Work at the Human-Technology Frontier: Shaping the Future

Presentation to the National Science Board
February 21, 2017

Fay Lomax Cook, PhD
Assistant Director, National Science Foundation
Directorate for Social, Behavioral, and Economic Sciences
Team Work at the Human-Technology Frontier

Assistant Directors/Office Heads
Fay Lomax Cook (SBE)
Joan Ferrini-Mundy (EHR)
Suzi Iacono (OIA)
Barry Johnson (ENG)
Jim Kurose (CISE)

Steering Committee
Deborah Goodings (ENG)
Evan Heit (EHR)
Howard Nusbaum (SBE)
Howard Wactlar (CISE)

Working Group
Stephanie August (EHR)
Amy Baylor (EHR)
Jordan Berg (ENG)
Steven Breckler (SBE)
David Corman (CISE)
Meghan Houghton (CISE)
Alexandra Medina-Borja (ENG)
Leah Nichols (OIA)
The World of Work is Changing

• On the cusp of a major transformation in work and the workplace
• Driven by combinations of
 – Artificial intelligence
 – Machine learning
 – The Internet of Things
 – Robotics
 – And more
• Toward an evolving human-technology ecosystem
The Pace of Technological Development is Accelerating

- Cost of computing dropping, computer power increasing
 - Computers ubiquitous & networked (Internet of Things)

- Software platforms facilitate new services

- Artificial Intelligence (AI) accelerates the impact of big data

Self-driving car

Bridge sensors

Cars maintaining distances
A Changing World of Work: Why it Matters

- Employment
- Opportunity
- Productivity
- Economic Growth
- Competitiveness
- National Security
- U.S. Global Leadership
Past Research Investments are Bearing Fruit Today

NSF projects foster human-technology partnership

Wearable robotic glove restores independence for stroke victims

Transformative advances in manufacturing enable a new model for small business

Using sound waves to keep sewer pipes clog-free
Work at the Human-Technology Frontier: Shaping the Future

• A bold initiative to catalyze interdisciplinary science and engineering research to...
 – understand and build the human-technology partnership;
 – design new technologies to augment human performance;
 – illuminate the emerging socio-technological landscape; and
 – foster lifelong and pervasive learning with technology
Changing the Traditional Design-Use-Impact Framework

From this:

Design → Use → Impact

To this:

Design → Use

Convergent Research:
- Engineering
- Computer Science
- Social and Behavioral Sciences
- Education

Create

Describe & explain

Iterate

Describe & explain

Impact
Theme 1. Understanding and Building the Human-Technology Partnership

Manufacturing “cobot”

Immersive 3D virtual environment

Computers reading facial expressions
Theme 2. Designing New Technologies to Augment Human Performance

- Smart prosthetic arm and hand with sense of touch
- Deep learning applied to brain tumor detection and segmentation
- Soft robotic exoskeleton for strength and endurance
Theme 3. Illuminating the Emerging Socio-Technological Landscape

Benefits
- New industries and jobs
- Labor Productivity
- Economic Growth
- Improved Quality of Life

Risks
- Lost industries and jobs
- Loss of Privacy
- Growing disparities in access to new technologies

Values
- Convergent Research: Engineering, Computer Science, Social and Behavioral Sciences, Education

Process:
- Use
- Design
- Impact
- Create

Describe & explain
- Iterate
Theme 4. Fostering Lifelong and Pervasive Learning with Technology

Dashboard for teachers

Virtual reality training simulation
Potential Activities and Investments

- Workshops and Planning Grants
- Research Coordination Networks
- Interdisciplinary Research Programs
- Use-Inspired, Human-Centered Research
- Infrastructure
- Center-Scale Activities

PROGRAM PROGRESSION TIMELINE
The Impact of Work at the Human-Technology Frontier

Research on Work at the Human-Technology Frontier

Outcomes

- Strong Human-Technology Partnerships
 - New Technologies to Augment Human Performance
 - Reduced Risks and Heightened Benefits
 - Lifelong and Pervasive Learning with Technology

Impacts

- Advance Knowledge and Innovation
- Drive the Economy
- Enhance National Security
- Sustain U.S. Global Leadership
Thank you!

- Comments?
- Questions?
- Suggestions?
Image Credits

- Slide 3: The Economist (Workers on Tap); Erik Brynjolfsson, Andrew McAfee (2014) The Second Machine Age, W. W. Norton & Company; The New York Times (Worklife); World Economic Forum (Future or Jobs)
- Slide 4: Carnegie Mellon University (self-driving car); MicroStrain, Inc. (bridge sensors); U.S. Department of Transportation (distances)
- Slide 5: MIT Technology Review (How Technology is Destroying Jobs; The Atlantic (How to Protect Workers...)); Journal of Economic Perspectives (Why are There Still So Many Jobs); The Guardian (Technology has created more jobs...)
- Slide 6: Conor Walsh, Harvard Wyss Institute (Robotic Glove); © 2015 Daily Grommet, Inc. (Makers); NSF (Sound waves)
- Slide 7: Shutterstock.com/Jesus Sanz
- Slide 8: © Blue River Technologies (Tractor); Charles Cerrone, Drexel University (Woman at loom); ATE Centers Impact 2008-2010 (www.atecenters.org; Firefighter); National Institutes of Health (Surgeons); Caught Coding CC 2.0 (Robots at computers); ATE Centers Impact 2011 (www.atecenters.org; Man/woman at screen)
- Slide 9: http://blog.robotiq.com/what-does-collaborative-robot-mean, What Does Collaborative Robot Mean? by Mathieu Bélanger-Barrette Aug 19, 2015 (Cobot); Lance Long for Electronic Visualization Laboratory, University of Illinois (physicians); Rosalind W. Picard, MIT Media Lab and Affectiva, Inc. (Faces)