Email Print Share

News Release 06-053 - Video

Single-molecule Diode Channeling Electrons

This material is available primarily for archival purposes. Telephone numbers or other contact information may be out of date; please see current contact information at media contacts.


Researchers at the University of Chicago recently created a single-molecule diode only a few tens of atoms in size and 1,000 times smaller than its conventional counterparts. Theorists from the University of South Florida and the Russian Academy of Sciences recently determined how the device works. The researchers found electron energy levels in a molecule are efficient channels for transferring electrons from one electrode to another.

Because the molecule in the diode is asymmetrical, it responds to electrical voltage asymmetrically. The channels conduct electrons in one direction but limit flow in the opposite direction, even if the voltage polarity reverses.

Download the high-resolution JPG version of the image. (441 KB)

Credit: Trent Schindler, National Science Foundation

Back to article

Video Transcript:

Researchers at the University of Chicago recently created a single-molecule diode only a few tens of atoms in size and 1,000times smaller than its conventional counterparts. Theorists from the University of South Florida and the Russian Academy of Sciences recently determined how the device works. The researchers found electron energy levels in a molecule are efficient channels for transferring electrons from one electrode to another.

Because the molecule in the diode is asymmetrical, it responds to electrical voltage asymmetrically. The channels conduct electrons in one direction but limit flow in the opposite direction, even if the voltage polarity reverses.