text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
Search Multimedia
Image
Video
Audio
More
Multimedia in the News
NSF Executive Staff
News Archive
 

Email this pagePrint this page
The search for new classes of multifunctional materials involves many questions.


illustration showing multifunctional materials

In the search for new classes of multifunctional materials, ferroelectrics, in which the spontaneous electrical polarization couples strongly to other structural, magnetic, orbital and electronic degrees of freedom, is a challenge being actively pursued as a means to achieve electric field-controllable emergent phenomena such as ferromagnetism.

Although perovskites are often what comes to mind when discussing oxide ferroelectricity, the overwhelming majority of oxide perovskite--particularly those which have active electronic, magnetic and orbital microscopic degrees of freedom--adopt highly distorted, non-polar, ground state structures in which the BO6 octahedra are rotated about one or more of the crystal axes. Octahedral rotations, which significantly change the transition metal-oxygen-transition metal bond angle, are well known to control the emergent properties of a given complex oxide material.

A fascinating question that is only recently been considered in earnest concerns how to directly control these octahedral rotations with an external electric field. Our approach to this challenge is to ask the question, "how can octahedral rotations induce a spontaneous polarization, (i.e., ferroelectricity)?" By themselves, octahedral rotations cannot, but recent work by researchers has demonstrated that they can induce ferroelectricity in combination with certain cation ordering and/or hetero-structuring.

Credit: Created by Professor Nicole A. Benedek, UT-Austin; used with permission by The Journal of Physical Chemistry

General Restrictions:
Images and other media in the Multimedia in the News section of the NSF Multimedia Gallery are for use by the news media only. All other users must obtain permission from the image owner, listed in the credit above, before using the visual material.

Images credited to the National Science Foundation, a federal agency, are in the public domain. The images were created by employees of the United States Government as part of their official duties or prepared by contractors as "works for hire" for NSF. You may freely use NSF-credited images and, at your discretion, credit NSF with a "Courtesy: National Science Foundation" notation. Additional information about general usage can be found in Conditions.

Also Available:
Download the high-resolution PNG version of the image. (641.3 KB)

Use your mouse to right-click (Mac users may need to Ctrl-click) the link above and choose the option that will save the file or target to your computer.

Related story: First principles approach to creating new materials

 



Email this pagePrint this page
Back to Top of page