text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Biological Sciences (BIO)
Biological Sciences (BIO)
design element
BIO Home
About BIO
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Advisory Committee
Career Opportunities
BIO Program Director and Reviewer Opportunities
Supplements & Other Opportunities
See Additional BIO Resources
View BIO Staff
BIO Organizations
Biological Infrastructure (DBI)
Environmental Biology (DEB)
Emerging Frontiers (EF)
Integrative Organismal Systems (IOS)
Molecular and Cellular Biosciences (MCB)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Additional BIO Resources
The BRAIN Initiative
FY 2015 BIO Budget Excerpts
BIO's Guidance on Data Management Plans
Dear Colleague Letters: BIO and Foundation-wide
List of BIO Cyberinfrastructure Reports
National Ecological Observatory Network (NEON)
Partnership for Undergraduate Life Science Education (PULSE)
Supplements & Other Opportunities
Science Across Virtual Institutes (SAVI)
Broadening Participation Activities
NSF's Career-Life Balance Initiative
Interdisciplinary Research
BIO Reports
NSF Strategic Plan: 2011-2016
NSF Information Related to the American Recovery and Reinvestment Act of 2009
Merit Review (effective Jan. 14, 2013)
Image Credits
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page


Press Release 13-093
Understanding Biodiversity Patterns in Nature: It Takes Two Fields--Ecology and Evolutionary Biology

Study of salamanders in ponds demonstrates 'invisible finger of evolution'

Spotted salamander on a leaf

Spotted salamander: along with the marbled salamander, key to patterns of biodiversity.
Credit and Larger Version

May 28, 2013

What do marbled and spotted salamanders in ponds in eastern North America have to teach us about biodiversity patterns elsewhere on Earth?

Plenty, if research conducted by biologist Mark Urban of the University of Connecticut is any guide.

In a paper published today in the journal Proceedings of the Royal Society B, Urban reports results that may fundamentally change how scientists view the importance of evolution in ecological research.

"This project looked closely at the separate and interactive contributions of genetic and environmental factors in shaping pond food webs," says Alan Tessier, program director in the National Science Foundation (NSF)'s Division of Environmental Biology, which funded the research.

"The results add to a growing understanding of the importance of genetic variation within species, and of eco-evolutionary processes in explaining patterns of biodiversity."

The findings show that the evolutionary divergence of populations is as important as biodiversity patterns based on ecological features, such as the presence of a top predator.

In this study, the subjects were the marbled salamander, an apex, or, top predator, in temporary ponds; the spotted salamander; and their shared zooplankton prey.

The marbled salamander breeds in the autumn. Its larvae grow under the ice of ephemeral ponds during winter.

As a result, marbled salamander larvae eat zooplankton all winter--and grow large enough to eat the spotted salamander larvae that hatch in these same ponds in late spring.

But Urban discovered that spotted salamanders sharing space with marbled salamanders have evolved so that they're born with voracious appetites.

Their increased foraging makes sense, he says, given that these salamanders live in ponds largely depleted of zooplankton prey, due to the presence of marbled salamanders.

The smaller salamanders need to grow quickly to reach a size at which marbled salamanders can't easily capture them.

"The evidence suggests that the repeated evolution of high foraging rates in spotted salamanders is an adaptive response to marbled salamander predation," says Urban.

Knowing how apex predators such as marbled salamanders structure biological communities, he says, requires that scientists understand their direct ecological effects as predators, and their indirect effects via the natural selection they impose.

"Finding that adaptive evolution may disguise strong ecological effects means that a range of ecological predictions are likely to be unreliable if we ignore how evolution affects biological communities."

Urban refers to this as "the invisible finger of evolution" which, he says, may tip the scales toward or away from ecological influences.

"That the effect of an apex predator can be so strong that it causes evolutionary responses in other species," he says, "shows that ecology and evolution are inexorably intertwined."

-NSF-

Media Contacts
Cheryl Dybas, NSF, (703) 292-7734, cdybas@nsf.gov
Sheila Foran, University of Connecticut, (860) 486-3530, sheila.foran@uconn.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

Scientist Mark Urban filters a tow net sample of zooplankton from a pond.
Scientist Mark Urban filters a tow net sample of zooplankton from a pond.
Credit and Larger Version

marbled salamander
The marbled salamander: top predator in here-today, gone-tomorrow ponds.
Credit and Larger Version

Adult spotted salamander
A spotted salamander adult migrates to a temporary pond to breed.
Credit and Larger Version

Marbled salamander larva, patrolling the leaf litter in an ephemeral pond.
Marbled salamander larva, patrolling the leaf litter in an ephemeral pond.
Credit and Larger Version

Marbled salamanders in a temporary pond
Marbled salamanders shape the biological communities of temporary ponds.
Credit and Larger Version



Email this pagePrint this page
Back to Top of page