text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Biological Sciences (BIO)
Biological Sciences (BIO)
design element
BIO Home
About BIO
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Advisory Committee
Career Opportunities
BIO Program Director and Reviewer Opportunities
Supplements & Other Opportunities
See Additional BIO Resources
View BIO Staff
BIO Organizations
Biological Infrastructure (DBI)
Environmental Biology (DEB)
Emerging Frontiers (EF)
Integrative Organismal Systems (IOS)
Molecular and Cellular Biosciences (MCB)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Additional BIO Resources
The BRAIN Initiative
FY 2015 BIO Budget Excerpts
BIO's Guidance on Data Management Plans
Dear Colleague Letters: BIO and Foundation-wide
List of BIO Cyberinfrastructure Reports
National Ecological Observatory Network (NEON)
Partnership for Undergraduate Life Science Education (PULSE)
Supplements & Other Opportunities
Science Across Virtual Institutes (SAVI)
Broadening Participation Activities
NSF's Career-Life Balance Initiative
Interdisciplinary Research
BIO Reports
NSF Strategic Plan: 2011-2016
NSF Information Related to the American Recovery and Reinvestment Act of 2009
Merit Review (effective Jan. 14, 2013)
Image Credits
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page


Press Release 13-036
How to Thrive in Battery Acid and Among Toxic Metals

Genome of "extremophile" red alga offers insights

Green and yellow rock in an Icelandic hot spring with sulfur and alga Galdieria sulphuraria.

Rock in an Icelandic hot spring near Reykjavik with sulfur and Galdieria sulphuraria.
Credit and Larger Version

March 7, 2013

In the movie Alien, the title character is an extraterrestrial creature that can survive brutal heat and resist the effects of toxins.

In real life, organisms with similar traits exist, such as the "extremophile" red alga Galdieria sulphuraria.

In hot springs in Yellowstone National Park, Galdieria uses energy from the sun to produce sugars through photosynthesis.

In the darkness of old mineshafts in drainage as caustic as battery acid, it feeds on bacteria and survives high concentrations of arsenic and heavy metals.

How has a one-celled alga acquired such flexibility and resilience?

To answer this question, an international research team led by Gerald Schoenknecht of Oklahoma State University and Andreas Weber and Martin Lercher of Heinrich-Heine-Universitat (Heinrich-Heine University) in Dusseldorf, Germany, decoded genetic information in Galdieria.

They are three of 18 co-authors of a paper on the findings published in this week's issue of the journal Science.

The scientists made an unexpected discovery: Galdieria's genome shows clear signs of borrowing genes from its neighbors.

Many genes that contribute to Galdieria's adaptations were not inherited from its ancestor red algae, but were acquired from bacteria or archaebacteria.

This "horizontal gene transfer" is typical for the evolution of bacteria, researchers say.

However, Galdieria is the first known organism with a nucleus (called a eukaryote) that has adapted to extreme environments based on horizontal gene transfer.

"The age of comparative genome sequencing began only slightly more than a decade ago, and revealed a new mechanism of evolution--horizontal gene transfer--that would not have been discovered any other way," says Matt Kane, program director in the National Science Foundation's (NSF) Division of Environmental Biology, which funded the research.

"This finding extends our understanding of the role that this mechanism plays in evolution to eukaryotic microorganisms."

Galdieria's heat tolerance seems to come from genes that exist in hundreds of copies in its genome, all descending from a single gene the alga copied millions of years ago from an archaebacterium.

"The results give us new insights into evolution," Schoenknecht says. "Before this, there was not much indication that eukaryotes acquire genes from bacteria."

The alga owes its ability to survive the toxic effects of such elements as mercury and arsenic to transport proteins and enzymes that originated in genes it swiped from bacteria.

It also copied genes offering tolerance to high salt concentrations, and an ability to make use of a wide variety of food sources. The genes were copied from bacteria that live in the same extreme environment as Galdieria.

"Why reinvent the wheel if you can copy it from your neighbor?" asks Lercher.

"It's usually assumed that organisms with a nucleus cannot copy genes from different species--that's why eukaryotes depend on sex to recombine their genomes.

"How has Galdieria managed to overcome this limitation? It's an exciting question."

What Galdieria did is "a dream come true for biotechnology," says Weber.

"Galdieria has acquired genes with interesting properties from different organisms, integrated them into a functional network and developed unique properties and adaptations."

In the future, genetic engineering may allow other algae to make use of the proteins that offer stress tolerance to Galdieria.

Such a development would be relevant to biofuel production, says Schoenknecht, as oil-producing algae don't yet have the ability to withstand the same extreme conditions as Galdieria.

-NSF-

Media Contacts
Cheryl Dybas, NSF, (703) 292-7734, cdybas@nsf.gov

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

volcanic mountaneous area near Reykjavik, Iceland, with steam rising
A volcanic area near Reykjavik, Iceland, where Galdieria sulphuraria has been found.
Credit and Larger Version

Yellow sulfur deposits and green Galdieria alga on a rock
Yellow sulfur deposits and Galdieria on a rock near Reykjavik.
Credit and Larger Version

Green alga Galdieria on rocks near a steamy Yellowstone hot spring.
"Extremophile" Galdieria grows on rocks and soil near a Yellowstone hot spring.
Credit and Larger Version

Microscope image of alga Galdieria sulphuraria.
Microscope image of Galdieria sulphuraria.
Credit and Larger Version

cover of Science magazine
The researchers' results are described in the March 8 issue of the journal Science.
Credit and Larger Version



Email this pagePrint this page
Back to Top of page