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Executive Summary 

As technology advances, there is an ever-increasing demand to acquire, analyze, and 

generate 3D data. These necessarily large data sets must be amenable to efficient 

processing, analysis, and implementation in a variety of settings such as multi-dimensional 

modeling, high-resolution visualization, medical imaging, and the entertainment industry. 

Beyond 3D shapes, understanding and learning high-dimensional geometric structures is 

an active area of research. Given the goals of this program, the Core Participants identified 

four areas of particular interest: (1) 3D shape analysis, (2) graphs and data, (3) optimal 

transport and Wasserstein information geometry, and (4) practical matters.  

3D shape modeling and analysis is critical in efforts to digitize and replicate the world 

without losing the core geometric information. Several applications like 3D content 

generation, shape modeling, animation, and manufacturing necessitate novel 

shape-analysis approaches. Fortunately, recent advances in deep-learning architectures 

(e.g., Convolutional Neural Networks) have facilitated solutions to many difficult problems 

in the 2D domain. In this program, a primary motivation was to adapt these advances to 

the 3D domain and thereby bridge the gap between traditional 3D shape analysis and deep 

learning methods. An important question emerged: ​In addition to using machine learning to 

understand geometry, how can geometry be used to understand machine learning (ML)?​ We 

believe that formulations around strong shape priors and shape properties will play a 

crucial role in understanding complex neural networks. Moreover, it will be essential to 

develop holistic shape-understanding systems where the analysis goes beyond the 3D 

geometry to including texture, color, material, and semantic information. 

Graph-based analysis methods have been increasingly used for large-scale pattern 

recognition. Graph neural networks can learn representations of nodes, edges, subgraphs, 

whole graphs, and spaces of graphs. The generality of these networks allow for neural 

graph representation learning  to be applied to many domains where standard techniques 

fail. This is especially true for problems that involve heterogeneous data. Graph neural 

networks explicitly learn lower-dimensional graph representations for less computational 

cost than classical dimensionality-reduction algorithms. Properly defining convolution-like 

graph operations is fundamental to formulating these networks and is an active area of 
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research. Furthermore, incorporation of topological data-analysis tools (e.g., the study of 

persistent homologies) may geometrically motivate neural-network architectures.  

Optimal transport provides a geometric framework for the study of probability 

distributions by extending the geometry of the sample space. It defines a similarity 

measures between (high-dimensional) distributions, providing geometric tools for 

navigating the space of probability distributions. In contrast to information theoretical 

divergences that do not consider the geometry of the sample space, this is an inherent 

consideration in optimal transport. In particular, Wasserstein metrics extend distance 

functions of sample spaces to distances between distributions. Solution of optimal 

transport problems is amenable to ML because the approach can be applied to minimize 

the distance between a probabilistic model and a data population; this should be further 

investigated. Moreover, potential associations between the geometric structures from 

optimal transport and other ML methods, such as kernel methods, should be explored. 

Finally, the group espoused rigorously deriving the mathematical formalisms required to 

explain, describe, and predict the performance of ML models. For example, robust 

mathematical analyses would help to characterize aspects of the behavior of ML (e.g., why 

transfer learning works, how dropout is so effective in reducing overfitting, etc.). Moreover, 

because important decisions will increasingly be made with the assistance of AI, ML models 

must be verified and validated to build confidence in their estimates and predictions (e.g., 

machine-learning-assisted medical diagnoses and treatments). Perhaps a more thorough 

mathematical understanding of ML will help address important societal issues identified by 

the group. As AI systems become increasingly prevalent in everyday life and infrastructure, 

the social impacts of adversarial attacks, loss of privacy and anonymity, and intentional 

manipulation must be forefront. Risks include abuse of natural language processors (fake 

news), subversion of security systems (altered facial recognition), malicious and adversarial 

attacks on infrastructure (vulnerability of the power grid), and perhaps most importantly, 

job displacement. It is incumbent upon experts in our field to inform policy makers and 

decision makers so that proper regulations can be developed and laws enacted to protect 

individuals, societies, and economies. 

Overall, participants in this program thoughtfully identified and outlined some of the fields 

and tools with the potential to yield significant impacts at the intersection of mathematics 
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and ML. These fields include differential geometry, topology, probability theory, 

information geometry, optimal transport, partial differential equations, harmonic analysis, 

graph theory, combinatorics, functional analysis, linear algebra, and optimization, among 

others. 

Introduction 

With the striking advances in technology, computing power, and the deluge of data from 

sensors, experiments, simulations, the Internet, and social media, comes the urgent need 

for novel mathematical theoretical and computational methods to process and analyze big 

data and extract desired information. Although evolving techniques, such as deep learning, 

have achieved impressive performance in computer vision, natural language processing, 

and speech analysis, these tasks have mainly focused on data that lie in Euclidean domains. 

The mathematical and computational tools underlying these techniques, such as 

convolution, resampling, multiscale decomposition, and locality, are well-defined and 

benefit from powerful computational hardware like GPUs and TPUs. However, many 

essential data and applications deal with non-Euclidean domains for which deep learning 

methods were not originally designed. Examples include 3D point clouds and 3D shapes in 

computer vision, functional MRI signals on the brain’s structural connectivity network, the 

DNA of the gene regulatory network in genomics, drug design in quantum chemistry, 

neutrino detection in high-energy particle physics, and knowledge graphs for 

common-sense understanding of visual scenes. These opportunities and challenges 

motivated this IPAM long program, the main theme and goal of which was to learn, explore, 

and exploit geometric structures and features underlying the problem and to leverage 

them to more fully understand the data. 

As a concrete example and specific application, the program started with 3D shape 

processing and analysis. 3D modeling is becoming ubiquitous due to fast acquisition and 

frequent use of 3D data, such as in laser structured light scanning, remote sensing, 3D 

printing, 3D cameras, 3D prototyping and other novel fabrication methods, virtual and 

augmented reality, to name a few. New technologies, such as depth sensors and 3D 

scanners integrated into smart phones and personal computers, make imminent the 

transition from 2D descriptions of the world, or images, to 3D. Compared to images, 3D 

shapes are geometric objects that are much more challenging to represent and analyze 
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from both mathematical and computational perspectives. This makes higher-level tasks in 

3D shape analysis and understanding, such as registration, comparison, recognition, 

classification, and learning, even more difficult. During the program and the first two 

workshops, recent progress and developments based on geometric theory, such as 

conformal and quasi-conformal maps, heat kernel and diffusion geometry, and 

Laplace-Beltrami spectral analysis, were reported and discussed. In particular, these 

approaches provide efficient computational techniques for extracting local and global 

intrinsic features and structures that are invariant under various transformations or 

embeddings. Moreover, recent advances in both supervised and unsupervised ML for data 

analysis can be used to develop robust and distinctive data features as well as in 

application-specific tasks such as recognition and classification. However, there are still 

significant knowledge gaps and questions that remain to be addressed. Combining 

mathematical understanding and tools for analyzing geometric surfaces with ML 

techniques will lead to more powerful and effective ways of training a computer to learn 

application-specific tasks. 

The other major motivation and theme for this program was to learn and exploit geometry 

for big data beyond 3D. For example, a good mathematical metric can characterize 

similarities and distinguish dissimilarities. Simultaneously, features must be designed that 

remain invariant under certain transformations or group actions. When these features are 

used as input or desired properties are incorporated into learning structures and 

algorithms, the accuracy, efficiency, and interpretability of the entire process can be 

significantly enhanced. Another important task is to generalize neural networks to arbitrary 

geometric domains like graphs and manifolds. Fundamental operations such as 

convolution, coarsening, multi-resolution, and causality have been redefined through 

spectral and spatial approaches. Recent techniques for non-Euclidean data analysis show 

promising results for applications in many fields. During this program, various 

state-of-the-art methods for integrating geometry, modeling, and learning were 

investigated and presented. Important topics and techniques discussed and studied 

included construction of operations and network structures that possess desired 

properties, dimension reduction, manifold learning, metric design, and the 

information-geometry perspective of probabilistic and statistical properties. 
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Commensurately, there was one workshop on the geometry of big data and another on 

deep geometric learning of big data and applications.  

The overall goal of this program was to bring together domain experts, including junior and 

senior researchers, with graduate students in mathematics, computer science, statistics, 

and data science to: (1) discuss and present the current state of their fields to facilitate new 

developments, (2) establish new research directions and applications in these fields, 

(3) build new connections and collaborations among participants, and (4) train young 

minds. Below is a more detailed summary of research activities and progress made during 

this program. 

3D Shape Analysis 

Introduction 

Digitizing and replicating the world without losing the core geometric information has been 

the primary motivation for 3D shape modeling and analysis methods. Several applications 

such as 3D content generation, shape modeling, animation, and manufacturing create the 

demand for novel shape processing approaches. On the other hand, recent advances in 

deep learning (DL) architectures, especially in Convolutional Neural Networks (CNNs), have 

facilitated solutions to many difficult problems in the 2D domain. In this program, one of 

our main motivations was to adopt these advances for the 3D domain and to bridge the 

gap between traditional 3D shape analysis and DL  methods.  

3D Deep Learning for Shape Understanding 

Several IPAM research directions were focused at the intersection of 3D shape analysis and 

DL. There is a vast variety of 3D shape representations with ​important properties 

extensively studied for traditional shape processing.​ For example, voxel sets have been 

widely used in 3D reconstruction due to their structured nature, which allows efficient 

occupancy and occlusion computations. Point clouds, on the other hand, can be converted 

to matrix representations for feature mining and statistical analysis. Meshes and triangle 

soups contain topological information that enables formulating mathematical properties 

for subspaces of shapes. Exploring these and developing new representations were some 
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of the fundamental motivations for this program. These also establish a foundation for 

novel shape representations for DL.  

Another motivation was to reformulate key operations (such as convolution and pooling, 

which are the backbone of network models) exercised in 2D DL settings to 3D DL 

architectures. 2D convolutions (and Fourier Transformations as their spectral 

correspondence) have been well-exercised for images, such as dilated, strided, and 

pyramidal convolutions. Going beyond images, 3D convolutions for voxels are similar to 2D 

convolutions with a cuboid kernel instead of a square kernel. However, for unstructured 

representations such as points, graphs, and meshes, novel operations like point 

convolutions, graph convolutions, and spectral convolutions are formulated, depending on 

some conventions of the underlying geometry.  

In addition to these operations, the program explored novel loss functions in shape and 

metric spaces in accordance with the proposed representations and operations. For 

structured representations, distance metrics are easier to derive and formulate because 

the direction and neighborhood information is known. For unstructured representations, 

unit distances, connectivity, neighborhood, and ordering are all additional constraints to 

solve for. For example, Chamfer Distance (CD), used for evaluating similarity of point sets, is 

symmetric and invariant to the size of and permutations in point sets. 

Apart from theoretical explorations discussed above, the participants of the program would 

also like to understand the relationship between 3D shapes and DL architectures from 

three more application-specific perspectives by investigating: (1) the role of shapes in 

traditional DL applications such as recognition, segmentation, registration, etc. with an 

emphasis on generative models, (2) sensor-fusion techniques (i.e., using images and point 

clouds for 3D geometry recovery, or learning shape properties jointly from the topological 

and geometric properties) to recover and emphasize shape information with joint- or 

transfer-learning approaches, and (3) using embedded 3D shape properties ​(i.e., planarity, 

angle preservation, manifoldness, curvature, class templates, etc.​) to gain insight into 

complex DL systems. 

Recent advances in geometric DL have shown promising results in a variety of challenging 

problems. Shape matching is an example where learning-based methods, in conjunction 

with geometric methods, perform with previously unattainable accuracies on existing 

 
9 



 
 

datasets. In the case of supervised DL on clean and synthetic datasets, state-of-the-art 

methods achieve near-perfect accuracies. To explore these difficult shape-processing 

problems, the current research focus of the program is divided into three parts: (1) shape 

representations, (2) kernels and architectures, and (3) applications. 

Shape Representations  

To advance the geometric understanding of shape-analysis tasks, traditional as well as DL 

approaches were studied in the context of shape representations such as voxels, point 

clouds, graphs, and meshes. To fortify the mathematical foundations for 3D DL, the study 

of nonlinear shape representations was also carried out.  

First, functional maps constitute a representation primarily used for shape matching and 

morphing operations. Defining a bijective mapping between two manifolds, this mapping 

induces a natural transformation of derived quantities, such as functions on the meshes. 

Having differentiable measures make functional maps suitable for DL. Second, Lie bodies is 

one of the domain-specific representations discussed during the program. It is a novel 

shape representation defining deformations directly on triangles, using a new Lie group of 

deformations. The similarity between meshes in this domain is easily measured on the 

manifold due to the Riemannian structure. Finally, derived or combined representations 

were explored and experimented upon, such as shape atlases (learnable parametrization 

of 2D square patches to cover a surface), structured implicit functions (parametrized 

spherical units to cover a volume), part templates (oriented and parametrized bounding 

boxes to cover all components of a shape), polycubes (like voxels, but textured and 

multi-scale with padding on the boundary), and grammar-based representations 

(rule-based parametrized collection of terminals). It has been observed that the 

parametrization and hierarchical nature of these representations is a key feature in 

generative models (e.g., variational autoencoders (VAEs) and generative adversarial 

networks (GANs)). 

 

Kernels and Architectures 
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Kernels. ​Particular interest was directed toward the exploration of novel convolutional 

kernels and network architectures. Particularly interesting novel convolutions and kernels 

include pullback convolutions (defined on toric surfaces with a homeomorphism),  edge 

convolutions (defined on the ​k​-nearest neighbourhood graph of each point in a point 

cloud), graph convolutions (see Section “Graphs and Data), spectral smoothing filters (as in 

SplineNet), geodesic kernels (circular kernels in point clouds and graphs with different 

orderings), parametrized Gaussian kernels, and isotropic filters.  

Architectures.​ In addition to kernels, novel network architectures were also explored such 

as string-based VAEs to encode tiling grammars, conditional mesh VAEs, foldingNet with a 

special point-cloud folding operator in the decoder, P2PNet to transform surface points to 

global points using a Siamese network with a geometric loss and cross regularization, 

PUNet with hierarchical point feature embeddings, CayleyNet as a spectral CNN with 

rational coefficients, PTCNN expressing convolution on the manifold as parallel transport, 

and various Graph Convolutional Networks (GCNNs), such as GCCN, ACNN, DynGCNN, 

MDCGNN, and MoNet.  

Eigen-function spectra.​ Another interesting topic was the shape signatures obtained by 

Laplace-Beltrami (LB) spectra. It is proved that by taking the spectra of eigenvalues of its LB 

operator, or spherical harmonics, it is possible to compute a numerical signature of any 2D 

or 3D manifold. Because the spectrum is isometry invariant, it is independent of the 

object’s representation including parametrization and spatial position. However the 

eigenfunctions in this spectra are not ordered, which led to many open questions in 

state-of-the-art LB-based 3D shape analysis approaches. Eigenfunction alignment, for 

example, matches the LB basis of two shapes using best or first ​k​ elements in the basis 

through minimization. Basis pursuit is a synthesis and analysis approach used in 

convolutional sparse modeling to find a layer-based family of filters. Basis synchronization 

is also used for the same purpose in Spectral Transformer Networks to overcome this 

issue. LB expects the manifolds to be isometric, so isometric manifold deformation is 

another problem that can be explored by isospectralization. Various regularization 

techniques and generalizations to non-manifold shapes were also discussed.  

Graph pooling.​ The equivalent of spatial pooling operation for CNNs is defined as graph 

pooling for GCNNs, which requires coarsening the graph. As this problem corresponds to 

 
11 



 
 

graph partitioning, traditional methods as edge collapsing, heavy edge matching, and 

balanced cuts are used as graph-pooling operations. This works fine for structured graphs 

with indexing; however, it becomes computationally expensive for dynamic graphs because 

re-indexing is needed after each coarsening. 

Loss functions.​ Finally, novel loss functions (similar to Earth Mover’s Distance (EMD) and 

CD for points) that combine novel kernels and architectures were studied. Soft error loss, 

for example, is measured on a (bijective) soft correspondence matrix with geodesic 

distances between Riemannian manifolds of two shapes. 

Applications 

3D shape analysis has numerous applications across various industries, several of which 

were discussed during the program. Shape-matching and registration approaches have 

been widely explored in CT and MRI analysis in healthcare. 3D simulations in VR are also 

useful for patient education, surgery simulation, and telemedicine. Digitization of 3D 

shapes, animation, motion capture, and character design in the entertainment industry, 

and augmented reality and virtual reality (AR/VR) applications are in high demand. Popular 

topics in discussion that are directly related to the program included point cloud 

registration, segmentation, and classification approaches used in: (1) Simultaneous 

Localization and Mapping (SLAM) and semantic inference on 3D data, (2) perception 

systems in modern robotic systems and in autonomous/assistive driving, and (3) shape 

morphing for novel shape synthesis and manufacturing. Applications of 3D shape 

generators were also discussed for facial animation, content generation, and visual 

question answering. As both the scientific and industrial focus gradually moves from “2D” 

to “3D,” 3D shape analysis is gaining more attention and more efforts are needed in the 

aforementioned domains.  

Geometry for Deep Learning 

Taking a step back from the specific research topics outlined in the previous sections, 

some general open questions were posed for future discussions. One question emerging 

from the program was how to use geometry for understanding machine learning, in 

contrast to using ML for understanding geometry. For example, ​in a 2D setting, visualizing 
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outputs of CNN layers has provided new insights into ML. However, to what extent 

ap​plications involving 3D shapes can provide a deeper understanding of ML is unclear. 

Formulations around strong shape priors and shape properties are expected to play a 

crucial role in understanding complex neural networks. Understanding the intrinsic 

dimensionality of geometry objects will potentially decide the size of learning systems. 

Holistic and Scalable 3D Deep Learning Systems 

Another future direction is to embed shape processing algorithms in low-power devices 

with memory and computational constraints. Processing 3D shapes is a complex task due 

to its increased dimensionality, i.e., voxel nets are greatly restricted in resolution and by 

computational power because of 3D kernels and the discretization process. Another 

potential future direction is to develop holistic shape understanding systems where the 

analysis goes beyond 3D geometry to include texture, color, material, and semantic 

information. To form an integrated DL system with feature-specific layers using all 

information in the most suitable way is a major challenge. Joint learning methods can be 

introduced to combine extracting descriptive features from those non-geometric 

properties of the data or to learn different embeddings of shapes that contain those 

features implicitly. 

Expressive Shape Representations: From Procedural to 
Deep Generative Models  

Structured content generation has been an important topic in AR/VR, games, simulations, 

animation, and architecture. Traditional approaches employ manual modeling, content 

retrieval from massive model databases, or procedural modeling (PM - the process of 

generating geometry using a grammar). However, these approaches are costly, need 

domain expertise, have limited generative power, and lack control over creation. 

Proceduralization and inverse procedural modeling (IPM) algorithms have been proposed 

to overcome the aforementioned drawbacks. IPM is an optimization over a procedural 

representation given a target model. The derivation space of the grammar becomes the 

search space for IPM, looking for the derivation that best fits the target 3D model. 

Proceduralization, on the other hand, extracts the grammar directly from the geometry 

 
13 



 
 

without any assumption on the underlying grammar. Both of these approaches incorporate 

several shape analysis, geometry processing, and optimization algorithms for different 

shape representations. Proceduralization outputs shape grammars, which are hierarchical 

and parameterized descriptions of 3D shapes, objects, or scenes.  

On the other hand, deep generative models for 3D shapes exist for images, voxels, point 

clouds, and surface meshes, outputting shapes in the representation of the input domain 

or in the latent space, both of which are not suitable for controlled shape synthesis tasks. In 

conjunction with the main motivations of this program, those networks were studied to 

define and obtain expressive shape representations, posing the question: ​Can we formulate 

and learn an explicit or implicit shape representation that mimics procedural models, following 

their parametric and hierarchical nature? 

The first step toward formulating such representations for DL is proposed as a global shape 

understanding problem: learning skeletons from shapes as parametric representations. 

Although these skeletons satisfy the parametrization requirement, other requirements 

such as hierarchical subdivision and capturing patterns as rules remain unfulfilled.  

Overarching open questions to model novel network architectures that learn expressive 

shape representations can be encapsulated as: (1) how to embed explicit grammars as 

implicit differentiable features, (2) how to jointly learn terminals (geometric unit structures) 

and rules (patterns and distributions), and (3) how to formulate loss functions to maximize 

the generative power of the model. 

Beyond 3D: Convolution on Manifold via Isometric 
Embeddings in Higher Dimensions 

There are several current 3D CNN architectures that use data embedded in Euclidean 3D 

space such as VoxNet, V-Net, PointNet, and VoxelNet. An architecture that incorporates 

normal directions to a voxel object is NormalNet. To reduce memory requirements and 

improve performance, sparsification of 3D data is implemented in OctNet. Submanifolds 

have been used in a CNN architecture called SparseConvNet, which has linear cost with 

respect to the number of active sites, with considerable computational economies even 

while maintaining state-of-the-art performance.  
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A proposal to extend these ideas to higher dimensions was developed and presented 

during this long program. This direction incorporates methods from high-dimensional 

differential geometry, namely, isometric embeddings and the notion of reach of an 

embedding. In this way, spatial convolution can be defined and generalized to deal with 

geometric structures on higher dimensional manifolds.  

Historically, the theoretical guarantee of finding an isometric embedding of a smooth, 

closed Riemannian manifold was first solved by John Nash. Other useful strategies realized 

embeddings into ​L​² and recent advances improved these approaches using heat kernels 

and eigenvector fields of connection Laplacians. 

Implementations of these theoretical ideas involve, among many others, eigenvalues of the 

LB operator, nearly isometric embeddings via relaxation, using KDE and local PCA, and 

considering strengthenings of Whitney embeddings to produce almost isometric 

embeddings. There is  a significant trade-off when lower dimensions are used for the target 

space of the embedding. Relaxation conditions allow for embeddings into 

finite-dimensional normed spaces, however, here the embedding dimension grows 

exponentially with respect to the manifold's intrinsic dimension, ​d​. Using a Nash-type 

embedding, the ambient dimension grows quadratically in ​d​. 

A major challenge in this direction is to leverage the theoretical advantages afforded by 

these isometric embedding techniques with the computational cost of sweeping 

d​-dimensional tensors spatially, as these convolutions are defined in the ambient space.  

Graphs and Data 

Introduction 

CNNs have been extremely successful in many high-dimensional regression and 

classification tasks on Euclidean domains. Recently, several generalizations to graph 

structured data have attracted increased attention due to their potential for use in pattern 

recognition for extremely large-scale problems with minimal assumptions on the data. 

Properly defining graph convolution (or a convolution-like operation) is a fundamental 

ingredient in formulating these networks. Over the past six years there have been several 
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new approaches and many further refinements to achieve this. Another key problem in 

understanding Graph Neural Networks (GNNs) is understanding the generation of the 

underlying graphs that the networks work on. Beyond these challenges, critical insights 

have been gained by considering Cartesian grids and triangulated meshes as special cases 

of graphs with regular connectivity and edge weights. Investigating how to adapt elements 

of classical signal processing from these regular graphs into more general ones has been 

and will continue to be an important research avenue. 

Applied Harmonic Analysis on Graphs 

Graphs are particularly powerful and flexible in capturing irregularity at both global and 

local scales. While many operator techniques (such as multiscale transforms) are well 

understood on regular grids, a big open question is their extension to irregular structures 

such as graphs. On the other hand, the impact of explicit graph construction on the 

properties of such generalized objects is thoroughly understood. The irregular structure of 

some given graph so far also introduces ambiguity in how to choose, for specific purposes, 

a suitable definition of distance in the vertex domain or a favorable basis of the function 

space used for signals on graphs. 

We expect the field of spectral graph theory to significantly mature with a deeper 

understanding of these issues and the tradeoffs between desired properties in the vertex 

domain and in the graph spectral domain. Moreover, sometimes it is either impossible to 

directly translate a numerical scheme available in a Euclidean space, or on a regular grid to 

the general graph setting, or the resulting counterpart method is significantly more 

expensive to compute. Hence, to make spectral approaches to graph problems feasible and 

attractive, ​r​esearch is still needed for devising efficient (approximate) numerical methods. 

Spectral Based Graph Neural Networks 

Directly defining spatial convolution is extremely difficult on graphs because it is not 

obvious how to define a local filter on different vertices with different connectivities that 

have the desired weight-sharing and shift-equivariant properties. Spectral approaches 

avoid this by using the graph Fourier transform to define a convolution in the spectral 

domain. The standard basis is composed of the eigenfunctions of the graph Laplacian. The 
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locality of filters on the spatial domain can be  enforced by requiring the filter to be smooth 

in the frequency domain. Additionally, the eigensystem can be truncated to reduce 

computational costs. Recently, approaches based on other graph transforms such as the 

Haar transform have also been considered in this framework. The​ ​Haar basis is a sparse 

and localized orthonormal system for graph-function spaces built on a coarse-grained 

chain of the graph under which the graph convolution is defined accordingly for GNNs. The 

sparsity and locality of the Haar basis allow Fast Haar Transforms on graphs by which an 

efficient evaluation of Haar convolution between the graph signals and the filters can be 

achieved. 

Spectral approaches are particularly promising because they connect the traditional fields 

of graph theory, harmonic analysis, and operator theory, all of which have been studied 

extensively and have yielded profound insights on their own. Thus, we expect a variety of 

improvements from further exploration and justification of connections between these 

fields, which can be formulated using a graph representation. 

Spatial-Based Graph Neural Networks  

Locally connected networks, sometimes called message-passing networks, have been 

developed as an alternative approach to defining convolution-like operators on graphs. In 

these techniques, an adjacency matrix is used as a mask for a traditional fully connected 

layer. Then for each layer, at each node the hidden state is updated by an accumulation of 

the neighboring states. Several techniques for this accumulation operation have been 

proposed, but the most common are various weighted averages with the weights coming 

from the adjacency matrix. Recently, several authors have proposed ways to learn these 

accumulations as discussed in the next section. 

Graph Attention Mechanism 

Nowadays, the attention mechanism is one of the most important tools in ML. It was first 

introduced in the field of machine translation and has since been used in vision 

applications. In the standard message-passing framework, accumulation weights are fixed, 

but to achieve more powerful representations, an attention mechanism has been 

introduced. 
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The graph attention mechanism, on the other hand, can be understood as a function that 

can be used to determine the connecting weight between nodes in a given graph based on 

the hidden state of each node. In most cases, this function is modeled by a neural network 

that is learned within the overlying model. Here, the overlying model is a GNN, which 

aggregates information from neighboring nodes. An important question is: ​Is a particular 

connection in a graph important for a given task?​ The attention mechanism answers this 

question by predicting a weight for this connection. Therefore, by using the attention 

mechanism, we learn a new weighted adjacency matrix. 

This procedure assumes that the structure of the graph has been given, but what if no 

graph structure is available? The graph structure could be formulated by learning the 

attention weights for a fully connected graph, but this is extremely computationally 

expensive. Moreover, the higher the connectivity of the graph, the more expensive the 

computation of the attention mechanism. 

Graph Generation 

In some applications, such as social network analysis, the underlying graph is readily 

available. However, in other fields such as point cloud registration or medical imaging, 

obtaining this graph is non-trivial. Currently, the standard method to connect a set of data 

points into a graph is to define some metric on the data space and perform either a 

k​-nearest neighbor search (to connect each data point to its ​k​ nearest neighbors) or a range 

search (connect each data point to all other points within some radius). The choice of 

metric is critical because choosing different distance measures yields significantly different 

graphs. For image data, there are well-studied metrics such as Euclidean pixel distance, 

cosine distance, and EMD, but this is not generally true, especially when the data are 

heterogeneous. Because attention networks only estimate attention coefficients for nodes 

within a fixed number of hops, selecting a good initialization is vital.  

Recently, there have been a few approaches proposed to learn a graph generation model 

— all of which have important contributions, none of which is perfect. Methods based on 

sampling adjacency matrices from Bernoulli random variables are computationally 

expensive and do not currently allow for the user to specify properties of the generated 

graphs (such as connectedness). Methods based on auto-encoder frameworks require 
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large training sets. In cases where the “best” graph representation of the data is unknown, 

it is unlikely that there will be a training set. In the future, we believe that graph generation 

will become an even more important part of the graph analysis pipeline and we anticipate 

that the study of such generative models will be an important cornerstone of future 

research in this field. 

Generalization of GNNs and Applications 

Because GNNs can learn representations of nodes, edges, subgraphs, and whole graphs, 

there is a connection between the neural graph representation learning and the field of 

dimensionality reduction. Most dimensionality reduction models build a neighborhood 

graph of data points, which is often weighted and then implicitly used to embed data 

points in lower-dimensional space. GNNs learn lower-dimensional representations of 

graphs (or subcomponents) explicitly, often with less computational cost than classical 

dimensionality-reduction algorithms that rely on matrix-factorization approaches. 

Skip-gram-like models, which are shallow neural networks, embed nodes of the graph 

based on sampled random walks. It would be interesting to characterize how biased 

random walks, which account for various geometric and topological properties of the graph 

and the manifold it triangulates, affect the embeddings. 

Another promising field of research is generalizing GNNs to more general and higher-order 

structures such as hypergraphs and simplicial complexes. Here, we anticipate the 

incorporation of tools from topological data analysis into geometrically motivated neural 

network architectures will be an active and fruitful area of research in the near future. An 

important question is how to apply persistent homology or combine it with other 

statistics/analysis/differential geometry methods to measure and improve the performance 

of GNNs.​ ​This also involves subjects from optimal transport and Wasserstein information 

geometry. 

 

 

Optimal Transport / Wasserstein Information Geometry  
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Introduction 

Optimal transport​ (OT) provides a geometric framework for the study of probability 

distributions by extending the geometry of the sample space. OT can answer questions 

such as how far away two distributions are from one another, what an average probability 

distribution looks like, and whether two distributions are in the same direction relative to a 

vantage point. Such framework fits ML well, as learning can often be cast as minimizing a 

function of distance between a model and a data population. In this case especially, OT 

facilitates learning from probability distributions. The defining property of OT distances is 

their ability to consider the geometry of the sample space upon which the distributions are 

defined. This is in contrast to information theoretical divergences that do not take the 

geometry of sample space into account. A particular example of OT distances is given by 

the Wasserstein metrics, which extend distance functions of sample spaces to distances 

between distributions. 

Information geometry​ takes a geometric perspective to learning. The typical structures 

here are information divergences and the Fisher-Rao metric, which plays the role of a 

Riemannian metric. This well-established field has found multiple applications in statistics 

and ML. One aim of information geometry is to study the loss of information via geometric 

objects.  

Wasserstein information geometry​ bridges these two approaches by studying the 

questions arising in information geometry through constructions in OT. It develops new 

theories, methods, and applications, which incorporate aspects of both data space and 

model space, in a way that is not possible with other approaches. This area contributes to 

addressing the current deficit and increasing demand for mathematically sound 

approaches in ML.  

Optimal Transport in ML Models 

Geometry of Data via Optimal Transport. ​Learning, or generalizing from examples, 

amounts to discovering regularities from data and discarding noise. The amount of data 

and computations required to accomplish this is strongly affected by the amount of prior 

knowledge that can be incorporated into the learning algorithm. OT can define 
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neighborhoods in data space of natural images, which correlate well with human 

perception of semantic vicinity. This can be used to define generative models that better 

reflect the natural variability of data. During the IPAM program, we discussed 

implementations of such approaches in state-of-the-art generative models called GANs. 

Another application can be found  in the training of discriminative models that are robust 

to in-class data variability. This is particularly important in the context of adversarial 

robustness. During the program, the core participants submitted articles on these topics 

and had abstracts accepted in major conferences including International Conference on 

Machine Learning and were invited for workshop presentations at Computer Vision and 

Pattern Recognition.  

Geometry of Hypothesis Space via Optimal Transport. ​Besides the geometry of data, 

Information Geometry, the geometry of the space of hypotheses, is also important. Local 

optimization strategies over hypothesis spaces are strongly affected by their underlying 

geometry. OT can define geometric structures on hypothesis spaces, which can be used to 

determine the direction of steepest improvement (depending on how distances are 

measured in hypothesis space). During the program, several such papers were submitted 

to important conferences and special journal issues including Geometric Science of 

Information (GSI), Deep Learning Information Geometry, and Deep Learning Theory-MPI.  

Computational Aspects 

Learning is often formulated as the minimization of a discrepancy measure between an 

observed behavior and a model. The quality of a solution depends on the selected 

discrepancy measure, which can be defined using OT. In practice, such measures are 

evaluated only approximately. For example, one considers iterative optimization methods 

where at each iteration the loss function is evaluated over only a subset of the data 

(stochastic gradient descent) or where only an approximation is considered (e.g., factorized 

versions of a Riemannian metric).  

Wasserstein GANs​ are popular examples of OT applied using stochastic gradient descent 

in the domain of big data. For example, the goal might be to learn from an empirical 

distribution, such as a population of pictures of celebrities. Wasserstein GANs can estimate 

the OT distance between the generator and the target distribution through dual 
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formulation of OT, which can be cast as maximizing the expected value of the sum of two 

functions called Kantorovich potentials. However, these potentials must satisfy certain 

non-trivial conditions, which impose the greatest challenges for OT in GANs. In the current 

literature, constraints are heuristically incorporated and validation of the resulting OT 

distances is lacking.  

Finally, in practice we are only able to consider a subset of candidates for the optimal 

Kantorovich potentials consisting of neural networks such as multilayer perceptrons or 

CNNs. This poses two questions: (1) ​How well these families are approximating the real OT 

distance?​  (2) ​Is the OT distance optimal for learning a generator in the GAN setting or could the 

restriction to specific function classes improve the discriminator?   

The entropic regularization​ of OT allows us to take advantage of computational power 

without compromising theoretical properties of the Wasserstein distance. Indeed, it allows 

us to define the so-called Sinkhorn divergence, which metrizes the weak-* topology. In the 

context of GANs, the Kantorovich formulation of the entropic transport problem defines an 

unconstrained optimization problem that resolves the above-mentioned difficulties of 

satisfying the constraints on the Kantorovich potentials. 

Further generalizations will be investigated, including the extension of this approach in the 

multi-marginal case, i.e., an OT problem with more than two marginals.  

Connection with Other Traditional Statistics/ML Methods 

It would be useful to find connections between the geometrical structures, such as the 

distances between probability distributions, obtained in the framework of OT and those 

obtained in other mathematical areas such as information geometry and information 

theory. From a practical viewpoint, this can potentially lead to new computational methods 

where the distances are optimally tuned for a particular application. 

For example, through entropic relaxation of OT, Sinkhorn divergences can be defined. 

Sinkhorn divergences provide an intriguing connection between OT distances and MMD 

measures because varying the magnitude of relaxation interpolates between the two. As 

another example, in Procrustes analysis, a parametrized family of Riemannian metrics and 

distances can be defined to unify the Wasserstein-Riemannian metric and distance  with 

 
22 



 
 

the Log-Euclidean Riemannian metric and distance in the Gaussian case, both in the finite- 

and infinite-dimensional settings  (work accepted at GSI 2019). Two intriguing research 

directions along this line include: (1) extension of the previous formulations to the 

non-Gaussian setting and (2) unification of the Wasserstein-Riemannian metric and 

distance with the Fisher-Rao metric and distance in information geometry. 

We have also explored the connections between the geometrical structures from OT with 

other traditional ML methods, such as kernel methods. As an example, we have obtained 

closed-form formulae for the Wasserstein-Riemannian distance between ​reproducing kernel 

Hilbert spaces​ covariance operators, potentially leading to new kernel algorithms employing 

these operators.  

Optimal Transport in Computer Graphics 

OT has been applied to: (1) geometry processing for computing soft maps between meshes 

or shape interpolation and (2) rendering for the design of bi-directional reflectance 

distribution functions. It can also be applied to physical simulation for generating vector 

field interpolations between simulated frames. Defining the ground metric on triangular 

meshes for the Wasserstein distance is a challenging problem. Computing machine 

learning Wasserstein isometric embeddings using ML methods is being explored to 

compute a distance between meshes more accurately and efficiently. More work needs to 

be done in computing the Wasserstein distance on vector fields of physical simulations and 

applying OT to generate interpolation frames and to perform latent space simulations. 

 

Applications and Practical Matters 

Introduction 

Further theoretical and mathematically based analysis is required to describe, explain, and 

predict the performance of ML models. This is vital for decision making because if 

life-altering decisions are to be assisted with ML models, there must be verified and 

validated confidence in the output estimates and predictions (e.g., ML-assisted medical 

diagnosis and treatment).  
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Open Research Topics 

Neural Machine Translation 

In the long program, we discussed ML in natural language processing (NLP). ML has been 

used in NLP, especially for translation. Although the progress on neural machine 

translation has been impressive, there remains a clear gap between neural machine 

translation and human translation. Based on domain expertise in translation of the 

program participants, several options for improving neural machine translation were 

identified: (1) analysis of tone and emotion, (2) paraphrase translation, (3) characterizing 

the environmental context, (4) event-based context understanding, (5) underlying intent of 

the language, (6) relationships between speakers (e.g., hierarchical), and (7) multi-skill 

aspects (speaking, writing, and listening).  

In contemporary neural machine translation, the most successful ML models include: 

RNNs, attention-based transformers, and combinations of knowledge graphs and 

reinforcement learning. Semantic-position-prediction-based NLP ML models have 

difficulties understanding word contexts; however, in combination with a knowledge-graph 

model, stable representations of words can be produced. In the future, there is the exciting 

potential of using knowledge graphs leveraged with semantic position prediction to 

develop a system to perform human-level translation.  

ML in Medical Fields 

Another scientific arena wide open to ML is medicine, which was a major topic in the long 

program. However, most current ML models and architectures are not readily suited for 

medical applications. Major challenges identified by the program members include: (1) lack 

of ML models for small datasets, especially those suited for transfer learning, (2) lack of 

high-quality data (medical images are often noisy or corrupted), (3) memory limitations 

(because of high-resolution 3D medical images), (4) precision requirements (sub-voxel 

accuracy is often needed), (5) verification and validation (V&V) of ML models, and 

(6) continuously learning ML models. For example, most ML models do not work well with 

small datasets; however, due to privacy concerns, regulations, costs, and incidents of 

disease, only relatively small datasets are available in many medical applications. Although 
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transfer learning has been used to improve model development (sometimes to a surprising 

degree), most image-processing models are pre-trained on natural rather than medical 

images. ML models pre-trained solely on medical images focusing on certain organs or 

specific diseases could improve predictive performance.  

V&V of all ML models, especially those in medical applications, has significant implications 

for governmental agencies, physicians, and relevant stakeholders who evaluate AI 

applications in medicine. A continuously learning model is an ML model in which an 

algorithm is able to adapt to new data. This situation is common in the medical arena 

because patient healthcare situation changes over time. A more fully developed 

continuously learning ML model may have the potential of performing on-par with human 

doctors who continuously adapt diagnoses according to the ever-changing health situation 

of the patient.  

Social Impacts of ML 

In the long program, state-of-the-art facial recognition methods in the form of 

reconstruction of 3D shapes from pictures, parametrizations using curvature flows, and 

image recovery  from occluded images were presented. Also, ML applications in NLP and 

other fields were extensively discussed. As ML systems become evermore prevalent in 

everyday life and infrastructure, program participants were concerned about the social 

impacts of adversarial attacks, privacy , anonymity, and abuse. Some of the issues 

discussed during the sessions were: 

(1) Abuse of NLP​. OpenAI’s GPT-2 transformer network was trained with approximately 

1.5 billion parameters on a corpus with over 40 Gigabytes of text. Given a prompt, 

GPT-2 can synthesize paragraphs of coherent, realistic text which matches the style 

and content of the prompt. The full model was originally deemed too risky to 

release publicly due to potential for misuse, e.g., the software can write blogs and 

press releases that could be used to spread misinformation. 

(2) Risks from Visual Recognition Technology​. A nefarious agent could subvert facial 

recognition systems to gain unauthorized access to confidential information. 

Moreover, unexpected inputs can also confuse ML models as they can only be 

expected to perform properly on data with a distribution similar to that of the 
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training set. In a recent fatal accident, an autonomous car crashed into a truck 

trailer, which it confused for a harmless overhead road sign.  

(3) Flawed Data-collection Pipeline​. Supervised ML requires labeled training data, 

which are usually crowd-sourced. Malicious agents can inject purposefully-incorrect 

labels into the dataset and disrupt the training process. More alarmingly, even 

without having control of the labels, agents can poison training data to cause the 

model to fail at test time. Recent work demonstrated that training data can be 

reverse-engineered from a model, potentially violating privacy rights. For example, 

faces of individuals can be recovered from facial recognition models. ​How can ML 

models be improved to defend against such attacks?  

(4) Economic Impacts of ML​. As AI systems mature, there is growing concern that they 

will render some existing jobs obsolete. For example, 25% of all jobs in the US are 

based at least partially on the transportation sector. ​How will autonomous vehicles 

displace these employees? Can it be avoided?​ Alternatively, AI will create new jobs. ​But 

will these new jobs sufficiently offset those which they replaced?​ For example, displaced 

workers may lack the necessary skills and experience to perform the duties of the 

newly-created jobs. ​Can policy be enacted to help? 

These topics were discussed throughout the program and the participants agree that these 

issues must be continuously considered as ML models advance. Additional issues will 

certainly emerge and it is important to remain vigilant. 
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