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Executive Summary 
Gravitational-wave astronomy has revolutionized humanity’s view of the universe, a revolution 
driven by observations that no other field can make. This white paper describes an observatory that 
builds on decades of investment by the National Science Foundation and that will drive discovery 
for decades to come: Cosmic Explorer. Major discoveries in astronomy are driven by three related 
improvements: better sensitivity, higher precision, and opening new observational windows. Cosmic 
Explorer promises all three and will deliver an order-of-magnitude greater sensitivity than LIGO. 
Cosmic Explorer will push the gravitational-wave frontier to almost the edge of the observable 
universe using technologies that have been proven by LIGO during its development. 

With the unprecedented sensitivity that only a new facility can deliver, Cosmic Explorer will make 
discoveries that cannot yet be anticipated, especially since gravitational waves are both synergistic 
with electromagnetic observations and can reach into regions of the universe that electromagnetic 
observations cannot explore. With Cosmic Explorer, scientists can use the universe as a laboratory 
to test the laws of physics and study the nature of matter. Cosmic Explorer allows the United 
States to continue its leading role in gravitational-wave science and the international network of 
next-generation observatories. With its extraordinary discovery potential, Cosmic Explorer will 
deliver revolutionary observations across astronomy, physics, and cosmology including: 
Black Holes and Neutron Stars Throughout Cosmic Time. Understanding the birth and growth of 
the first black holes is an important unsolved problem in astrophysics. Cosmic Explorer will detect 
binaries containing the first black holes, providing a view of the Cosmic Dawn complementary to 
that of the James Webb Space Telescope. By observing millions of compact-object mergers across 
the history of the universe, Cosmic Explorer will map the populations of neutron stars and black 
holes across time, bringing new insights into birth, life, and death of massive stars. 
Multi-Messenger Astrophysics and Dynamics of Dense Matter. Through exquisite measurements 
of the interior structure of thousands of neutron stars in mergers, Cosmic Explorer will probe the 
nature of high-density matter and the strong nuclear force, revealing the nuclear equation of state 
and its phase transitions in unprecedented detail. The hot, dense remnants of neutron-star mergers 
will map unexplored regions of the quantum chromodynamics phase space. A plethora of multi-
messenger observations will help scientists understand the production of the chemical elements that 
are the building blocks of the universe, and reveal the physics powering short gamma-ray bursts. 
New Probes of Extreme Astrophysics. Neutron stars, black holes, and supernovae are expected to 
produce gravitational-wave signals that have not yet been observed by LIGO or Virgo — and may 
lie beyond their reach. LIGO and Virgo are already detecting signals from merging systems that we 
do not fully understand; Cosmic Explorer will reveal the nature of these mysterious sources. By 
detecting new types of sources, Cosmic Explorer can explore extreme astrophysical phenomena. 
Fundamental Physics and Precision Cosmology. Cosmic Explorer’s extraordinary sensitivity will 
allow observations of loud and rare events that will explore the nature of spacetime, point the way to 
a quantum theory of gravity, and uncover the unusual and unexpected. Cosmic Explorer will make 
on order-of-magnitude leap in precision measurements of the cosmic expansion history. 
Dark Matter and the Early Universe. Cosmic Explorer will probe the nature of dark matter through 
its possible signature in mergers or black-hole superradiance in a complementary way to searches at 
high-energy colliders and direct-detection experiments. Cosmic Explorer provides an opportunity 
to observe the early universe via a cosmological stochastic gravitational-wave background. 
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Cosmic Explorer 

Cosmic Explorer will be realized using a technology demonstrated by LIGO: the dual-recycled 
Fabry–Perot Michelson interferometer. Cosmic Explorer’s factor of ten increase in sensitivity comes 
primarily from scaling up the detector’s length from 4 to 40 km. This increases the amplitude of the 
observed signals with effectively no increase in the detector noise. Targeted improvements to specific 
detector technologies will be developed over the coming decade that will enable Cosmic Explorer to 
fully realize its sensitivity. These technologies can be tested in the existing LIGO facilities, ensuring 
technical readiness, by creating a pathfinder observatory known as LIGO A♯ that will allow us to 
explore out to much greater distances than before. Figure 1 shows the tremendous astrophysical 
reach of Cosmic Explorer and compares this with LIGO A+ and A♯ . Cosmic Explorer’s facilities 
will be long-lived, allowing for detector upgrades with technologies yet to be discovered. 

The National Science Foundation-funded Cosmic Explorer Horizon Study [1] presents a concept 
for Cosmic Explorer consisting of a 40 km observatory and a 20 km observatory, both located 
in the continental United States, with a total estimated cost of $1.6B (2021 USD). While initial 
studies indicate that many locations could accommodate facilities of this scale, site evaluation and 
identification will require broader and deeper studies that consider the environmental, cultural, socio-
economic, and political impacts. Building partnerships with the local and Indigenous communities is 
an essential part of Cosmic Explorer’s mission and will be critical for ensuring that Cosmic Explorer 
respects, supports, and engages with its host communities. Following the successful example of the 
LIGO Livingston Observatory in Louisiana, Cosmic Explorer presents an opportunity to broaden 
participation and build research competitiveness in states that have historically been awarded less 
National Science Foundation support. 

Cosmic Explorer is an opportunity for tremendous investment in the United States’ scientific 
workforce and new industrial partnerships needed to realize the observatories. The team leading 
Cosmic Explorer draws many of its members from three Hispanic-Serving Institutions (California 
State University Fullerton, Texas Tech University, and University of Arizona) and three Emerging 
Research Institutions (California State University Fullerton, Syracuse University, and Texas Tech 
University). Cosmic Explorer will build on its record of supporting people historically excluded 
from STEM careers and will help create a diverse and inclusive twenty-first century workforce. 

Cosmic Explorer, as envisioned in the Horizon Study, will achieve the majority of its science 
goals without the involvement of other gravitational-wave detectors. This white paper explores the 
synergies and dependencies on other facilities, including LIGO A+ and the potential A♯ upgrade. 
Two Cosmic Explorer observatories operating together with a single 4 km LIGO detector at A♯ 

sensitivity will allow the United States to independently achieve Cosmic Explorer’s full range of 
science goals. However, Cosmic Explorer’s scientific output will be greatly enhanced by operating as 
part of an international, multi-messenger network of gravitational-wave observatories, astro-particle 
detectors, and telescopes across the electromagnetic spectrum. Cosmic Explorer will bring an 
unprecedented view of the universe to this network. 

With sustained funding and no major delays, Cosmic Explorer’s first observing runs will take place 
in the mid-2030s — by which time any envisioned upgrades to LIGO will have approached the limit 
of a 4 km facility. Cosmic Explorer’s operations phase will encompass observing, disseminating data, 
and generating astronomical alerts. Cosmic Explorer will generate a unique, rich, and deep view 
of the universe over its lifetime. With foundations laid by decades of National Science Foundation 
investment and the work of a large community of scientists, Cosmic Explorer is poised to propel 
another revolution in our understanding of the universe. 
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Figure 1: The reach of the Cosmic Explorer 40 km observatory for compact binary mergers as a function of total 
binary mass and redshift at various signal-to-noise ratio (SNR) thresholds. Cosmic Explorer will push the cosmic 

horizon to the boundary of the population of binary neutron stars (gold), neutron star – black holes (NSBH) (red) 
and binary black hole mergers (white) (§1.1). The order of magnitude improvement in sensitivity enables observation 

of new populations, including mergers from Population III black holes (cyan), and speculative primordial black holes 

(magenta) [2–5]. A sample of observed short gamma-ray burst (GRB) redshifts [6] is shown (yellow, with masses 

drawn from the BNS population). SNR > 100 signals (below yellow curve) will enable precision astrophysics (§§ 1.2 

and 1.4). GW170817, GW150914, and GW190521 (stars) are highlighted along with the population of observed 

compact-object binaries (small triangles) [7, 8]. The facility limit (green, see §2) is shown with limiting noise sources; 
upgrades beyond the initial concept may approach this limit. A comparison to A♯ , A+, and O3 is shown at the bottom. 
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Cosmic Explorer 1. Key Science Objectives 

1. Key Science Objectives 
The National Academies’ Decadal Survey on Astronomy and Astrophysics 2020 (Astro2020) 
has highlighted Cosmic Explorer (CE) as “…central to achieving the science vision laid out in 
the survey’s roadmap” [9] and the Gravitational-Wave International Committee (GWIC) Science 
Book [10] states that “A global next-generation gravitational wave observatory will propel the field 
of astrophysics and all foundational science research forward.” CE, taking advantage of completely 
new facilities and with a strain sensitivity ten times that of the Laser Interferometer Gravitational 
Wave Observatory (LIGO) A+ upgrade (Fig. 1), will open new discovery space across five major 
scientific areas—CE’s key science objectives (Fig. 2). Building on the Astro2020 and GWIC 
reports, and with input from the scientific community, the Cosmic Explorer Horizon Study (CEHS) 
described three central targets for CE’s science. Since the publication of the CEHS, engagement 
with the scientific community has continued through the Dawn Workshop [11], the Snowmass2021 
Community Planning Exercise [12–14], and a call to the CE Consortium for science letters that 
expand and update the CEHS’ science goals [CESL1–CESL19]. 

In this Section, we describe CE’s key science objectives, summarizing the work of the GWIC 
Science Book, the Horizon Study, and subsequent community engagement. To illustrate the transfor-
mative scale of CE’s sensitivity improvement, we contrast it with LIGO A+ and A♯ , the latter being 
representative of the anticipated facility limit of LIGO due to its 4 km arm length [15–17]. In §3, we  
discuss the impact of various observatory1 configurations across these science objectives. 

1.1. Black Holes and Neutron Stars Throughout Cosmic Time 
Merging compact-object binaries containing neutron stars (NSs) and black holes (BHs) are the 
engine of the most energetic events in the universe [18–20]. Gravitational wave (GW) observations 
will continue to revolutionize our understanding of where and when NSs and BHs formed, shed 
light on the life and death of massive stars, and explain the evolution and properties of their host 
galaxies. CE will explore the variety of astrophysical formation scenarios proposed for compact 
binaries through precise measurement of the population’s properties, including the masses and spins 
of the compact objects and eccentricity of the binary systems. CE will map the merger rate histories 
as a function of redshift, distinguishing between the various models proposed [3, 4, 21–33]. There is 
already some evidence that the observed variety of source properties is likely the result of multiple 
astrophysical formation channels [34–37]. The peak of the mass function, and its variation with 
redshift, contains crucial clues about binary evolution and the final stages of the life of massive 
stars [CESL1, 38–43]. Fig. 1 compares and contrasts the reach of LIGO A+, A♯ , and CE. In the A+ 
configuration, LIGO will detect only a small fraction of the 10–10 𝑀⊙ binary black holes (BBHs) 
(near the peak of the local mass function) [44–46], while CE will detect the majority of such mergers 
in the universe, fully mapping the population. 

With networks including two CE observatories, precise measurements of the binary merger rate, 
mass, and spin distribution across a large range of redshifts will probe the impact of stellar environ-
ments on compact binary yields and merger delay times, and ultimately untangle their formation 
channels and physics [5, 47–54] (Fig. 2, top; Fig. 4, upper left). For many thousands of binaries 
every year, CE will precisely measure the spins and masses of the individual BHs [55], shedding 

1In the literature, the words “observatory”, “detector” and “interferometer” are often used interchangeably. Herein an 
observatory is made up of a single facility and the gravitational wave (GW) detector it hosts. The detector has many 
sub-systems, at the center of which is an optical interferometer. 
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CE40+CE20+1A] (4020A) CE40+2A] (40LA) 3A] (HLA) 

Unachievable 
Detect 500 BBH mergers at z > 10 (¢m1/m1 < 20%)Detect 500 BBH mergers at z > 10 (¢m1/m1 < 20%)Detect 500 BBH mergers at z > 10 (¢m1/m1 < 20%) 

Unachievable 
Detect 500 BNS mergers at z > 5Detect 500 BNS mergers at z > 5Detect 500 BNS mergers at z > 5§2.1 

BHs and NSs 
Throughout 
Cosmic Time 

>100 years 
Detect 10 BNS mergers 300 s before merger (¢≠ < 10 deg2)Detect 10 BNS mergers 300 s before merger (¢≠ < 10 deg 2) 

Unachievable 
Map 500 GRBs to progenitors (z > 2 ; ¢≠ < 100 deg2)Map 500 GRBs to progenitors (z > 2 ; ¢≠ < 100 deg2)Map 500 GRBs to progenitors (z >  2 ;  ¢≠ < 100 deg 2) 

100 years 
Constrain Nuclear Equation of State (NS radius < 10 m)Constrain Nuclear Equation of State (NS radius < 10 m)Constrain Nuclear Equation of State (NS radius < 10 m) 

Locate 100 BNS mergers within ¢≠ < 1 deg2Locate 100 BNS mergers within ¢≠ < 1 deg2Locate 100 BNS mergers within ¢≠ < 1 deg 2 

§2.2 
Multi-messenger 
Astrophysics 
and Dynamics 
of Dense Matter 

Detect 25 millisecond pulsarsDetect 25 millisecond pulsarsDetect 25 millisecond pulsars 
40 years 

Detect BNS with post-merger SNR > 5Detect BNS with post-merger SNR > 5Detect BNS with post-merger SNR > 5§2.3 
New Probes 
of Extreme 
Astrophysics 

500 years 
Detect 10 BBH mergers with SNR > 1000Detect 10 BBH mergers with SNR > 1000Detect 10 BBH mergers with SNR > 1000 

3600 years 
Measure H0 to within 0.2%Measure H0 to within 0.2%Measure H0 to within 0.2%§2.4 

Fundamental 
Physics and 
Cosmology 

40 years 
Detect Stochastic Background for ≠GW < 5 £ 10°12Detect Stochastic Background for ≠GW < 5 £ 10 ° 12§2.5 

Early Universe 

Time [Years] 1 10 20 

Figure 2: Time needed to achieve key science goals (§1). A 40 km CE in a network either with a 20 km 

CE and an A♯ observatory (dark green; see 4020A in §3.2) or two A♯ observatories (light green; see 40LA 

in §3.2) are compared to a network of three A♯ observatories (gray; see HLA in §3.2). All metrics use the 

broadband configuration for the 20 km CE except the post-merger SNR which uses its kilohertz-focused 

mode (see Fig. 3). Times that exceed the plot range are given on the right. CE in its reference design, 
operating with one 4 km LIGO detector at A♯ sensitivity, will ensure that the US can self-sufficiently achieve 

the key science goals described in §1. 

light on binary mass transfer stability and efficiency [CESL9, 56–59], mass ratio reversal [60–62], 
stellar winds and mass loss [63, 64], massive stars’ sizes, and more. CE may be the only way to set 
these constraints at high redshifts [CESL8]. Its sensitivity below 20 Hz will enhance constraints on 
binary formation pathways via orbital eccentricity measurements [CESL19, 65–67]. 

Constraining the BH mass function above 50 𝑀⊙ will allow for a better understanding of the pair 
instability supernova mass gap (and of the nuclear physics processes that lead to it) [CESL10, 68]; the 
rate of hierarchical mergers [69, 70]; and intermediate mass black hole binaries (IMBHs) [CESL3, 
71]. A♯ will observe a 100–100 𝑀⊙ IMBH merger up to 𝑧 ∼  4, missing the critical BBHs at higher 
redshifts (Fig. 1). CE, on the other hand, can probe formation and merger of BHs created by Pop III 
stars and other possible high-redshift channels, e.g., primordial black holes (PBHs) created during 
the inflationary epoch of the universe [3, 72, 73] (Fig. 4, upper left). Little is known about Pop III 
stars (see [74] for a review), and while the James Webb Space Telescope (JWST) might provide 
some information in the next few years [75], it will not directly resolve individual Pop III stars. The 
mass functions of both PBHs and remnants of Pop III stars are uncertain; but they might be the 
seeds that formed the supermassive BHs found at the centers of most galaxies [71, 76–79]; CE will 
thus explore one of the most pressing open questions in galaxy and structure formation. Since a 
network is required to accurately measure the mass of a distant source (§3), two CE observatories are 
required to map the mass distribution of BBHs at 𝑧 ≳  5, where LIGO A♯ would have signal-to-noise 
ratio (SNR) less than 5 for a 10–10 𝑀⊙ BBH [47, 52, 53, 80]. 
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Similar considerations apply to binary neutron stars (BNSs). CE will map the properties of BNSs 
across cosmic history and galactic environments (Fig. 1). By establishing the rate and distribution 
of BNS mergers out to cosmological distances, CE may also measure the time delay distribution 
between formation and merger [49], and thereby infer the history of chemical evolution in the 
universe beyond the reach of multi-messenger astronomy [54] (§1.2). The two CE observatories 
are key to precisely measuring masses, distances and sky positions of thousands of BNSs per year 
(Fig. 4, upper left). 

1.2. Multi-Messenger Astrophysics and Dynamics of Dense Matter 
The first BNS merger detected in GWs and across the electromagnetic spectrum (GW170817; [18, 81] 
and references therein) is a spectacular example of a discovery that impacted a rich variety of fields, 
ranging from nuclear and fundamental physics (e.g., [82–89]), to relativistic astrophysics (e.g., [81, 
90–96]) and cosmology (e.g., [97–99]). With an order of magnitude in sensitivity improvement 
relative to A+, CE will extend the reach of multi-messenger astronomy to the high-redshift universe, 
unveiling BNS mergers around and beyond the peak of star formation, or 𝑧 ∼  2  (which is inaccessible 
with 4 km observatories even at A♯ sensitivity; Fig. 2), making it possible to unveil the progenitors 
of short gamma-ray bursts (GRBs) (Fig. 1) [100–102]. BNSs up to 𝑧 ∼  2  can be localized to better 
than 10 deg2 in the sky with an international network containing the two CE observatories [103] 
(Fig. 4, upper right). The two CE observatories will detect hundreds of BNS mergers per year with 
SNR > 100 (Fig. 4, top left) determining their properties with unprecedented precision [104–106]. 
Measurements of NS tides across the masses in this sample will constrain their radii to better than 
100 m — one part in 100 [107, 108] (Fig. 4, top right). This, in turn, will result in the identification of 
features in the NS mass-radius relation that can reveal quantum chromodynamics phase transitions, 
and a population-wide constraint on the NS radius (for the common NS equation of state (EOS)) at the 
10 m-level, revolutionizing our knowledge of high-density matter [CESL7, CESL15, 109, 110] (Fig. 2). 
A network including the two CE observatories will localize many nearby BNSs to better than 1 deg2 

in the sky (Fig. 2 and Fig. 4), linking the properties of compact binary progenitors (masses, spins, 
and tides) to the properties of host galaxies and the diversity of merger outflows—from neutron-rich 
outflows contributing heavy element nucleosynthesis (e.g., [84, 87, 92]), to radio-to-X-ray emitting 
jets (e.g., [91, 93–95]). In some cases, GW observations of an inspiralling system can provide the 
advance notice required to capture light from the moments closest to merger [111–113] (Fig. 2), such 
as a fast radio burst (FRB) associated with the ejection of the magnetosphere of a hypermassive NS 
collapsing to a BH [114]. 

After a BNS merger, oscillations of the hot, extremely dense remnant can produce “post-merger” 
GWs [115–118]. This heretofore undetected signal probes a region of the phase diagram of dense 
matter that is inaccessible to collider experiments or direct electromagnetic observations, and 
where novel forms of matter such as deconfined quarks may appear [CESL15, 119]. CE 40 km 
and CE 20 km in kilohertz-focused mode (Fig. 3) will provide accurate measurements of the post-
merger GW frequencies for events with post-merger network SNR > 5  [118, 120]; for a fiducial 
simulated post-merger we expect yearly observation (Fig. 2). This will reveal dense-matter dynamics 
with finite temperature, rapid rotation and strong magnetic fields; shape theoretical models of 
fundamental many-body nuclear interactions; and answer questions on the composition of matter at 
its most extreme [CESL6, CESL13, 121]. Direct GW observations of post-merger remnants will help 
determine the threshold mass for collapse of a rotationally supported NS, with implications for the 
NS mass distribution (including the NS maximum mass) [122, 123], predictions of electromagnetic 
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counterparts [124, 125], and supernova engine models [CESL1]. 
In terms of its impact on the multi-messenger science of compact binary mergers (Fig. 2), CE is 

synergistic with space missions such as Fermi [126, 127] and Swift [128], the Nancy Grace Roman 
Space Telescope [129], and future NASA programs focused on the transient and time-variable 
universe [CESL4, 130, 131]. From the ground, the Rubin Observatory [132], the Extremely Large 
Telescopes [133, 134], and the next generation Very Large Array (ngVLA) [135] will provide follow-
up capabilities for CE discoveries [CESL4, CESL18, 136–138]. The IceCube-Generation 2 neutrino 
observatory and CE will help constrain emission models for high-energy neutrinos in nearby BNS 
mergers [9, 139, 140]. Finally, multi-band observations and synergistic data sets can be formed with 
the LISA space-based GW detector [141–143]. 

1.3. New Probes of Extreme Astrophysics 
NSs and BHs, in isolation or in binary systems, can be sources of GW signals that are very different 
from the signals already detected by LIGO and Virgo [CESL11]. CE, especially in combination with 
observatories of other messengers, has the potential to use these yet undetected signals to reveal the 
physics behind a suite of extreme astrophysical phenomena [144, 145]. Here we summarize several 
predicted “novel” signals, keeping in mind that this collection is likely incomplete. 

Spinning NSs produce quasi-periodic GWs that can last for millions of years [CESL11, 144–146]. 
These signals arise from mass quadrupoles supported by elastic or magnetic stresses, or mass 
current quadrupoles from long lived “r-modes” (rotation-dominated modes). Accreting NSs are 
especially driven to nonaxisymmetry by temperature gradients, magnetic bottling, and perhaps r-
modes [145]. Extrapolating from the sensitivities of current searches (e.g., [147]), CE is likely to detect 
multiple accreting NSs under the assumption that their spins are regulated by GW emission [148– 
150]. Accreting NSs are believed to become “millisecond pulsars” after accretion ends. There is 
tantalizing evidence that they spin down at a minimum rate consistent with GW emission from a 
quadrupole sustained by stresses due to a young pulsar’s magnetic field mostly buried under the 
accreted material [151]. With such fields, CE should detect dozens of known millisecond pulsars 
(Fig. 2) [151], with the potential to detect many more since the upcoming Square Kilometre Array 
and ngVLA are predicted to discover several pulsars for every one currently known [136, 152]. 
Non-detection of accreting NSs or millisecond pulsars would strongly confront current theories of 
their evolution. All-sky surveys for yet-unknown NSs may yield more than a hundred detections 
with CE [153], with arcsecond localization to guide follow-up searches for pulsars in radio and other 
electromagnetic wavebands. Long-lived GW signals, particularly in tandem with electromagnetic 
observations, can provide information not only on the NS EOS (at low temperatures inaccessible to 
colliders), but also NS composition, spin evolution, internal magnetic fields and microphysics (i.e., 
viscosity, thermal conductivity, and elastic properties of the crust) [145, 146, 154]. 

Core-collapse supernovae generate bursts of GWs from the dynamics of hot, high-density matter 
in their central regions [CESL11]. CE will be sensitive to supernovae within the Milky Way and 
its satellites [155], with an expected rate of one over the planned 50-year lifetime of CE. A core 
collapse supernova detected by CE would have nearly an order of magnitude higher SNR than with 
A♯ [144], allowing improved waveform reconstruction and characterization of source properties [156]. 
The detection of a core-collapse event in GWs would provide a unique channel for observing 
the explosion’s central engine and the EOS of the newly formed “protoneutron star”, allowing 
measurement of the progenitor core’s rotational energy and frequency measurements for oscillations 
driven by fallback onto the protoneutron star. A nearby supernova could provide a coincident 
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neutrino detection, giving a spectacular multi-messenger event [144]. Some extreme supernovae, 
such as collapsars or with “cocoons”, could generate GWs that could come into reach with A♯ and 
be probed statistically (at a rate of ∼ 10 per year) with CE [CESL12, 157, 158]. 

GWs are also generated by other dynamic NS events [145] such as magnetar gamma-ray flares 
(possibly accompanied by FRB) and pulsar glitches. Such impulsive, energetic events will excite the 
many normal modes of NSs, including the strongly GW-emitting “f-modes” (fundamental acoustic 
modes). Pulsar glitches may also be followed by weeks-long signals as crust and core readjust. 
Aided by the time and location of the electromagnetic trigger, upgrades to existing observatories 
can detect GW signals only in the most optimistic scenarios [159, 160], while with CE detection 
is likely in a wider range of scenarios [CESL2]. Detection of f-modes will measure the cold NS 
EOS and masses of a population different from that seen in binary mergers, and combined with 
X-ray observations will yield information on internal magnetic fields [161], while a long post-glitch 
detection would add information on the viscosity of NS matter. For all burst signals, it is crucial to 
have multiple GW observatories to provide confidence through coincident detection. 

1.4. Fundamental Physics and Precision Cosmology 
Thanks to its order of magnitude advance in sensitivity over current-generation GW observatories, 
CE will reveal the physics of strong-field gravity in unprecedented detail via two crucial pathways. 
First, in three years of operation, a network including a 40 km CE observatory will detect ≳ 10 
BBHs with a SNR greater than 1000 (the loudest such signal to date, GW200129_065458, had a 
SNR of 26.8) [7, 162], and hundreds of BBH events with post-inspiral SNR greater than 100 (Fig. 4). 
Second, CE will detect GWs from sources too rare for us to observe today. In each year of its 
operation, CE will observe approximately 100,000 BBHs — 1,000 times the total number of GW 
events observed to date from any source type [163, 164] — providing far more opportunities to 
discover rare and interesting events. High SNRs and a large number of events will result in roughly 
two orders of magnitude better theory-agnostic tests of General Relativity (GR) compared to existing 
facilities [163], possibly revealing physics beyond GR [CESL5, CESL16, CESL17, 163, 165, 166] that 
is not be accessible to current observatories (§3). 

The GW memory effect, a permanent change in strain predicted by GR, is a prominent example 
of a GR effect that CE will be sufficiently sensitive to detect [CESL5, 165]. As another example, GR 
mandates that GWs propagate at the speed of light; in the language of quantum field theory that 
means that the graviton, which mediates the gravitational interaction, must be massless. Owing to 
the much larger distances it can probe, CE will improve current constraints on the graviton mass 
by three orders of magnitude [163]. Finally, while GR predicts only two GW polarizations, more 
general theories of gravity allow for up to four additional vector and scalar modes [166]. The two 
CE observatories within an international network will be able to discover or improve the limits on 
the existence of extra polarizations that can be set with advanced detectors [167–169]. The inclusion 
of a 40 km CE in this network will uniquely differentiate between the two scalar modes [CESL17]. 

CE will provide a novel and precise measurement of the cosmic expansion rate across the history 
of the universe [170] with the potential to address the tension in the local cosmic expansion rate 
inferred by various experiments. Although GW observations of BBHs can be used to measure their 
luminosity distance, in the absence of additional information the redshift of the source must be 
inferred from cosmology. However, the combination of a luminosity distance measurement with 
an independent measure of the source’s redshift (either from an electromagnetic counterpart [97] 
or with other approaches [98, 171–175]) can be used to probe cosmic expansion in ways that are 
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independent of conventional measurements, such as using standard candles and the other elements of 
the cosmic distance ladder. The many thousands of BNS mergers detected every year by a network 
containing two CE observatories will have distance uncertainties less than 10% (Fig. 4, lower left). 
Therefore, CE is well-positioned to improve our understanding of the tension in the local cosmic 
expansion rate as well as the dark energy equation of state [CESL14, 175–178] and to provide an 
independent measurement of baryon acoustic oscillations [179]. A network containing the two CE 
observatories will allow for precise localization of the binary mergers (Fig. 4, top right) and achieve 
sub-1% precision on 𝐻0 in under a year (Fig. 2). 

One in a (few) thousand BNS and BBH events can be strongly lensed [180, 181], leading to 
50–100 lensed detections in CE annually (Fig. 4, bottom right) [182]. These detections and their 
multi-messenger counterparts have the potential of unlocking sub-arc-second BBH localization [183] 
and are unique probes of fundamental properties of GWs and cosmography [184, 185]. 

We finally note that this aspect of the CE science is synergistic with the goals of the next-generation 
cosmic microwave background experiment CMB-S4 [9]. Indeed, as discussed in [186], studies of the 
primordial GW background across a broad frequency range enabled by combining experiments such 
as CMB-S4 and CE could better constrain cosmological parameters, and particularly the inflationary 
spectral index and the tensor-to-scalar ratio (Fig. 4). 

1.5. Dark Matter and the Early Universe 
GWs are an exciting new astrophysical probe of dark matter that is complementary to searches at 
high-energy colliders and underground direct-detection experiments and might reveal the nature of 
dark matter in several different scenarios [187, 188]. For instance, because of their strong gravitational 
fields and extreme densities, NSs might capture ambient dark matter over time through scattering 
off nucleons, or even produce dark matter thanks to the exceptionally high energies achieved in BNS 
mergers. If a NS were to contain dark matter, it would affect the NS’s tidal deformability. The dark 
matter concentration would likely depend on the NS’s age, mass, and environment in this scenario, 
leading to otherwise inexplicable variations in the tidal deformability [189, 190], and the collapse 
of NSs to BHs due to dark matter in their cores [191, 192]. These variations will be accessible to CE 
thanks to the many thousands of high-SNR BNS detections for which tidal deformability can be 
precisely inferred [164, 193]. 

BH superradiance is another possible mechanism by which dark matter might generate a GW 
signature [194–197]. Critically, this mechanism only assumes a coupling through gravity, and as such 
would still be viable even if dark matter does not have any non-gravitational interaction with baryonic 
matter. An ultra-light boson with mass in the range ∼ 10−13 to 10−12 eV would create a macroscopic 
“cloud” bound to a BH, which reduces the mass and spin of the host BH. The spin distribution of 
merging BHs can reveal, or rule out, the existence of these ultralight bosons [198, 199]. The large 
number of BBHs with good spin measurement (§1.1) implies even a single CE observatory could 
make a detection—or obtain useful upper limits—in less than a year ([50] and §3.2). In addition, the 
cloud itself carries a large time-dependent energy density and sources nearly-continuous GWs [200]. 
These signals can be observed with CE as follow-up searches to rapidly rotating BHs formed in a 
merger, or with blind searches for continuous waves from sources in the local group [201] (Fig. 4, 
bottom left) or stochastic waves from nearby BHs [202–206]. 

CE will also provide a unique opportunity to probe the early universe [207–210]. Standard slow-
roll inflationary models are expected to produce a stochastic background with dimensionless energy 
density ΩGW ∼ 10−17 [211, 212], which is too weak to be directly detected by ground-based GW 
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detectors. However, nonstandard inflationary and cosmological models suggest possible backgrounds 
due to processes such as preheating [213–215], first-order phase transitions [216–220], PBH-seeding 
multifield inflation [221–223], and cosmic strings [224–228]—all with energy densities within 
the reach of CE (Fig. 2 and bottom right of Fig. 4). The detection of a cosmological stochastic 
background would be of fundamental importance for our understanding of the early universe; and 
even a non-detection would allow for constraints on beyond-standard-model physics at energies 
orders of magnitude beyond than those accessible with particle accelerators. CE in a network of 
detectors with comparable sensitivity is key to this goal, as the foreground of resolvable sources 
must be precisely modeled to reveal the much fainter background [208, 210, 229–232]. 

2. The Cosmic Explorer Concept 
The CE concept presented in the CEHS consists of two widely-separated L-shaped facilities in the US, 
each housing one detector. This pair of detectors maximizes the scientific output with a 40 km arm 
length detector that is unmatched for deep, broadband sensitivity, partnered with a second detector 
(20 km) to allow for source localization and polarization sensing, and to provide the capability of 
tuning its sensitivity to the physics of NSs after they have merged (see §§ 1 and 3) [233]. This concept 
also takes advantage of efficiencies associated with simultaneous construction, commissioning and 
operation of two sites within the US, as done by LIGO. 

The heart of each CE detector is a dual-recycled Fabry–Perot Michelson interferometer, operated 
with suspended test masses at room temperature, probed with a 1 µm-wavelength laser, and quantum-
enhanced by the injection of frequency-dependent squeezed light. Crucially, this is the same 
technology used by LIGO to reach unprecedented sensitivity in the O4 observing run. Relying on 
scaled-up, proven LIGO technology where possible, along with targeted technical advances, provides 
a straightforward approach to significant improvement with relatively low risk (see also §4.5). 

2.1. Sensitivity 
The expected GW strain sensitivity of CE is shown in Fig. 3, together with an estimate of the ultimate 
performance of LIGO A+ and A♯ . The 40 km CE detector in its default broadband configuration 

reaches a strain sensitivity of about 2.5 × 10−25 /√Hz over a wide band, providing an order of 
magnitude improvement over A+ at 100 Hz, increasing to 50 times at 20 Hz. Three key factors 
deliver the superior sensitivity and increased bandwidth of CE: 
Order-of-magnitude longer arms — Detector arms up to ten times longer than LIGO’s boost the 
sensitivity with relatively low risk, while at the same time matching the GW antenna size to the 
shortest expected signal wavelength [234]. As a result, one of the two dominant noise sources in A+, 
thermal noise in the test mass optical coatings, is reduced twenty-fold due to the larger optical beams 
and the longer arms, while most other displacement noise couplings are suppressed ten-fold [1, 235]. 
Quantum sensing — The other dominant noise source over much of the observation band comes 
from quantum vacuum fluctuations of the optical field. While also reduced by the longer arms, this 
quantum sensing noise can be further reduced by quantum vacuum squeezing. The recent success of 
frequency-dependent squeezing technology [236], with a 2× quantum noise reduction at the LIGO 
observatories, suggests that the 3× quantum noise reduction assumed for CE is within reach. 
Improved low-frequency isolation — Targeted isolation system improvements further reduce the 
noise at and below 20 Hz beyond the order-of-magnitude reduction that comes from arm length 
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Figure 3: Left: The spectral sensitivity of CE and the known fundamental sources that contribute to the 

total noise. Right: Measured sensitivity of LIGO in its third observing run (O3) and estimated sensitivities 

of LIGO A+, LIGO A♯ , Einstein Telescope (ET) (assuming that the six independent interferometers that 
form ET are all operating), and the 20 km and 40 km CE detectors. By reconfiguring several smaller 
optics, the 20 km detector could be operated either in a broadband mode (solid) or a kilohertz-focused 

mode (dotted). The 40 km facility limit is indicated with dashes. 

alone [237]. The test masses will be isolated from seismic disturbances with both passive and active 
systems scaled up from those in Advanced LIGO [238, 239], and equipped with improved sensors [15, 
240]. A dedicated seismometer array will be used to measure the local seismic field, enabling the 
subtraction of noise introduced via direct gravitational coupling of ground motion to the test mass 
(“Newtonian” or “gravity gradient” noise) [241, 242]. Finally, longer and heavier multiple pendulum 
suspensions will suppress environmental vibrations and the suspensions’ thermal noise. 

2.2. Technology 
The CE test masses will be significantly larger and heavier than in LIGO A+ (see Table 1) — reducing 
coating thermal noise through larger laser spot size and displacement noises through greater iner-
tia — requiring a focused development effort for manufacturing, polishing, and coating the larger 
optics. These larger optics will be suspended and seismically isolated to lower frequencies, requiring 
larger suspensions and seismic isolation platforms with an increased payload capacity. To reduce 
the quantum sensing noise, high circulating arm power (1.5 MW, a four-fold increase with respect to 
the maximum power achieved in current detectors) and high squeezing levels (10 dB, see Table 1) 
are required to meet CE sensitivity targets. Advancements in control strategies will be necessary to 
stably and reliably operate at such high power and squeezing levels — in particular, thermal and 
radiation pressure effects on the optics will have to be managed. Finally, with the longer arms comes 
a greater infrastructure cost. While the vacuum design is informed by the LIGO experience [1, 243], 
R&D is underway2 to reduce cost through value engineering. 
LIGO A♯ as a CE Pathfinder — Most of these CE technologies can be at least partially demonstrated 
within the limits imposed by the LIGO facilities. This idea grew into the envisioned LIGO A♯ 

2NSF Award PHY–2207475, Enabling Research for the Third Generation Gravitational Wave Detectors, PI: Lazzarini; 
Co-PI: Weiss. 
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Table 1: The main detector design pa-
rameters for A+, A♯ , and CE. Common 

A♯ to all are 1 µm laser wavelength, and Design parameter A+ CE 

fused silica test masses operated at Arm length 4 km 4 km 20 km, 40 km 
room temperature. “Test mass coat- Arm power 750 kW 1.5 MW 1.5 MW ings” refers to the thermal noise level Squeezing level 6 dB 10 dB 10 dB of the test masses; “A+” thermal noise 

Test mass mass 40 kg 100 kg 320 kg is a factor of 2 lower than (current) Ad-
vanced LIGO, and “A+/2” is another Test mass coatings A+ A+/2 A+ 

factor of 2 below that. The Newtonian Suspension length 1.6 m 1.6 m 4 m 
noise mitigation is given for Rayleigh Newtonian mitigation 0 dB 6 dB 20 dB 
waves, and includes both passive and 
active measures. 

upgrade [15, 16], which not only boosts the scientific output of the current LIGO facilities, but also 
acts as technology pathfinder for CE. Table 1 lists the key design parameters of LIGO A+, LIGO A♯ 

and CE, highlighting A♯ as a stepping stone towards CE. A full description of enabling technologies 
is present in the CEHS [1], and in the living document [244]. 

2.3. Facility Limits 
The CE facilities — that is, the L-shaped civil infrastructure, including large vacuum system and 
associated experimental chambers — will constitute a major investment and are expected to have 
a 50-year lifetime.3 With this in mind, they will be designed to be flexible enough to support 
advancements in detector technology during this period. Two potential near-term upgrades are 
alternative coating materials, such as crystalline GaAs/AlGaAs [245], that could provide much 
lower coating thermal noise (especially relevant for the 20 km detector), and a combination of 
higher laser power and lower optical losses with high-fidelity squeezed states to reduce the quantum 
noise. Longer-term upgrades might include cryogenics or alternate optical configurations [246, 247]. 
Figures 1 and 3 highlight the Facility Limit, i.e., the sum of infrastructure-specific noise sources 
that would be common to all future detectors utilizing the CE infrastructure, indicating that these 
facilities could support an additional factor of five improvement in sensitivity relative to Fig. 3. 

3. Impact of Network Configurations on Science Goals 
The scientific potential of CE is vast, and the science that can be anticipated is groundbreaking 
on many fronts (§1). Essential to fulfilling the majority of CE’s science objectives is the ability to 
localize sources in the sky, and to measure their properties, such as distances, redshifts and masses. 
If two or more GW observatories detect a compact binary, its sky location and orientation relative to 
the line of sight can be inferred from arrival time delays at different detectors, from signal strength 
consistency with the antenna patterns, and through observation of both GW polarizations. This 
significantly improves sky localizations and distance measurements, which in turn are needed to 
estimate the source-frame masses. This section summarizes the scientific potential of a range of 
global GW network configurations for which we have performed a dedicated trade-study that is 
intended to directly addresses the charge of the NSF MPSAC ngGW subcommittee [248]. 

3For comparison, the 1990s LIGO vacuum systems are expected to last beyond 2040 with continued maintenance. 
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Table 2: We consider four classes of networks con-
taining zero to three XG observatories. The HLA Num. Name Detectors in the network 
(Hanford–Livingston–Aundha) network represents XGs 

existing or under-construction LIGO observatories 0 HLA LHO, LLO, LAO 
that may operate at A♯ sensitivity in the XG era, 20LA CE A 20 km, LLO, LAO and sets a baseline for assessing CE’s return on 1 

40LA CE A 40 km, LLO, LAO investment. 40LA and 20LA represent a single CE 
observatory operating with an A♯ network. 4020A 20LET CE A 20 km, LLO, ET 
is the CE reference configuration, operating with an 2 40LET CE A 40 km, LLO, ET 
upgraded LIGO Aundha in India (LAO), while 40LET 4020A CE A 40 km, CE B 20 km, LAO and 20LET represent a single CE observatory oper-
ating with LLO at A♯ sensitivity and ET. 4020ET is 3 4020ET CE A 40 km, CE B 20 km, ET 
the reference CE configuration operating with ET. 

3.1. Gravitational-Wave Observatory Network Configurations 
The ngGW charge asks the subcommittee to consider Next Generation (XG) (at least 10× the 
sensitivity of LIGO A+) US observatories as part of an international network as well as potential 
upgrades to the current LIGO detectors (such as, A♯). Our models for each of these network nodes 
are described below and summarized in Table 2. We note that the critical feature of a future network 
is the number of GW detectors present. Their locations are of secondary importance [249]. 
Cosmic Explorer Observatories (CE A, CE B) — Since the locations of the CE observatories have 
yet to be determined, we selected two fiducial locations for CE; CE A off the coast of Washington 
state, and CE B off the coast of Texas. These locations are intentionally unphysical to avoid impacting 
our ability to find a home for CE (§4.3), but close enough to a wide range of potential sites to be 
representative from the point of view of GW science. The CE A location is considered in both the 
40 km and the 20 km lengths, while the CE B location hosts only a 20 km observatory. 
Existing LIGO Sites (LHO, LLO, LAO) — In order to focus on the science enabled by CE 
beyond what is possible in the current facilities, we model the LIGO detectors in an upgraded form 
(known as “A♯”, which has comparable sensitivity to the cryogenic “Voyager” configuration [15]) 
that approximately represents the limit to what is achievable in the LIGO facilities. Furthermore, 
in addition to the LIGO Hanford (LHO) and LIGO Livingston (LLO) detectors, we also consider 
LIGO Aundha (LAO) in the A♯ configuration, as it is expected be operational in the early 2030s. 
Einstein Telescope (ET) — ET is a planned XG GW observatory in Europe [250]. It is currently 
envisioned as an underground triangular facility with 10 km arm length, housing six interferometers. 
The targeted timeline calls for first observations by the mid-2030s. The underground location, which 
is strongly preferred in Europe, also suppresses the expected seismic disturbances, thereby reducing 
the Newtonian noise that limits ground-based GW facilities at low frequencies (cf. the difference 
between CE and ET below 8 Hz in Fig. 3). While we are encouraged by ET’s adoption into the 
European Strategy Forum on Research Infrastructure (ESFRI) road map, we present some network 
configurations that do not include ET to highlight the value of US investment even in the absence of 
our European collaborators. LIGO’s two US-based observatories with common management has 
proven to be a very successful model we wish to emulate. 
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Figure 4: Polar histograms (linear scale) showing how CE can accomplish the key science goals discussed in §1. 
Observatory networks are as in Table 2. Broadly, these histograms show that CE in its reference design, operating 
with at least one 4 km LIGO A♯ detector, will achieve the key science goals in §1, and that its scientific output would 
be further enhanced as part of an international network. Top Left: An XG network is critical to making high-fidelity 
observations (SNR > 100) of BH and NS populations, including primordial and Population III BBHs, while accurately 
measuring their masses, redshifts, and locations in the sky. Top Right: The HLA network cannot facilitate the 
electromagnetic follow-up of mergers at the highest redshifts accessible to the best telescopes while an XG network 
will routinely provide alerts to such mergers. XG observatories can make exquisite measurements of the radius of 
NSs and their tidal deformability, and detect post-merger signals from merger remnants. Bottom left: Precision tests 
of GR are enabled by extremely high-fidelity events (SNR > 1000), and also by combining data from thousands 
of lower-SNR events, producing root-sum-square SNR > 10 000 in the post-inspiral phase of BBHs. Additionally, 
thousands of BNS and BBH detections with accurate measurements of the distance and sky-localization facilitate 
precision cosmology and a few hundred strongly lensed events would provide fundamental probes of GWs and 
cosmography. Bottom right: The XG network has abundant discovery potential with the ability to measure the 
dark energy equation of state parameter 𝑤0 (and its variation with redshift [164]), observe weak and rare signals 
(e.g., pulsars), speculative sources (e.g., BNSs converted to BBHs due to accumulation of dark matter), primordial 
backgrounds and an opportunity to discover physics beyond the Standard Model (e.g. axion clouds). 
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3.2. Impact on Science Goals 
The relative performance of different detector networks was assessed with the Fisher matrix approach 
using the open-source gwbench software [53, 251]. Results reported here are broadly (within 20%) 
consistent with those found by other authors using the same approach [252–254]. In Fig. 4 we show 
the relative performance of networks with zero, one, two or three XG observatories (Table 2) with 
regard to the key science goals described in detail in §1. The various symbols that appear in that 
figure are as follows: 𝑁BNS, 𝑁BBH and 𝑁IMBH are the number of BNS, BBH, and IMBH mergers, 
respectively; Δ followed by a symbol refers to the 1σ uncertainty in the quantity that follows it found 
using the Fisher matrix approach (except the sky-position uncertainty ΔΩ, for which it is the 90% 
credible interval); Ω, 𝐷L and 𝑧 are the source’s angular position in the sky, luminosity distance 
and redshift, respectively; 𝑚1 is the mass of the primary companion of a binary; 𝑅NS and Λ̃ NS are 
the radius and dimensionless tidal deformability of a NS, respectively; ΩGW denotes the energy 
density in stochastic GW background relative to the closure density of the universe; and 𝑤0 is the 
dark energy equation of state parameter.4 

In all cases, we take a network of three A♯ detectors with no XG observatories as our baseline and 
show the improvements in various science outcomes obtained from networks containing one or more 
CE observatories. The addition of CE observatories to the global network provides a significant 
enhancement in their ability to achieve the science targets detailed in §1. At a minimum, we obtain 
a factor of ∼10 improvement in the various metrics and, in many cases, XG detectors facilitate 
observations that are simply not possible with the A♯ network, as shown in Figs. 2 and 4. 

A network of A♯ detectors with no XG observatory provides moderate gains over the A+ network, 
allowing, e.g., observation and localization of BNS mergers to redshift 𝑧 ≈ 0.3 and BBH mergers 
to 𝑧 ≈  2. A single XG observatory greatly extends the reach of the network, with BNS mergers 
observable to the star formation peak at 𝑧 ≈  2  and BBHs observable to 𝑧 ≳ 10, the epoch of the 
first stars in the universe (Fig. 1 and §1.1). This will vastly increase the rate of signals, as well as 
enable observations of nearby events with unprecedented fidelity. Consequently, for science goals 
which require the observation of new signals, such as continuous GWs from pulsars (§1.3), or of 
new features in signals, such as the BNS post-merger signal (§1.2), a single XG observatory is 

4The technical details of our study are summarized as follows, and will appear in a forthcoming report. We simulate 
a local population of BBHs with mass, spins and redshift distributions consistent with Ref. [44]. Pop III BBHs 
are assumed to have a fixed primary mass of 20 𝑀⊙, a mass ratio of 0.9, a spin distribution consistent with what 
was found in Ref. [44], and a redshift distribution given in Eq. (C15) of Ref. [51]. PBH binaries have masses drawn 
from the log-normal distribution of Ref. [5], zero spin, and the redshift distribution given by Eq. (5) of Ref. [5]. 
We use a merger rate for the local population that is consistent with Ref. [44], resulting in 96 000 sources per year. 
Following Ref. [5], we obtain 2400 and 600 Pop III and PBH mergers per year, respectively. For BNSs we assume a 
double Gaussian with median values from [255]; spins uniform in [−0.1, 0.1] and aligned with the orbital angular 
momentum; the APR4 nuclear EOS and the same redshift distribution as the local BBH population. This gives 1.2 
million BNSs per year. Neutron star – black hole binaries (NSBHs) have BH masses drawn from the powerlaw+peak 
distribution from Ref. [44], NS masses are uniform in the range [1, 2.2] 𝑀⊙; BH spins aligned with the orbit and 
drawn from a Gaussian centered at 0, with standard deviation of 0.2, NS spins aligned with the orbit and in the range [−0.1, 0.1] and the same redshift distribution as the local BBH population. We use a local NSBH merger rate of 45 Gpc−3 yr−1 [44], which gives 180 000 sources per year. Finally, we simulate a population of IMBHs with masses 
drawn from a power law with index −2.5 in the range [100, 1000] 𝑀⊙; spins uniform in the range [−0.9, 0.9] and 
redshifts distributed as the local BBH population. For detection of a compact binary signal we require a minimum 
SNR=5 in each observatory and a network SNR=10. For a post-merger signal, we require a minimum network SNR=5 
and we assume a kilohertz-focused mode for CE20 (pink-dashed line in Fig. 3). For pulsars we assume one year of 
observation and a quadrupole ellipticity of 10−9 [151], with spin frequencies taken from the ATNF catalog [256]. 
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transformational. A single CE20 in kilohertz-focused mode (Fig. 3) will observe one post-merger 
event every few years with a network SNR> 5. The expected observing time required to achieve 
these science goals is reduced by at least an order of magnitude with a single CE observatory 
complementing the A♯ network. Similarly, the number of BNS and BBH mergers observed at SNR > 100 will increase by an order of magnitude, enabling precision measurements of NS radii (§1.2) 
and comparisons between observations and GR predictions (§1.4). 

Several science goals require the accurate localization of binary sources (both in the sky and in 
distance/redshift) to infer their intrinsic masses. For example, a source at redshift 𝑧 = 10 observed in 
a single XG observatory would be essentially unlocalized in the sky, and have a distance uncertainty 
of ∼ 50%. This leads to an uncertainty of ±4 in redshift measurement and, due to the mass–redshift 
degeneracy in GW observations, a 40% uncertainty in the mass measurement, rendering a detailed 
study of the BBH population at high redshifts impossible. For events that lie beyond the A♯ horizon, 
accurate localization and mass/redshift measurements can only be achieved with a network of two 
or more XG observatories. A second XG observatory enables at least partial localization of large 
numbers of events and provides a substantial improvement in the GW measurement of the Hubble 
constant and other cosmological parameters (§1.5). A two XG network also enables precision 
localization of nearby BNS. A network of three XG detectors enables good localization of the 
majority of sources, with tens of thousands of BNS signals each year localized to better than 10 deg2 , 
thereby enabling multi-messenger follow-up observations (§1.2 and Fig. 4). A three XG network 
can also improve constraints on the binary inclination angle relative to the line of sight, and hence 
the luminosity distance measurement (§1.1 and §1.4). Multiple XG observatories also improve the 
confidence in detection of poorly modeled sources (§1.3), enable polarization measurements that are 
relevant for tests of GR (§1.4), and the inference of the presence of dark matter in NS cores or the 
detection of primordial stochastic backgrounds (§1.5). 

4. The Cosmic Explorer Project 
While the primary objective of CE is to answer deep scientific questions in fundamental physics, 
nuclear physics and astrophysics, an undertaking of this scale has impacts well outside of the 
scientific community. If CE is to be funded by US taxpayers, it must serve the needs of the nation in 
a broad sense, be cognizant of and responsive to potentially impacted communities, and be designed 
to maximize the return on taxpayer dollars. This section broadens the view of CE relative to the 
scientific and technical highlights presented in §1 and §2 with information about the CE Project, 
cost estimates and timeline (§§ 4.1 and 4.2), the process of finding potential homes for CE (§4.3), 
education and equity efforts (§4.4), and known project risks (§4.5). 

The CE Project was organized in 2021 following the completion of the CEHS [257, 258], and 
currently has over 40 members with a wide range of expertise. In addition, CE has international 
partners (Australia, Canada, Germany, UK) and a broad community of over 500 members in the CE 
Consortium. In Fall 2022, the Project organized the development of seven proposals to the National 
Science Foundation (NSF) to fund the first three years of the CE conceptual design, six of which 
have been recommended for funding. The Project also organized the writing of this white paper. 

4.1. Cost Estimates 
CE observatories are envisioned as largely above-ground, L-shaped facilities [1]. This choice is in 
line with currently-operating observatories, but different from KAGRA in Japan and the planned 
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Einstein Telescope (ET) in Europe. In the US context, where large relatively flat areas with low 
population densities can be found (§4.3), building above ground maximizes scientific return on 
investment by avoiding tunneling costs and the complexity of underground construction, installation 
and operation. 
Design and Construction costs — The initial cost estimate for the CE reference concept consisting 
of a 40 km observatory and a 20 km observatory is approximately $1.6B (2021 USD), as published 
in the CEHS. The CEHS also presents estimates for two 20 km observatories ($1.3B), a single 
40 km observatory ($1.0B) and a single 20 km observatory ($0.7B). These estimates are based on 
extrapolating actual costs from LIGO construction, the Advanced LIGO upgrade, and the work of 
professional civil engineering and metallurgy consultants. Cost drivers for a CE observatory are 
arm length, beamtube material and diameter, and location-dependent civil-engineering costs. Many 
of the costs associated with arm length are proportional to the length (e.g., the beamtube and its 
enclosure, the roads along the beamline, electrical utilities along the beamline, the slab supporting 
the beamtube), and largely location independent (within 10% of the national average). The cost of 
excavation and transportation is generally not proportional to the length of the facility, and highly 
dependent on topography and geology (e.g., depth to rock). Notably, the cost of the detectors is not 
a leading driver (estimated at ≈ 28% of the total; see [1] for a full breakdown of this cost estimate). 
Maintenance and Operations Costs — Again drawing from the CEHS, yearly maintenance and op-
erations costs for the CE reference concept (2 observatories) were estimated at $60M (2021 USD) [1]. 
This estimate is based on LIGO experience5 and includes the observatory facilities, vacuum systems, 
and detector hardware. It also includes management, community engagement, and the data analysis 
and curation required to make CE data available and accessible to the scientific community and the 
public. Notably, this estimate does not include university research or development efforts towards 
future CE upgrades, and it assumes a model in which much of the data analysis (beyond that needed 
to issue astronomical alerts) happens in the scientific community (and is separately funded). To 
respond directly to the ngGW subcommittee’s charge, we compute “maintenance and operations 
costs for the first ten years” as $670M in 2023 USD. If we assume 3% inflation for all future years 
and compute operation costs from 2035 to 2045, the total is $1.1B in then-year dollars. 

4.2. Timeline 
The timeline for CE spans multiple decades and takes place in distinct stages. The development 
stage for CE began in 2013 and culminated in the publication of the CEHS in 2021. The design and 
site-selection stage is expected to start this year (2023) and continue for 8 to 10 years. Expedient 
funding will allow CE construction in the early 2030s, and initial observations in the middle of the 
next decade. Figure 5 graphically summarizes this timeline. 

In parallel with these technical efforts, work on relationship building with local and Indigenous 
communities that are engaged with and/or impacted by CE, from local to global, will be of ever 
increasing importance. The CE project will partner with communities at potential observatory host 
locations to pave mutually beneficial pathways forward beginning with location identification (§4.3). 

4.3. Site Evaluation and Community Partnerships 
Construction on the scale of the CE is not only technically challenging, but requires attention to 
potential social, cultural, and economic impacts during all stages, from design to divestment. 

5LIGO’s yearly operating cost will be $50M in 2024 for two 4 km Observatories; this includes R&D for future upgrades, 
not foreseen for CE, and is not dependent on the specific detector design. 
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Figure 5: CE top-level timeline showing a phased approach to design and construction. Following the 

NSF Research Infrastructure Guide [259], the design stage has 3 major milestones: conceptual design 

review (CDR), preliminary design review (PDR, budget is final), final design review (FDR). The timeline 

shown here assumes an aggressive funding model, with construction in the early 2030s and operation in 

the mid-2030s. While the initial mandate is expected to be for 20–25 years, the facility may operate for 
50+ years [1]. The eventual divestment stage is not indicated. 

During the CE development stage, many physically promising locations in the US that could 
plausibly accommodate a 20 km or 40 km baseline observatory were algorithmically identified 
using publicly available topological and land use data. Several of these locations were followed up 
with additional publicly available data, such as land ownership, current and traditional Indigenous 
connection to land, proximity to cities and seismicity, as well as earthquake, flood and wind hazard. 
Fundamental physical requirements for a CE observatory include quiet ground motion and other 
favorable ambient environmental conditions, modest weather disturbances, minimal susceptibility 
to natural disasters, and low human-induced noise. Optimal locations would also have access to 
a number of strategic infrastructures — such as roads, rail, airports, and cities — to support all 
phases of the project, from construction (i.e., delivery of vacuum pipes and large equipment) to 
commissioning and operation. 

Following the successful example of the LIGO Livingston Observatory in Louisiana, CE presents 
an opportunity to broaden participation and build research competitiveness and STEM capacity in 
states that have traditionally been awarded less NSF support; a number of plausible locations are in 
EPSCoR jurisdictions [260]. Furthermore, cost estimates made for the CEHS indicate that excavation 
will not be the leading cost driver for locations with favorable geology and topography — meaning 
that there is some flexibility to choose locations that do not have the lowest excavation costs if they 
excel in other areas, such as social and environmental consideration [1]. 

Beyond the physical features of a location, decades of LIGO operations have also highlighted 
the importance of the social context of an observatory. CE has the unique opportunity to prudently 
reconceptualize community engagement and to respectfully work within the local and global socio-
cultural context. In today’s social and legal context (e.g., [9] and references therein), an investment 
in establishing robust and sustained relationships with local and Indigenous communities will be 
fundamental to the evaluation of each location’s potential for housing an observatory. 

In parallel with the design stage of CE, a deeper, broader, and more culturally aware study of 
potential locations in the US will be required. In anticipation of near-term funding, work has begun 
to assemble a team with diverse expertise in GW experiment and computation, astrophysics, geology, 
geography, and sociology. Through the CE Director of Community and Land Partnership [257], 
project leadership has initiated work with consultants in law and economics to develop an integrated, 
interdisciplinary approach to location evaluation that supports CE’s scientific goals while simulta-
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neously identifying areas of relevance to, and potential synergies with, Indigenous and other local 
communities. Identifying and evaluating the most promising locations for CE observatories will 
take place in concert with developing protocols and best practices for large-scale projects to be in 
partnership with local and Indigenous communities. This work will draw on expertise from tradi-
tional knowledge (as appropriate), physics, geology, Geographic Information Systems (GIS), and 
sociology to incorporate both quantifiable (e.g., topology and seismology) and go/no-go information 
(e.g., protected lands or historical lands) into the evaluations that identify initial locations of interest. 
Results from subsequent assessment steps will be used to refine the collection of viable locations 
toward a set of well characterized candidates in the late 2020s (§4.2). 

4.4. Broadening Participation and Cultivating a Thriving Community 
CE will be a tremendous investment in the US scientific workforce. The CE Project is committed to 
the equity advancing values emphasized in the NSF 2022–2026 Strategic Plan, including advancing 
the “missing millions” of underrepresented women and communities of color who diversify the 
US STEM workforce [261]. Building upon the NSF Strategic Plan’s vision and guidelines from the 
Astro2020 Panel on the State of the Profession and Societal Impacts [9], the CE Directors’ Office 
provides central leadership and integration into CE structure and culture through the Director of 
Equity, Diversity, and Inclusion (EDI) [257]. Coordination across CE Project institutions includes 
facilitating training with external experts, developing mentoring structures connected to recruiting, 
hiring, retention, and promotion for CE members and leadership, and development of the CE code 
of conduct and ombuds office. Project leadership also facilitates partnerships between institutional 
Research Experiences for Undergraduates (REU) and Bridge programs to bring research opportuni-
ties to undergraduate and graduate students. Opportunities within the CE Project already include the 
International REU program at University of Florida, programs at the Hispanic and Native American 
Pacific Islander-serving institution California State University, Fullerton, and research activities 
at Emerging Research Institutions Syracuse University and Texas Tech University. These efforts 
serve the need of the nation by contributing to the development of the STEM workforce, and directly 
address a Project risk associated with the multi-generational nature of CE (§4.5). 

The University of Washington Center for Evaluation and Research for STEM Equity (CERSE) 
[262] collaborates with CE leadership to design and execute project consulting, including collection 
and analysis of demographic data and advising on organizational development. The CE Project 
is connected to the broader community through the Gravitational Wave International Committee 
(GWIC) [263], the Multimessenger Diversity Network (MDN) [264], the Gravitational Wave Early 
Career Scientists (GWECS) [265], and the GW Allies [266] to facilitate the sharing of resources 
and best practices. CE community engagement encompasses contributions to STEM workforce 
development, connections to the broader astrophysics community, and to communities near potential 
CE host locations (§4.3). 

4.5. Risks and Mitigation Strategies 
A project of the scale and complexity of CE will have a number of risks at each phase of development. 
The Project will manage these with well-established practices, leveraging experience from LIGO 
and its upgrades. An initial assessment of risks and mitigations can be found in §11.4 of the CEHS. 
In general, the CE observatory has been conceived to minimize risk for the infrastructure by evolving 
from the successful LIGO design, and minimizing risk for the detector by planning on re-scaling the 
LIGO designs to the greater CE length (§2) with two observatories sharing common design and 
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management teams. The two observatory teams will profit from the same synergy seen in LIGO. 
With that basis, we discuss some leading risks below. 

A leading technical risk for both the 40 and 20 km instruments is in making the larger diameter 
optics to the required optical performance, although preliminary contacts with vendors indicate 
that CE optics should only require a modest investment in retooling. There are also technical 
risks associated with the interferometer control and stability associated with scaling-up to CE (e.g., 
frequency control bandwidth limits due to arm length, parametric instabilities in large mirrors, etc.). 
These are known challenges that will be properly addressed by research during the conceptual design 
phase of the project. 

Mitigation of management and non-technical risks is also important to CE success. In particular, 
site identification and preparation for CE will not only require that technically suitable locations be 
found, but also the development of enduring relationships with the local and Indigenous communities 
(§4.3). The significant duration of CE requires that the engaged scientific and engineering team be 
multi-generational; to ensure this, CE involves a range of teaching institutions distributed across the 
US, and the team will maintain a vigorous program of research involving students throughout the 
Project duration and into the observing epoch (§4.4). 

Lastly, there is the risk of missing significant added science that is enabled by other GW obser-
vatories (most notably ET; §3.1), or complementary photon and particle observatories (§1). We 
address these external risks by maintaining close relationships with these projects, communicating 
our plans and capabilities, and helping to demonstrate to funding agencies the synergistic potential 
of observing with CE as part of a global multi-messenger network. 

5. Outlook 
The CE Project is preparing for entry into the observatory design stage. The conceptual and 
preliminary design phases (the next 8–10 years) will see the development of detailed instrument, 
vacuum system and facility designs, as well as accurate cost and schedule estimates. CE’s order 
of magnitude sensitivity improvement over LIGO A+ relies on proven technology and decades of 
experience with the LIGO observatories. The CE detector will profit from the A♯ development, 
ensuring readiness with limited R&D and low risk. Site identification and evaluation will take place 
during the design phases, as will economic, environmental and socio-cultural impact studies. 

The CE concept (two observatories, one 40 km long and one 20 km long) was developed over 
the last decade, leveraging broad input from the scientific community [1, 11–14, CESL1–CESL19]. 
The CE project will continue to solicit and respond to the scientific community’s input, in part 
through the CE Consortium. Establishing partnerships with local and Indigenous communities will 
be crucial for the project’s success. 

Once operational, the cosmic reach and exquisite sensitivity of CE will revolutionize our under-
standing of the universe while continuing the United States’ leadership in gravitational-wave science. 
CE’s extraordinary scientific potential will open doors for discovery in the evolution of our Universe, 
its contents, and governing laws. Throughout its lifetime, CE will invest in a community-based 
model [267, 268] and broaden participation in cutting-edge scientific research to empower STEM 
workforce development for decades to come. If CE is robustly funded through the 2020s, CE’s first 
scientific observations could take place in the mid-2030s. At that time, and as part of an international 
next-generation multi-messenger network of observatories, CE will bring its generational advance 
in observational capacity to a multitude of fields in physics, astronomy, and cosmology. 
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Acronyms 
BBH binary black hole 4, 5, 8, 9, 14–16 
BH black hole 4–7, 9, 14, 15 
BNS binary neutron star 3, 6, 7, 9, 14–16 
CE Cosmic Explorer 4–20 
CEHS Cosmic Explorer Horizon Study 4, 10, 12, 16–19 
EOS equation of state 6–8, 15 
ET Einstein Telescope 11, 13, 17, 20 
FRB fast radio burst 6, 8 
GR General Relativity 8, 14, 16 
GRB gamma-ray burst 6 
GW gravitational wave 4, 6–10, 12–16, 18, 20 
GWIC Gravitational-Wave International Committee 4 
IMBH intermediate mass black hole binary 5, 15 
JWST James Webb Space Telescope 5 
LIGO Laser Interferometer Gravitational Wave Observatory 4, 5, 7, 10–14, 17–20 
MPSAC Mathematical and Physical Sciences Advisory Committee 12 
ngGW Next-Generation Gravitational-Wave Observatory 12, 13, 17 
ngVLA next generation Very Large Array 7 
NS neutron star 4, 6–10, 14–16 
NSBH neutron star – black hole binary 15 
NSF National Science Foundation 12, 16, 18, 19 
PBH primordial black hole 5, 10, 15 
SNR signal-to-noise ratio 3, 5–9, 14–16 
US United States 5, 10, 13, 16–20 
XG Next Generation 13–16 
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