured by
fluorescence, sequencing machines and alignment methods etc. The data is being generated
by international consortia such as ENCODE (Encylopedia of DNA) for general function,
and the 1000 Genomes project for analysis of human variation, accumulating at the rate
of terabytes in specialized databases. The high level goal of this enormous activity is to
“annotate” genomes, that is, identify and ascribe “function” to the “words,” “sentences,”
“paragraphs,” and “topics” of genomes by relating them to each other, to the machinery of
the cell, the proteins that they produce and so on up the ladder of complexity. A reference
for more details of these activities is [1]. A more immediate goal is to investigate their
associations with disease phenotypes [9].

The explosion of information about the human genome presents extraordinary chal-
lenges in data processing, integration and analysis. These challenges include (1) manipu-
lating and analyzing high-dimensional “omics” data using advanced and efficient statistical
and computational methods that are biologically meaningful; (2) integrating “omics” data
from different sources for data analysis and result interpretation; (3) Conducting interdis-
ciplinary research to help synthesize massive existing and rapidly increasing molecular and
genetic information to understand biological systems; (4) Developing innovative study de-
signs and analysis and computational tools to study the interaction between genes (nature)
and environment (nurture) and hence understand disease etiology and develop effective new
disease prevention and intervention strategies. These challenges provide enormous oppor-
tunities for statisticians, both in new directions of research and training and call for urgent
response as a community.

Data Integration: Biological systems and causes of diseases are complex and are af-
fected by a spectrum of genes and gene products and environmental factors. Different types
of data, have to be integrated to understand biological systems and disease processes. For
example, genome-wide association studies (GWAS) provide a powerful tool to genotype
hundreds of thousands of common genetic variants across the whole genome to study their
roles and interactions with the environment in causing human diseases. In addition to the
development of statistical and epidemiologic methods for the integration of high dimensional
mixed clinical and experimental data, integration with GWAS and other omic information,
such as pathways, transcriptions, epigenetics and gene expression and regulatory mech-
anisms for expression is important. Many public genetic databases have been available
rapidly, such as HapMap, UCSC genome browser, dbGaP, Ensemble. Data sharing is now
mandated for most of these databases. All these data resources and scientific needs make
data integration critical. Statisticians need to play a pivotal role in this endeavor and to
incorporate this information in statistical modeling and analysis.

Such integration has long been a part of statistics. Categorical data are combined with
numerical data through logistic regression, vectors of numerical data can be combined via
canonical correlation analysis and so on. But what makes all this a new enterprise is the
complexity, high dimensionality and size of the data and the inability to make real contribu-
tions without deep knowledge of or close collaboration with specialists versed in the relevant
new biology. There is certainly a very important “computer science” aspect of manipulat-
ing data but representation (modeling) and analysis have to be statistical, and insertion of
knowledge of biology and genetics is critical. The trade-off between computational effort
and power of analysis is also a major challenge which has to be faced.
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Stochastic Mechanistic Modeling. Another feature of the new technologies is that they
enable us to make measurements of complex quantities dynamically in time at different
scales and sometimes at heretofore- unavailable nanoscale resolution. These data call for
mixtures of modeling at different levels, purely stochastic at the nanoscale level merging
with high dimensional Markov modeling, merging with dynamical systems modeling. An
example of mechanistic stochastic modelling at nanoscales explaining phenomena at large
scales is [6].

More generally, biological and many other (e.g. financial, geophysical) processes operate
at several scales. This is clearly seen in the development of the embryo where stages are
physically identified but necessarily correspond to the cellular evolution and interactions of
many proteins in many cells. Modeling changes of regime, (“emergent phenomena”), at a
coarser scale arising from fine scales, when responses are highly multidimensional is a major
and novel challenge faced in modern statistics. This activity links naturally with applied
mathematics and our discussion of computer models.

Sparsity: As discussed earlier, biological processes and the data we gather on them
involve the temporal evolution of huge numbers of genes and gene products, such as mRNA
and proteins in different cell environments. It has become widely accepted in biology that
this great complexity is built up out of a relatively small number of building blocks, subunits
of proteins, circuits in cellular processes, etc.

For understanding we need to find an appropriate alphabet of parts and procedures
out of the mess of different types of high dimensional indirect measurements that we have.
This theme of sparsity is pervasive. We hope that for complex diseases, although many
different types of mutations may lead to the disease, a relatively small number of genes and
pathways are involved.

Redundancy: Another aspect particularly important in biological systems is redundancy
– if a pathway fails in most cases there should be an alternative to take up the slack. This can
sometimes be interpreted as low dimensionality, ”covariates” or ”collinearity” of predictors.

Causality and Perturbation Experiments: A weakness of purely statistical analysis of
data in the biological context is the lack of ground truth when checking statistical predic-
tions. This can be mitigated through perturbation experiments, e.g. knock out of regions
predicted to have functional importance with the expectation of evidence of causation. Un-
fortunately, masking effects are all too frequent in view of redundancy. One can expect
that causal inference, Bayesian networks (i.e. conditional independence models) will be of
value here.

Training Issues: Manipulating large data bases analyzing high throughput data suc-
cessfully requires computational skills which are not typically in the province of statisticians.
However these are we view, essential since they are required to: 1) understand the data 2)
develop methods which have an impact on the science 3) enable one to make the tradeoff
between computational and statistical efficiency needed to make serious progress.

As in most fields, sufficient training in the science in order to communicate with under-
standing with specialists and generally is of great value.

3.2 Sparsity: Compressed Sensing Using High-Dimensional Thinking

The Shannon sampling theorem is a fundamental tool underlying our modern media-rich
era. This theorem prescribes a hard constraint that designers of scientific and engineer-
ing systems use daily in designing sensors and data acquisition protocols. For example,

10



Magnetic Resonance Imaging scanners, now frequently used in medical practice, take in
many cases an hour or so to collect enough data to render an image of the inside of the
human body. Ultimately the scan takes so long because straightforward calculations using
Shannon’s theorem suggest that millions of measurements must be made in order to obtain
a reconstructed image.

Recently, it has become clear in a number of scientific fields that the Shannon limit,
although honored almost universally as a fundamental constraint on data acquisition, can
actually be circumvented in some fairly important settings. Thus, one can, in the right
setting, ‘undersample’ – violate the Shannon limit substantially – and still obtain high-
quality reconstructions by the right method. As a simple example, at the Society for
Magnetic Resonance in Medicine meeting in Berlin, May 2006, results were presented by
several teams showing that certain categories of MR imaging tasks could be sped up by
factors of 7 over what had previously been considered necessary. This means 7 times as
many patients can be served by a facility in the same measurement time.

Such improvements over traditional sampling rates are achieved by a technique often
called “Compressed Sensing” [3, 2]. The technique ultimately depends on some fascinating
counter-intuitive properties of high-dimensional geometry that are now being systemati-
cally explored by statisticians, probabilists, information theorists, and applied mathemati-
cians; ultimately, the source of our understanding can be traced back to investigations by
mathematicians in seemingly very remote issues: how many low-dimensional faces does a
random polytope have? and how ‘thick’ is a random low-co-dimensional cross section of
a high-dimensional simplex? It is also tied in unexpected ways to work by mathematicial
statisticians to understand methods which can resist the influence of outliers.

The potential feasibility of Compressed Sensing can be motivated through a couple of
observations:

(1) all images and other media are compressible: they don’t need nearly as many bits to
represent them as one might expect based on the raw image format. A 1000-by-1000
image indeed has 1 mega-pixels, but as every user of digital cameras, web browsers,
cell phones and other modern tools knows, the actual number of bits needed to acheive
a reasonably high quality reconstruction of an 8-bit deep image is in the tens or few
hundreds of thousands, not 8 million.

(2) since the number of bits is substantially less than the nominal number of bits, we
ought to be able to take a number of samples amounting to roughly the number of
underlying bits appearing in the compressed representation, not the number of bits
that appear in the uncompressed representation.

In short, since media (such as MRI images) are compressible, the sensing process itself
ought to be compressible. Possibly, many scientists and engineers have formulated these
observations previously, but it is only very recently that a coherent intellectual foundation
has emerged.

One foundational explanation goes as follows: Suppose that we have an object x0 of
interest, with N coefficients, which we suppose has a sparse representation in a specific basis
for RN—for many media types, this basis could be a suitable wavelet basis. By sparse, we
mean that there are relatively few nonzero coefficients. While the typical vector is dense,
with all coefficients nonzero – the typical humanly-intelligible media is sparse, with few
coefficients nonzero. Sparsity will be the key ingredient allowing us to undersample.

We take measurements y = Ax0, where A is an n by N matrix. Undersampling is
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expressed by the fact that n � N . Our task is to reconstruct x0 from y; this seems
hopeless, as there are fewer equations than unknowns.

However, we have extra information: the object x is sparse, i.e. has at most k signifi-
cantly nonzero elements, for k � n. To exploit this knowledge, we reconstruct x0 by solving
a convex optimization problem: minimize ‖x‖1 subject to y = Ax. In words, we seek the
minimal `1 norm object matching the measurements y. This is a very different goal than
that used traditionally, where we ask for the object with minimal `2 norm.

In this setting, we have the following mathematical result: if the measurements A are
random – for example with i.i.d. Gaussian entries, and if x0 is truly sparse – with k strict
nonzeros – then we have exact reconstruction provided the number of measurements exceeds
a threshold: n > 2 log(N/k)k.

This is a sampling theorem like Shannon’s original theorem; however, it requires that the
number of samples n be comparable to the number of nonzeros k, rather than the apparent
vector dimension N . In short, although undersampling leads to underdetermined systems
of equations, when the equations are random, and the solution is sparse, the solution is
available by convex optimization.

This is a sampling of the kinds of results which are now available to explain the un-
derlying phenomenon. This particular result follows from properties of high dimensional
polytopes subjected to random orthogonal projection onto lower-dimensional space. Other
approaches to formulating foundations can be based on properties of minors of random
matrices, or on sections of hypercubes.

3.3 Computer and Simulation-Based Models

Computer models are computer codes, often large and deterministic, that simulate complex
processes. They can encapsulate a field of knowledge, synthesizing the understanding of
many individuals and often seek to answer questions that can not be answered directly with
observational data or direct experiments. They are also used to make complex predictions
that incorporate a substantial body of scientific understanding. Examples range from a
simulation for traffic flow in an urban area (e.g. TRANSIMS) to climate models used to
make global projections of future climate change (Fourth Assessment Report, Intergovern-
mental Panel on Climate Change) to a mechnical deformation model used to test vehicle
designs in a crash. Despite the diverse use of computer models in many fields they share
common problems in drawing inferences from high dimensional output, combining models
with observations and quantifying the model’s uncertainty. Statistics provides a framework
to solve these problems and hence contribute to the scientific value of these models. Given
the now ubiquitous use of computer models throughout science and engineering they merit
more attention by the statistical community. We will illustrate with some questions arising
in the geosciences.

By representing the interaction among several processes, computer models often yield
output that has complex structure and are often difficult to analyze without some form of
dimension redution. Data reduction using linear projections derived from sample covariance
matrices (known as emipirical orthogonal functions in the geosciences) can miss nonlinear
behavior and can be hard to interpret beyond a small number of projections. Statistics can
support these efforts by exploiting sparsity of output fields with respect to particular bases.
In general, finding efficient, regularized bases that are suited to particular physical processes
simulated by computer models is important. Moreover, in the geosciences simulated fields
of physical variables have many more spatial locations than temporal or model model
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replications and so fit into a “large p small n” context.
Data assimilation refers to combining a numerical model with observations to produce

a better estimate of the state of the system. This process is fundamentally a statistical one
and, for example, provides the basis for weather forecasting. Some of the most challenging
problems in prediction involve the assimilation of massive data streams into computer mod-
els with large state vectors. The high dimensionality of both model and data demand that
any approach that is computationally feasible must also be approximate. It is uncertain
how many of the approximations currently used in data assimilation affect the accuracy of
the resulting analysis. In particular several data assimilation approaches can be cast as ap-
proximate Bayesian solutions where the posterior is represented through a sample (termed
an ensemble in weather prediction). This identification makes connections to general prob-
lems of Bayesian inference using Monte Carlo algorithms for computation. An important
emerging area in assimliation is estimating parameters in a computer model based on data,
also known as model tuning. This activity has the potential to move model development
from often subjective and heuristic tuning of parameters to an activity where parameters
are estimated from observations using explicit criteria. The parametric components of com-
puter models especially for geophysical problems often address behavior for processes at
multiple scales. Thus applications of multiresolution statistical ideas can have an impact
in suggesting alternative ways to simulate these processes within a computer model.

Physical models which, at the scales of interest, are not so well understood figure in many
geophysical applications. The difficulty that this poor understanding poses is exacerbated
by the amount and complexity of the data. This brings to the fore a number of points not
limited to these sciences:

1. The models have been developed by geophysicists and applied mathematicians who
understand them to be crude approximations The data exhibit substantial systematic bi-
ases from the postulated models. To contribute to these fields theoretically or practically
statisticians must work closely with physicists and applied mathematicians.

2. Sparsity plays a key role not only in terms of data representation as discussed in the
section on sparsity but also in dimension reduction and model selection.

3. Bayesian approaches assist in incorporating scientific knowledge into data analysis.
Nonparametric approaches such as `1 optimization discussed in the sparsity section are
similarly important for checking and correcting the sometimes shaky foundations described
above.

As computer modeling assumes a mature and central role in many scientific disciplines
there will be a tendency to consider families or classes of models, rather than just a single
instantiation. From this perspective, one has a space of complex objects, i.e. computer
models, that are functions of particular inputs, parameters or different model components.
A practical question is: Given several versions of a computer model how well does this
limited set of choices represent the possible behavior across the space of possible models?
Answering this kind of question reinforces the theme of statistical science’s ability to address
complex data structures and interpolate/extrapolate a discrete set of information to a
continuous set.

3.4 Statistics in Particle & Astrophysics

Experiments at the frontiers of modern physics and astronomy involve measurements of
extremely weak signals and the search for extremely rare events. The fact that these exper-
iments produce vast amounts of data, while enhancing the chances of successful detection,
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presents a new range of problems of data management and computation.

Examples. Particle accelerators. Physical processes in particle accelerators are fun-
damentally stochastic. Observations of particle tracks collected by a variety of sensors
present a filtering problem necessary to reconstruct the tracks. The reconstructed tracks
then present a classification problem necessary to identify the particles that created the
tracks. High data rates require simple, fast algorithms to do the filtering and the classi-
fication and storage limitations require minimal descriptions of each observation; that is,
minimal relative to the raw data. The goal of distinguishing among precise, but only subtly
different competing models for the data generated suggests the desirability of new, rapidly
computable sparse representations of the data that may be much more informative than
current representations.

Dark energy. The apparent acceleration in the expansion of the universe has led astro-
physicists to hypothesize the existence of “dark energy” that may account for more than
two-thirds of the mass-energy of the universe. Evaluation of theories of dark energy involves
the solution of nonlinear inverse problems using data in which the signal is very weak. In-
stability of the inverse and noise in the data make assessing the reliability of the estimates
particularly challenging.

Galactic filaments. Galaxies form filamentary structures, the “cosmic web.” Existence
of these structures is thought to reflect the evolution of the universe at the earliest mo-
ments of the big bang. Consequently, assessing their structure is relevant not only to
understanding the current form of the universe but also to understanding the formation of
the universe. More formally, filaments are sets of one-dimensional curves embedded in a
point process. Similar structures appear in seismology, medical imaging, and remote sens-
ing. Methods for locating numerous filaments in the presence of noise and clusters have
important applications in all of these areas.

Statistical issues. While the physical sciences present many of same statistical issues
as other branches of science, the presence of precise models, known dependencies between
quantities of interest and errors in measurements, and different modes of data collection
require new methods and new understanding of old methods. The increased collaboration
between statisticians and physical scientists that has occurred in recent years should lead
to important developments in both fields. Some of the issues that these collaborations must
address include

• Rapid processing of streaming data. In addition to the obvious computational and
data storage problems involved in handling massive amounts of data in real time,
there is the problem of deciding what to compute and what to store.

• Filtering massive data sets. The effects sought in large physical experiments may
be small compared to the scale of the data collected. Detecting the “signal” in the
“noise” requires effective, but unbiased models and equally effective computational
techniques.

• Bayesian methods for high-dimensional models and sensitivity to priors. The risk that
the model may bias the outcome in filtering large, noisy data sets is just one example
of the need to understand the sensitivity of Bayesian methods to the choice of priors.
In addition, there is a critical need to develop well-founded and computationally
tractable methods for constructing priors on high-dimensional spaces, so that in some
well-defined sense the likelihood function is as dominant as possible relative to the
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prior. Important work along those lines has been done, but the extension to models
with many parameters remains challenging.

• Confidence bands for nonparametric estimates. Meaningful methods for exhibiting
the variability of estimates of curves, surfaces, or even higher dimensional objects
are needed for describing structure in multidimensional data and for the solution of
inverse problems.

• Cluster identification. Improved methods for the detection of sparse signals (clusters)
in the presence of inhomogeneous Poisson contamination are needed. Problems in-
clude evaluation of the sensitivity of the methods and estimation of the background
and signal intensities.

• Modeling resource allocation among expensive experiments. Beyond the political issue
of which scientific questions to address, there is the need to allocate resources to
particular experiments. Determining the set of experiments that is most likely to give
satisfactory answers requires both accurate physical modeling of the experiments and
statistical design under resource constraints.

None of these issues is unique to physical data. As technology emerges in any field
that allows the collection of large amounts of data, the opportunity to address increasingly
complex and subtle questions arises.

3.5 Economics, Finance and Risk Management

Statistical inferences about extreme events, credit risks and macroeconomic policy modeling
and simulations can have profound impact on the well being of society and at the same time
pose significant intellectual challenges for academic research. The recent subprime crisis
once more demonstrates that innovative statistical tools are urgently needed to contribute
to controlling and managing market risks and that quantitative measures are needed for
legal regulatory purposes.

Complex systems in finance and economics are inherently high-dimensional. In manag-
ing and controlling economic and financial risks, modeling and estimation of extreme events
in several hundred dimensions are required. In monetary policy making, large statistical
models of the US economy are needed. In managing financial risks, correlation matrices of
the order of hundreds and thousands are prominently featured in assessing portfolio risks
and portfolio allocations. Understanding systemic risk in the financial industry will have
to be based on stochastic network models. These high-dimensional and complex problems
share common statistical themes with other biological, physical and social sciences. For
example, the collection of housing price indices for all counties or zip codes in the US form
high-dimensional time series data, which have some spatial-temporal features and statistical
challenges in common with climatological studies.

Extreme events not only occur in size, but also at the level of dependence. Understand-
ing portfolio properties under extreme correlations is crucial in financial risk management,
particularly when the analysis of rare extreme events is confronted. Insight into the cause
of jumps and spillover effects of markets is important in building a sound financial sys-
tem. The recent arrival of high-frequency data for a host of financial instruments makes
understanding of extreme events more feasible and at the same time poses new statistical
challenges of computation, modeling, and inference. In the legal regulatory framework for
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Figure 2: (a) The correlation of HPI among the 100 largest markets in the US. (b) The
correlation of HPI among the 100 largest markets in the US after adjusting for (conditioning)
the national HPI (Courtesy of Magnetar Capital).

the supervision of banking and insurance, estimates of the high quantiles of loss distribu-
tions are required. Such estimates are also needed for the reinsurance industry. Immediate
applications exist in the field of alternative risk transfer between the insurance of natural
causes and the financial markets (catastrophe bonds, mortality and longevity bonds).

In risk analysis, one needs to understand the impact of dimensionality on covariance ma-
trix estimation, risk assessment, and portfolio allocation. One needs to select and identify
important risk factors, a common theme in statistical model selection that has applica-
tions to many scientific disciplines. Modeling high-dimensional covariance matrices has
broad significance for finance, longitudinal studies in economics and health sciences, and
for biological, genomic and social networks. Different subject domains require different
statistical modeling and understanding, but nevertheless share some common intellectual
content. For example, credit risk analysis (time to default modeling) shares common sta-
tistical themes with health risk analysis (survival time analysis) and reliability (lifetime of
products), but has also its distinguishing characteristics deriving from financial and eco-
nomic theory. Disease classifications using microarrays and proteomic data share common
statistical challenges with robust portfolio selection and risk management. In the former
case, scientists wish to select tens of genes for disease classifications and to understand
the underlying molecular mechanism, while in the latter, investors wish to select tens or
hundred of stocks that achieve return-risk efficiency. In a similar vein, stochastic mod-
eling for understanding the dynamics of market price co-movements also intersects with
mathematical modeling of biological systems.

Macroeconomic policy making relies on the theory of inference for simultaneous equa-
tions models of high-dimensionality. Model uncertainty and estimation errors for parame-
ters can have a large impact on decision making. Statistical model building and asymptotic
inference play pivotal roles. Recently, economists at central banks have employed Bayesian
MCMC methods that make possible inference with the more complex models that emerge
from the rational expectations framework, and at a scale that is useful for the policy pro-
cess. They produce measures of uncertainty that can in principle be fed, with due caution,
into policy discussion that invokes judgemental beliefs of policy makers. A model estimated
by these methods is now the central policy model at the Swedish Riksbank, and several
other central banks have such models under development.

These are just a few examples of a methodology that combines ideas that have emerged
from statistics and crossed over into very different fields, illustrating the role of the statistics
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discipline in stimulating intellectual cross-fertilization.

3.6 Machine Learning

In the past few decades, the presence of increasingly large data sets in many fields of
science and engineering, coupled with the widespread availability of powerful computers,
has prompted a great deal of computationally-intensive statistical research, much of it
carried out under the moniker of “machine learning.” Machine learning is a set of activities
that fall squarely within the general purview of statistical science, enriching statistics by
enhancing the links to other areas of information science—including optimization theory,
algorithms, signal processing, databases and information theory—and by strengthening the
ties to applied users of statistical inference in areas such as genomics, information retrieval,
speech recognition, remote detection and logistics.

Large data sets, characterized by many variables (large p) and/or many samples (large
n), are now a common feature in many areas of science and engineering. They often arise
from the use of high-throughput technologies, such as mass spectometry and gene expression
arrays, and large-scale scientific studies, such as digital sky surveys and climate modeling.

Large, high-dimensional data sets present a number of statistical and computational
challenges that are not present in more traditional studies involving small samples and rel-
atively few variables. Machine learning, and the statistics field in general, has responded to
these challenges in a timely fashion, through the development of core theory and methodol-
ogy. Just as importantly, this statistical core has served as a hub through which key ideas
in one discipline are developed, refined and transported to other disciplines.

Supervised and unsupervised learning. Machine learning has classically empha-
sized “supervised learning” problems (i.e., classification and regression problems), in which
categorical labels or real-valued responses are attached to data points and the goal is to
predict the response of a future data points. More recently many researchers have focused
their attention on “unsupervised learning,” a more diffusely-defined set of topics that in-
cludes clustering, pattern mining, dimension reduction and manifold learning. In these
problems, only unlabeled data points are available, and the goal is to identify significant
regularities among the data points, or between data points and variables. Both supervised
and unsupervised learning are now highly developed areas of methodological and theoretical
research and the ties to classical statistical theory are increasingly clear. Recent work has
focused on so-called semi-supervised learning, in which information in labeled data points
is combined with that from more readily accessible unlabeled data for the purposes of class
prediction.

Much of the particular flavor of machine learning methodology has to do with its strong
ties to optimization theory and numerical linear algebra. In particular, machine learning
methods are often characterized by the use of surrogate or approximate loss functions
to “convexify” or “relax” risk minimization problems. Examples include support vector
machines, boosting, L1 based methods for variable selection, and variational inference for
graphical models.

Machine learning methodology often emphasizes simple, flexible statistical models that
can be remarkably effective in the context of very large data sets; examples include boosting,
bagging, random forests and hierarchical Bayesian models. More complex dependence
structures can often be captured with graphical models, a formalism that merges graph
theory and probability theory, and allows complex models to be built by combining simple
modules.
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Similarly, simple optimization methods (e.g., stochastic gradient descent) are often
found to work very effectively on large data sets. Much effort has gone into understanding
some of the reasons for this success, and the answers have involved statistical issues (e.g.,
control of overfitting) as well as numerical issues (e.g., regularization). This effort has also
led to the development of new optimization methods, particularly constrained optimization
methods associated with large-margin modeling.

Another theme that has emerged in the large-scale statistical setting is the important
role of randomness. Examples include the random designs that are exploited in compressed
sensing through L1-penalized minimization (Lasso) or Dantzig selectors, the use of random
projections in feature selection algorithms, and the problem of finding largest submatrix
of 1’s in a 0-1 matrix, where a stochastic formulation yields quantitative results on the
asymptotic size of such submatrices and has implications for the noise sensitivity of frequent
itemset analysis [7]. Moreover, for massive data sets, randomness in the selection of training
data often has two important positive side-effects: it can help mitigate overfitting issues
and it can yield significant computational savings [14].

Statistical ideas also have an important role to play in the (unsupervised) problem of
data mining, where the goal is to identify instances of one or more pre-defined patterns
in a given data set. Researchers in computer science have developed sophisticated exact
algorithms that can identify every pattern of a suitable type, but many of the patterns to
which their methods apply are not robust to noise. Recent work [10] shows that elementary
ideas from multiple testing can facilitate the noise-tolerant mining of patterns in high
dimensional data. Just as importantly, measures of statistical significance resulting from a
hypothesis-testing approach can provide an objective way to rank and select among the large
number of potentially interesting patterns that are typically present in massive data sets. In
short, statistical significance (under an appropriate null hypothesis) can act as a principled
basis for pattern discovery in the exploratory analysis of large data sets. Statistically
based data mining still presents computational challenges: some can be addressed with
adaptations of existing techniques such as the EM algorithm; others require substantive
collaborations between statisticians and computer scientists.

As machine learning matures for prediction, demand for interpretable models is in-
creasing. Sparsity is a popular and useful proxy for interpretability, and is desirable for
compression and transmission purposes. Sparse modeling tools, including L1 based methods
as Lasso and extensions to group and hierarchical sparsity, are intensively studied especially
in the p � n situation for regression and generalized linear models. This sparse modeling
literature includes compressed sensing and covers classfication as well as regression and
low rank matrix estimation. Moreover, it has a different angle to the problem from com-
pressed sensing. Here, the design matrix is given by the particular application (e.g. gene
expression levels) and its columns are often highly correlated. Theoretical results therefore
assume more general and possibly dependent correlation structure for the design matrix
than iid random entries as in the compressed sensing literature. The performance metrics
are also broader than in compressed sensing and include L2 error, L2 prediction error, and
to model selection (subset recovery). Recently, [8] provide a unified derivation of L2 error
bound in the p >> n case for M-estimation (convex loss function) with a decomposable
penalty. This general result covers both old and new results, and as special cases, Lasso,
low-rank sparse approximation, and group-structured sparse matrix.

Finally, the new methodology developed by machine learning researchers has created
challenges for statistical theory, many of which are being met by heightened activity in
empirical process theory, where sharp concentration inequalities are a fundamental tool for
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the analysis of nonparametric procedures, as well as in random matrix theory and convex
geometry.

Bayesian nonparametric methods. Much of the focus in machine learning research
has been on methods that allow the complexity of the underlying model to grow with
the growth in the sample size; in statistical language these are nonparametric methods.
Both the methods (e.g., the support vector machine and boosting) and their analysis have
generally been developed within a frequentist framework in which one analyzes performance
of a method based on repeated draws of the training data. There is also, however, a segment
of the machine learning community interested in Bayesian methods, and most recently
these researchers have begun to focus on Bayesian nonparametric methods. An existing
literature in statistics dating back to the 1960’s has provided an essential foundation for
this effort; in particular, this literature provides a general framework for working with prior
distributions that are general stochastic processes, and provides connections to other areas
of mathematics (such as probability theory, functional analysis, and combinatorics) that
are key to the manipulation of these stochastic processes.

Clustering is an important data analysis problem that has seen contributions from many
applied communities (including machine learning). In Bayesian nonparametric statistics
clustering problems can be attacked via the use of a prior known as the Dirichlet process
(DP); the DP provides an appealing solution because it does not require the number of
clusters to be known a priori. But the statistical framework provides something more; in
Bayesian statistics it is natural to consider hierarchical models, in which multiple models
are coupled probabilistically. Thus it is natural to define a hierarchical Dirichlet process
(HDP) and thereby solve multiple related clustering problems [12]. Interestingly, while the
need to solve the multiple clustering problem has been perceived within various applied
communities, the problem was not faced head on until it was posed in a general statistical
setting. Subsequently, the HDP solution has had significant impact on applied communi-
ties. Indeed, HDP-based models have yielded state-of-the-art solutions to problems such
as object recognition in computational vision, natural language parsing, protein backbone
modeling, haplotype inference in multiple subpopulations and image denoising.

Bayesian nonparametrics also provides methods for capturing and exploiting sparsity.
In particular, the beta process is a stochastic process that yields a countably-infinite number
of coins, which when tossed repeatedly yield a sparse binary matrix of exchangeable random
variables [13]. Each row of this matrix can be viewed as a sparse featural representation of
some object. Moreover, hierarchical beta processes can be defined to share sparsity patterns
among collections of objects. There is currently significant activity in using the beta process
for compression and sparse regression, and connections to the frequentist literature are
beginning to be developed.

Challenges. The multiple clustering problem is a special case of the data integration
or data fusion problem. Such problems arise frequently in the analysis of large data sets,
in part because of the need to decompose large data sets into manageable pieces and
in part because complex phenomena often provide many different views. For example,
in understanding biological phenomena there is a pressing need to integrate across the
great variety of genomic, genetic, proteomic and metabolomic data sets that are available.
Climatology is another area in which data integration is paramount, and where issues of
spatial and temporal scale make integration particularly challenging. Other challenging
issues are also facing us:

• Could we as a community formalize canonical data processing operations that might
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influence database design?

• What kind of a role can traditional exploratory data analysis play in the extraction
of information from massive data sets?

• How should we go about trying to systematically visualize the outputs of modern
statistical methods?

• How do we decide on the importance of variables?

• Streaming data requires considerations of compression and transmission in addition
to computation. Can we develop a useful theory to encompass statistical estimation,
computation, and data storage and transmission?

3.7 Network Modeling

What distinguishes network data from other examples of large scale data problems is the
inherent dependencies among units. Indeed it is these dependencies or link that are a
primary focus of analysis. Networks are usually characterized in terms of a set of n nodes,
a set of N links among the nodes, and a set of r relations that characterize the links.

Examples and Models Galore. Examples of network datasets and problems in-
volving relational data arise in diverse setting and areas. There are the early datasets
from Stanley Milgram’s 1960s small world experiments. Examples of other forms of net-
work data include: (1) Social networks: Sampson’s noviates in a monastery, Classroom
friendship, My Space, Facebook, (2) Organization theory, (3) Homeland security, (4) Poli-
tics: Congressional voting behavior, bill co-sponsorship, (5) Public health: Needle sharing,
Spread of AIDS, (6) Computer science: Email networks (Enron), Internet links, WWW
routing systems, (7) Biology: Protein-protein interactions.

Often networks are embedded in policy problems such as those involving public health
strategies, the design of economic markets, and alternative structures such as airline “hub
and spoke” systems.

Researchers approach these with different analytical tools in different substantive areas:
Erdos-Renyi random graph models and their generalizations, social network models such as
p1 and exponential random graph models, statistical physics approaches, and most recently
latent variable models. Much of the substantive work in network modeling suffers from
forms of “casual empiricism.” Thus, there is an array of interesting network modeling
problems to which statisticians can contribute. Most notable is the need to integrate across
the different approaches to develop a common and reasonably flexible class of models that
could then be adapted to the specifics of specific applications and problems of interest.

Two classes of problems have received limited statistical attention: (1) the design and
analysis of studies involving dynamic networks in which nodes and links evolve over time.
(2) integration of models based on attributes of nodes and models focused on the attributes
of links. In addition, networks often contain external information about the nodes–jointly
modeling node information with pairwise relationships is an important statistical issue. For
recent descriptions of different classes of statistical models for networks see [5] and [4].

Some Overarching Statistical Issues. There are a number of major statistical
modeling and inferential challenges in the analysis of network data that transcend individual
models and classes of estimation methods. We mention six of these:
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Figure 3: The mixed membership stochastic blockmodel. Nodes represent random
variables; edges denote dependence between random variables. Each observed (shaded)
node yij represents the observed link or observed lack of link between two elements of the
network. This link is assumed drawn from a distribution that depends on the per-element
hidden (unshaded) mixed membership vectors πi and πj . Note that each element’s mixed
membership vector plays a role in the distribution of all of its relationships to other nodes.

Computability. Can we do statistical estimation computations and model fitting exactly
for large networks, or do we need to resort to approximations such as those involved in the
variational approximations?
Asymptotics. There is no standard large sample asymptotics for networks, e.g., as the num-
ber of nodes n goes to infinity, which can be used to assess the goodness-of-fit of models.
Sampling. Do our data represent the entire network or are they based on only a subnet-
work or subgraph? Should we take a random sample of nodes and their links, or look at
the links to nodes outside the subgraph? When the data come from a subgraph, even one
selected at random, we need to worry about boundary effects and the attendant biases they
induce. This problem can be considered from both a sample designed based or a model
based perspective.
Embeddability. Underlying most dynamic network models is a continuous time stochastic
process even though the data used to study the models and their implications may come
in the form of repeated snapshots at discrete time points (epochs)—a form of time sam-
pling as opposed to node sampling referred to above—or cumulative network links. Can we
represent and estimate the continuous-time parameters in the actual data realizations used
to fit models? This is the embeddability problem and was studied for Markov processes in
the 1970s, and more recently in the context of econometric models and by others in the
computational finance literature.
Prediction. In dynamic network settings, data generated over time there are a series of
forecasting problems. How should we evaluate alternative predictions from different mod-
els?
Privacy. As social networks on the WWW expand, concerns about the privacy of net-
work data, recorded and shared, increase as well. The literature on privacy protection of
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traditional statistical databases has burgeoned over the past decade, but a fundamental
assumption regarding most disclosure limitation methodologies is the independence of data
for different individuals or units of analysis. The depends among units that are the focus
of network analysis make the privacy protection of network data a major challenge.

What statisticians can bring to the table here is not only the full set of statistical tools
and methods used in other settings, but also the ability to abstract key elements from
different modeling traditions to create a general theory which can in turn be carried back
to the applications and to new statistical problems.
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6. Machine Learning [Bin Yu, UC Berkeley]

• Andrew Nobel, UNC-Chapel Hill

• Mike Jordan, UC Berkeley

7. Network Modeling [Steve Fienberg, Carnegie Mellon]

• Mark Handcock, U. Washington

• David Blei, Princeton

References

[1] Bickel, P. J., Brown, J. B., Huang, H. and Li, Q. [2009], ‘An overview of recent developments in
genomics and associated statistical methods’, Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences 367(1906), 4313–4337.

[2] Candès, E. J. [2006], Compressive sampling, in ‘International Congress of Mathematicians.
Vol. III’, Eur. Math. Soc., Zürich, pp. 1433–1452.
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