NSF National Quantum Virtual Laboratory (NQVL)

NQVL Webinar: 8/4/2023

Bogdan Mihaila (MPS) for the NQVL Management Team – 8/4/2023

* NQVL Management Team, a subgroup of the NSF QISE WG:

• B	ogdan Mihaila	MPS
• P1	radeep Fulay	TIP
• D	ominique Dagenais	ENG
• A	lmadena Chtchelkanova	CISE
• E	ngin Serpersu	BIO
• V	inod Lohani	EDU

Email: <u>NQVL@nsf.gov</u>

Find Funding & Apply ~

Manage Your Award \vee

Award Y Focus Areas Y

as Y News &

News & Events 🗡

About ~

NSF National Quantum Virtual Laboratory (NQVL)

View guidelines

<u>23-604</u>

O <u>View image credit</u>

← Search for more funding opportunities

Print

+

(i) Important information for proposers

All proposals must be submitted in accordance with the requirements specified in this funding opportunity and in the NSF <u>Proposal & Award Policies & Procedures Guide (PAPPG</u>) that is in effect...

FY 2023 NSF Budget Request to Congress, Emerging Industries - 6

Ţ

FY 2023 Request funding for the new Directorate for Technology, Innovation, and Partnerships (TIP) [...] Investments made possible by the FY 2023 Request level include: [...]

• The Quantum Information Science and Engineering (QISE) National Virtual Laboratory (NVL) [...] will serve as a *national*, *community-driven* effort that supports the smooth *integration* and *translation* from fundamental science and engineering to *use-inspired* applications.

Building on the continued and sustained support of fundamental research from existing NSF programs, the NVL will draw together expertise and talent from a broad range of disciplines to enable the creation and application of *functional* quantum devices and systems.

Coordination will be provided through a virtual infrastructure that serves much like a laboratory to identify roles and resource needs and establish mechanisms to enable all members of the laboratory to communicate and function together as a whole. In this way, the NVL enables anyone to become engaged and contribute to advances in QISE.

NQVL activities will benefit the participation of the entire spectrum of diverse talent in STEM.

From basic science and basic engineering to the resultant technology

Support the smooth transition from basic science and engineering to technologies that will benefit the nation.

Leverage scientific endeavors supported through existing NSF programs.

From basic science and basic engineering to the resultant technology

- **Global Leadership**: Drive innovation at *scale* with *speed*
 - **TIP**: Translation, Innovation, Partnerships
 - **People**: The missing millions

NQVL Vision

Why?

Quantum Technologies that benefit the economy and national security of the United States are required to fulfill the NQI Act mission.

What?

- Quantum S&T Demonstration
 - ✓ use current state-of-the-art, build systems (gen0)
 - ✓ support users to develop use-cases
 - \checkmark co-design systems and technology platforms
 - \checkmark drive innovation to upgrade systems (next gen)

How?

- Support *basic* research and *use-inspired* research
- Seek synergies with intentionality
- Foster a dynamic equilibrium goal-oriented R&D (long term) & projects (finite duration)

Why NSF?

- Build systems for curiosity-driven research QISE as an *enabler* of scientific discovery
- Fundamental science & engineering QT is in the *precompetitive* phase: science-*first* approach

✤ NQVL: Guiding Principles

- Multidisciplinary: BIO, CISE, EDU, ENG, MPS, TIP; <u>Convergence</u>.
- **People**: <u>Community</u>-driven. <u>National</u> effort.
- Broadening Participation: Lower barriers at *all* entry points. Create a <u>User Community</u>.
- Clear/Targeted/Actionable:
 - Demonstrate <u>Quantum Advantage</u> for *practical* applications.

 \rightarrow accelerate the development of platforms and facilitate user access.

- Deliver Quantum Technology the same way we deliver a Project.
- NSF strengths in basic S&E: <u>Goal-oriented</u> basic S&E amplifies ongoing efforts.
- Uniqueness:
 - QISE as an enabler for scientific discovery.
 - US inter-agency and industry collaboration, cooperation, and coordination.
- Sustainability:
 - Research to transition to Core Programs when the integrated effort is completed.
 - Distributed model: no brick & mortar, people are distributed.

- Community Workshop Reports:
 - ✓ Accelerating Progress Towards Practical Quantum Advantage, a National Science Foundation Project Scoping Workshop (2022), <u>https://arxiv.org/abs/2210.14757</u>
 - Quantum Computer Systems for Scientific Discovery, PRX Quantum 2, 017001 (2021) <u>https://doi.org/10.1103/PRXQuantum.2.017001</u> arXiv:1912.07577v3 [quant-ph]
 - Development of Quantum InterConnects for Next-Generation Information Technologies, PRX Quantum 2, 017002 (2021) <u>https://doi.org/10.1103/PRXQuantum.2.017002</u> <u>arXiv:1912.06642v2 [quant-ph]</u>
 - Quantum Simulators: Architectures and Opportunities, PRX Quantum 2, 017003 (2021) <u>https://doi.org/10.1103/PRXQuantum.2.017003</u> arXiv:1912.06938v2 [quant-ph]

✤ NQVL:QSTD Solicitation <u>NSF 23-604</u> – Underpinnings:

- Division of Physics: Investigator-Initiated Research Projects (PHY), <u>NSF 21-593</u>
 - three-phase development process for mid-scale and long-term projects
- Gen-4 Engineering Research Centers (ERC): Convergent Research and Innovation through Inclusive Partnerships and Workforce Development, <u>NSF 22-580</u>
- <u>Convergence Accelerator Program</u> (TIP)
 - the two-phase Convergence Research Focus informed the NQVL Pilot/Design phases
- Guidelines for Planning and Managing the Major Research Equipment and Facilities Construction (MREFC) Account, <u>https://www.nsf.gov/bfa/docs/mrefcguidelines1206.pdf</u>
- Research Infrastructure Guide (RIG), December 2021, <u>NSF 21-107</u>

NQVL Components:

- ✓ NQVL:QSTD Quantum Science and Technology Demonstration projects. These projects will make up the scientific and engineering core of the activities that combine to form a federated NQVL infrastructure. QSTDs are expected to pass through three phases: *Pilot, Design*, and *Implementation*. Given the project nature of the NQVL:QSTD activity it is expected that the participants will proceed through *all* three project development phases.
- NQVL:TAQS Provide resources to support research and development of enabling technologies identified by the NQVL:QSTD projects as they *mature* through the various phases.
- NQVL:Central NQVL Planning and Coordination. NSF anticipates support for one NQVL Central Hub that will perform three distinct functions: i) promote collaboration and networking between the NQVL project teams; ii) promote engagement with the broad QISE community, partnerships with others and outreach activities to the general public; and iii) facilitate community oversight and the development of success metrics and benchmarks.

The first function will enable the identification and potential exchange of component parts among the teams, especially in the Implementation phase. The other two functions recognize the need for greater accountability to the wider QISE community and to the public.

Quantum Science and Technology Demonstration (QSTD) Project Timeline

* Contingent on availability of funds and quality of proposals

✤ Next-Generation Enabling Technology Development

<u>Pilot</u>	<u>Design</u>	Implementation	
\$1M	\$2M/year	\$7M/year	
12 months	1-2 years	5 years (Final Design: 2yrs,	Operations: 3yrs) – Renewable once
Select: 10 [*] projects	* Down select	* Down select	
Starts *: FY24,FY25	Starts *: FY25,FY26,FY27	Starts *: FY26,FY27,FY28	
• Conceptual design	• Preliminary design	o Final design	 Integration Testing Commissioning Operations User Support

Next-Generation Enabling Technology Development

* Note: The number of awards will depend on the availability of funds and the quality of the proposals.

- 1. **PILOT**: Budget: \$1M Duration: 12 months
 - Develop conceptual design
 - Define requirements and prioritize research objectives
 - Identify enabling technologies and risks
 - Identify critical partnerships and dependencies
 - Develop top-down cost and contingency estimates
 - Develop *initial* risk assessment
 - Develop the *initial* Project Execution Plan
 - Develop *initial* Workforce Development Plan
 - 9 months SV review, Go-No-Go decision

2. **DESIGN**: Budget: \$2M/year – Duration: 1–2 years

- Develop preliminary design
- Develop enabling technology
- Update risk analysis, develop risk mitigation strategies
- Develop bottoms-up cost and contingency estimates
- Develop *preliminary* operations cost
- Develop Project Management Control System
- Develop *preliminary* Project Execution Plan
- Develop *preliminary* Workforce Development Plan
- Identify key staff
- 9 months & 18 months SV review, Go-No-Go decision

3. **IMPLEMENTATION**: Budget: \$7M/year

– Duration: 5 years, Renewable once

- A. Final Design Stage: Duration: 2 years
 - Develop *final* design
 - Harden key technologies
 - Refine bottoms-up cost and contingency estimates
 - Finalize risk assessment and mitigation plan
 - Finalize Project Management plan
 - Develop Project Execution Plan (PEP)
 - Finalize Workforce Development Plan (WDP)
 - Complete recruitment of key staff
 - Monthly meetings w/ NSF
 - Intermediate Monthly Reports
 - 9 months & 18 months reviews, Go-No-Go decision
- B. Operations Stage
 - Monthly meetings w/ NSF
 - Intermediate Quarterly Reports
 - Annual SV Panel review

✤ NQVL Solicitation <u>NSF 23-604</u> – Underpinnings:

- Division of Physics: Investigator-Initiated Research Projects (PHY), <u>NSF 21-593</u>
 - three-phase development process for mid-scale and long-term projects
- Gen-4 Engineering Research Centers (ERC): Convergent Research and Innovation through Inclusive Partnerships and Workforce Development, <u>NSF 22-580</u>
- <u>Convergence Accelerator Program</u> (TIP)
 - the two-phase Convergence Research Focus informed the NQVL Pilot/Design phases
- Guidelines for Planning and Managing the Major Research Equipment and Facilities Construction (MREFC) Account, <u>https://www.nsf.gov/bfa/docs/mrefcguidelines1206.pdf</u>
- Research Infrastructure Guide (RIG), December 2021, <u>NSF 21-107</u>

	Conceptual Design Stage	Readiness Stage	Board Approved Stage	Construction
udget evolution	Concept development – Expend approximately 1/3 of total pre-construction planning budget Develop construction budget based on conceptual design Estimate ops \$	Prelim design over ~1-2 years. Expend approx 1/3 of total pre- construction planning budget Construction estimate based on prelim design Update ops \$ estimate	Final design over ~1 year. Approx 1/3 of total pre- construction planning budget Construction ready budget & contingency estimates	Expenditure of budget and contingency per baseline Refine ops budget
Ω	Fu		MREFC \$	
Project evolution	Conceptual designFormulation of science questionsRequirements definition, prioritization, and reviewIdentify critical enabling technologies and high risk itemsDevelopment of conceptual designTop down parametric cost and contingency estimatesFormulate initial risk assessment Initial proposal submission to NSF Initial draft of Project Execution Plan	Preliminary Design Develop site-specific preliminary design, environmental impacts Develop enabling technology Bottoms-up cost and contingency estimates, updated risk analysis Develop preliminary operations cost estimate Develop Project Management Control System Update of Project Execution Plan	Final Design Development of final construction- ready design and Project Execution Plan Industrialize key technologies Refine bottoms-up cost and contingency estimates Finalize Risk Assessment and Mitigation, and Management Plan Complete recruitment of key staff efined in Project Development Plan	Construction per baseline
Oversight evolution	Merit re view, apply 1 st and 2 nd ranking criteria Forward estimates of Preliminary Design costs and schedules Establishment of interim review schedules and competition milestones Forecast international and interagency participation and constraints Initial consideration of NSF risks and opportunities Conceptual design review	NSF Director approves Internal Mana Management Plan Management Plan Formulate/approve Project Development Plan & budget; include in NSF Facilities Plan Preliminary design review and integrated baseline review Evaluate ops \$ projections Evaluate forward design costs and schedules Forecast interagency/international decision milestones NSF approves submission to NSB	Apply 3 rd ranking criteria Apply 3 rd ranking criteria NSB prioritization OMB/Congress budget negotiations based on Prelim design budget Semi-annual reassessment of baseline and projected ops budget for projects not started construction Finalization of interagency and international requirements	e Final design review, fix baseline Congress appropriates MREFC funds & NSB approves obligation Periodic external review during construction Review of project reporting Site visit and assessment

Figure 1: Summary of the pre-construction planning and development process for candidate MREFC projects.

Guidelines for Planning and Managing the Major Research Equipment and Facilities Construction (MREFC) Account

Figure 1: Summary of the pre-construction planning and development process for candidate MREFC projects.

		Conceptual D	esign Stage	Readiness Stage	Board Approved Stage	Constru	iction	
	et evolution	Concept development – E 1/3 of total pre-constructio Develop construction budy conceptual design Estimate ops \$	xpend approximately on planning budget get based on	Prelim design over ~1-2 years. Expend approx 1/3 of total pre- construction planning budget Construction estimate based on prelim design	Final design over ~1 year. Approx 1/3 of total pre- construction planning budget Construction ready budget & contingency estimates	Expenditure of b contingency per Refine ops budg	oudget and · baseline get	
		Fu	nded by Ra	&RA or EHR \$			MRE	FC \$
Conceptual design		Preliminary Design		Final Design				
Conceptual design Formulation of science questions Requirements definition, prioritization, and review Identify critical enabling technologies and high risk items Development of conceptual design Top down parametric cost and contingency estimates Formulate initial risk assessment Initial proposal submission to NSE		 Develop site-specific preliminary design, environmental impacts Develop enabling technology Bottoms-up cost and contingency estimates, updated risk analysis Develop preliminary operations cost estimate Develop Project Management Control System Update of Project Execution Plan 		Development of final construction- ready design and Project Execution Plan Industrialize key technologies Refine bottoms-up cost and contingency estimates Finalize Risk Assessment and Mitigation, and Management Plan Complete recruitment of key staff		<u>Construction per</u> <u>baseline</u>		
Initial draft of Project Execution Plan		Propo	Proponents development strategy defined in Project Development Plan		lan	Described by	Project Execution Plan	
	Overs	participation and constrair Initial consideration of NS opportunities Conceptual design review	nts Frisks and	Evaluate ops \$ projections Evaluate forward design costs and schedules Forecast interagency/international decision milestones NSF approves submission to NSB	budget for projects not started construction Finalization of interagency and international requirements	Review of proj Site visit and a ss solution Site visit and a	ject reporting æssessment	

Guidelines for Planning and Managing the Major Research Equipment and Facilities Construction (MREFC) Account

Budg

Project evolution

TECHNOLOGY READINESS LEVEL (TRL)

	9	ACTUAL SYSTEM PROVEN IN OPERATIONAL ENVIRONMENT
	8	SYSTEM COMPLETE AND QUALIFIED
UET I	7	SYSTEM PROTOTYPE DEMONSTRATION IN OPERATIONAL ENVIRONMENT
EN	6	TECHNOLOGY DEMONSTRATED IN RELEVANT ENVIRONMENT
	5	TECHNOLOGY VALIDATED IN RELEVANT ENVIRONMENT
DEVE	4	TECHNOLOGY VALIDATED IN LAB
5	3	EXPERIMENTAL PROOF OF CONCEPT
DEAR	2	TECHNOLOGY CONCEPT FORMULATED
KE	1	BASIC PRINCIPLES OBSERVED

Originally developed by NASA in the 1970s for space exploration technologies, TRLs measure the maturity level of a technology throughout its research, development, and deployment phase progression.

TRLs are based on a scale from 1 to 9, with 9 being the most mature technology.

https://www.twi-global.com/technical-knowledge/faqs/technology-readiness-levels

NSE National Quantum Virtual Laboratory (NQVL) Ouantum Science and Technology Demonstrations (Demonstrations) National Quantum Science and Technology Demonstrations (QSTD): I. Pilot Phase

+

Important information for proposers 0

All proposals must be submitted in accordance with the requirements specified in this funding opportunity and in the NSF Proposal & Award Policies & Procedures Guide (PAPPG) that is in effect...

• QSTD: Pilot Phase: General Comments

- PIs are reminded that the goal of the NQVL program is to accelerate progress towards demonstrations of *practical* quantum advantage, using a *convergent*, *systems engineering*, and *co-design* approach.
- The Program is committed to support *use-inspired* scientific research and technology development for the benefit of the national economy and to strengthen the Nation's strategic, scientific, and technological preeminence.
- It is *required* that prospective PIs contact the NQVL Program Officer(s) as soon as possible, but not later than two weeks before submitting a proposal in response to this solicitation, to ascertain that the focus and budget of their proposal is appropriate for this solicitation.
- ✤ The following language applies to the review of *all* phases of *all* QSTD projects:
 - Scientific Review
 - Technical and Project Management Review
 - Workforce Development Plan Review

QSTD: Pilot Phase: Proposal

- What: QSTD vision describing the specific Science and/or Technology area that is focus of the translation to be supported under the NQVL program and who might be the potential users.
- Why: Scientific and Technology challenges that can be addressed effectively only by a QSTD project.
- How: Plan of activities to address technical challenges.
- Who: Team with the organizational, scientific, technical, and sociocultural skills, trusted by the QISE community.
- **Readiness: Evidence that the QSTD project is feasible** in the time and with the resources afforded by NSF.
- **Community**: Plans for engaging the QISE community in the QSTD planning and execution and for fostering workforce development and promoting broadening participation.
- Partnerships: Dependencies. Synergies. Leverage other NQI-relevant investments by NSF or other U.S. Federal agencies. Public-private partnerships.
- Management and Coordination: Roles and responsibilities of all senior personnel. Deliverables. Timeline. Milestones.
- Outcomes.
- Metrics of Success.

✤ QSTD: Pilot Phase: Proposal (cont.)

- The QSTD Pilot proposal must include the *draft* <u>conceptual design</u> of the QSTD project, contingency, and the planning for the total anticipated number of system integration and development cycles in the QSTD project, including possible operations, as appropriate.
- A QSTD Pilot proposal must include a **full statement of the science and technology goals**, and **sufficient technical detail to appropriately review the proposal**.
- The NQVL program will review the scientific merit on a competitive basis that includes the potential cost to the program of conducting the QSTD development that would be enabled by the instrumentation.
- The affordability of system *fabrication/integration* should be supported by parametric top-down budget estimates to provide a cost range.
- NSF strongly suggests that the Pilot teams secure the services of a professional Project Manager.

✤ QSTD: Pilot Phase: Additional Review Criteria

- The NSF proposal review process will review the scientific merit on a competitive basis that includes:
 - ✓ technical readiness of the proposed QSTD project;
 - ✓ potential cost of the proposed QSTD project; *and*
 - ✓ expected QSTD impacts vis-à-vis the goals of the NQVL Program.

QSTD: Pilot Phase: Community-Building

- Each QSTD team will convene a QISE community town hall meeting seeking community input, foster an open scientific dialogue, collect baseline data to aid in the development of a diverse workforce development plan, and ensure the broad participation of the entire QISE community.
- The outcome of this activity, in addition to addressing the specific requirements, will be a QISE Strategic Plan for addressing the topic of the QSTD Pilot.
- The QISE Strategic Plans are living documents that will be updated as needed.
- It is expected that the plans to accomplish the proposed scope of work, the methods involved, and the Pilot team may evolve over the course of the various phases.

✤ QSTD: Pilot Phase: Oversight

• Nine (9) months into the project, NSF will conduct a panel review of each Pilot project.

The purpose of the review would be to assess the progress made by the team, provide feedback, and evaluate the *readiness* of the team to advance to the Design phase of the QSTD development.

As the QSTD Pilot teams are expected to collaborate, coordinate, and cooperate with each other. Synergies are strongly encouraged.

QSTD Pilot teams may also choose to consolidate prior to submitting a QSTD Design proposal to advance to the Design phase.

QSTD: Pilot Phase: Proposal Submission

PROGRAM SOLICITATION NSF 23-604

Letter of Intent Due Date(s) (required) (due by 5 p.m. submitter's local time):

October 06, 2023

April 09, 2024

Full Proposal Deadline(s) (due by 5 p.m. submitter's local time):

November 30, 2023

June 11, 2024

IMPORTANT INFORMATION AND REVISION NOTES

Any proposal submitted in response to this solicitation should be submitted in accordance with the *NSF Proposal & Award Policies & Procedures Guide* (PAPPG) that is in effect for the relevant due date to which the proposal is being submitted. The NSF PAPPG is regularly revised and it is the responsibility of the proposer to ensure that the proposal meets the requirements specified in this solicitation and the applicable version of the PAPPG. Submitting a proposal prior to a specified deadline does not negate this requirement.

✤ QSTD: Pilot Phase: Proposal Submission (cont.)

Additional Information for all NQVL Proposals

Although more than one organization may participate in a QSTD proposal, a single organization must accept overall management responsibility for the project. The proposal must be submitted by one organization, with funding provided to any other organization through subawards. The use of the collaborative proposal mechanism is not permitted for QSTD proposals. Subawards are not limited to IHE institutions but may be made to any group identified as eligible for funding by NSF as described in the NSF Proposal and Award Policies and Procedures Guide (PAPPG).

Letters of Support/Endorsement are not permitted.

Letters of Collaboration

Letters of collaboration are limited to stating the intent to collaborate. Endorsements or evaluations of the proposed project are not allowed. The Project Description should document the need for and nature of collaborations, such as intellectual contributions to the project, permission to access a site, an instrument, or a facility, offer of samples and materials for research, logistical support to the research and education program, or mentoring of U.S. students at a foreign site. Letters of collaboration should be included only when the involvement of the external collaborator is critical for the success of the proposed research. Letters of collaboration must follow the following format and be included in the Other Supplementary Documents section of the proposal:

"If the proposal submitted by Dr. [insert the full name of the Principal Investigator] entitled [insert the proposal title] is selected for funding by the NSF, it is our intent to collaborate and/or commit resources as detailed in the Project Description.

Specifically, our contributions to the project would include:

[followed by a succinct list]."

✤ QSTD: Pilot Phase: Eligibility Information

Who May Submit Proposals:

Proposals may only be submitted by the following:

- Institutions of Higher Education (IHEs) Two- and four-year IHEs (including community colleges) accredited in, and having a campus located in the US, acting on behalf of their faculty members. Special Instructions for International Branch
- Non-profit, non-academic organizations: Independent museums, observatories, research laboratories, professional societies and similar organizations located in the U.S. that are directly associated with educational or research activities.

Who May Serve as PI:

The PI must be a faculty member at the Lead Organization or permanent staff person from a non-profit, non-academic organization with authority to act on behalf of the organization. Co-PIs listed on the Cover Sheet may be from organizations other than the Lead Organization.

Limit on Number of Proposals per Organization: 1

Up to **one** (1) QSTD Pilot proposal may be submitted per Lead Organization.

Limit on Number of Proposals per PI or co-PI: 1

An individual may serve as PI or co-PI on no more than **one** (1) QSTD Pilot proposal.

Announcement:

Tentative: Second NQVL Webinar, 1:00pm EDT on Friday, September 8, 2023 – check NQVL program web page.

Email: <u>NQVL@nsf.gov</u>

NQVL Webinar: Questions?

