Email Print Share

News Release 06-049

Supercomputer Maps One Million Atoms of a Complete Virus in First Simulation of a Life Form

Virtual virus takes 100 days on supercomputer, 35 years on a desktop

Researchers completed the first all-atom simulation of satellite tobacco mosaic virus.

Researchers completed the first all-atom simulation of satellite tobacco mosaic virus.

March 23, 2006

This material is available primarily for archival purposes. Telephone numbers or other contact information may be out of date; please see current contact information at media contacts.

For the first time, researchers have visualized the changing atomic structure of a virus by calculating how each of the virus' one million atoms interacted with each other every femtosecond--or one-millionth-of-a-billionth of a second. A better understanding of viral structures and mechanisms may one day allow researchers to design improved strategies to combat viral infections in plants, animals and even humans.

Led by Klaus Schulten at the University of Illinois at Urbana-Champaign, the team tapped the high-performance power of the National Center for Supercomputing Applications (NCSA) processors to accomplish the task. Still, it took about 100 days to generate just 50 nanoseconds of virus activity. Schulten says it would have taken the average desktop computer 35 years to come up with the results.

The simulation revealed key physical properties of satellite tobacco mosaic virus, a very simple, plant-infecting virus. Ultimately, scientists will generate longer simulations from bigger biological entities, but to do so, they need the next generation of supercomputers, the so-called "petascale high-performance computing systems." The National Science Foundation (NSF) is currently devising a national strategy for petascale computing to give scientists and engineers the resources needed to tackle their most computationally intensive research problems.

NSF supported the work through funding to the NCSA and through a graduate research fellowship to study first-author Peter Freddolino. The National Institutes of Health also provided support for the study, which was published in the March issue of Structure.

For more information see the news releases at:

The University of Illinois at Urbana-Champaign

National Center for Supercomputing Applications



Media Contacts
Richard (Randy) Vines, NSF, (703) 292-7963, email:

Program Contacts
Stephen Meacham, NSF, (703) 292-8970, email:

Principal Investigators
Klaus Schulten, University of Illinois at Urbana-Champaign, (217) 244-1604, email:

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2019, its budget is $8.1 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives more than 50,000 competitive proposals for funding and makes about 12,000 new funding awards.

mail icon Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page:
NSF News:
For the News Media:
Science and Engineering Statistics:
Awards Searches: