

Broader Impacts at NSF

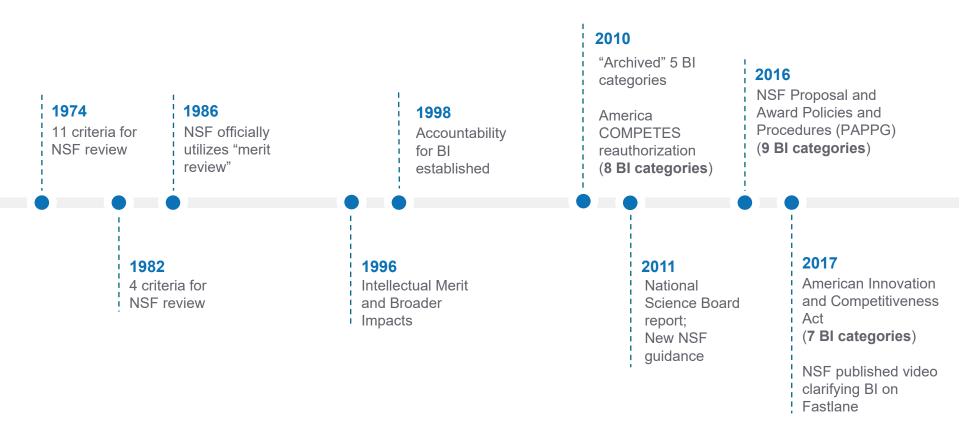
Suzi lacono National Science Foundation

Susan Renoe University of Missouri, Columbia

December 9, 2020

NSF Merit Review Criteria

The Intellectual Merit criterion encompasses the potential to advance knowledge.



Broader Impacts (BI)

The Broader Impacts criterion encompasses the potential to benefit society and contribute to the achievement of specific, desired societal outcomes.

Key Milestones for NSF Merit Review

Broader Impacts in Policy and Law

	"Archived" List	America COMPETES 2010	AICA 2017	PAPPG (current)
Training Students, STEM Education, and Workforce	Advance discovery, training graduate students, mentoring postdoctoral researchers and junior faculty, involving undergraduates	Development of a globally competitive STEM workforce; improved undergraduate STEM education; improved pre-K-12 STEM education and teacher development	Developing an American STEM workforce that is globally competitive through improved pre-K-12 STEM education and teacher development, and improved undergraduate STEM education and instruction	Improved STEM education and educator development at any level; development of a diverse, globally competitive STEM workforce
Broadening Participation	Broaden participation of under- represented groups	Increased participation of women and underrepresented minorities in STEM	Expanding participation of women and individuals from underrepresented groups in STEM	Full participation of women, persons with disabilities, and underrepresented minorities in STEM
Enhanced Infrastructure and Partnerships	Enhance infrastructure for research and education	Increased partnerships between academia and industry	Enhancing partnerships between academia and industry in the U.S.	Enhanced infrastructure for research and education; increased partnerships between academia, industry, and others
<i>Knowledge</i> Dissemination and Scientific Literacy	Broaden dissemination to enhance scientific and technological understanding	Increased public scientific literacy	Improving public scientific literacy and engagement with science and technology in the U.S.	Increased public scientific literacy and public engagement with science and technology
8 8-8 Societal Impact and Economic Competitiveness	Benefits to society may occur when results of research and education projects are applied	Increased national security and economic competitiveness of the U.S.	Increasing the economic competitiveness of the U.S.; advancing the health and welfare of the American public; supporting national defense	Improved well-being of individuals in society; improved national security; increased economic competitiveness of the U.S.

Retrospective

NSF investments have had a large impact

Examples include:

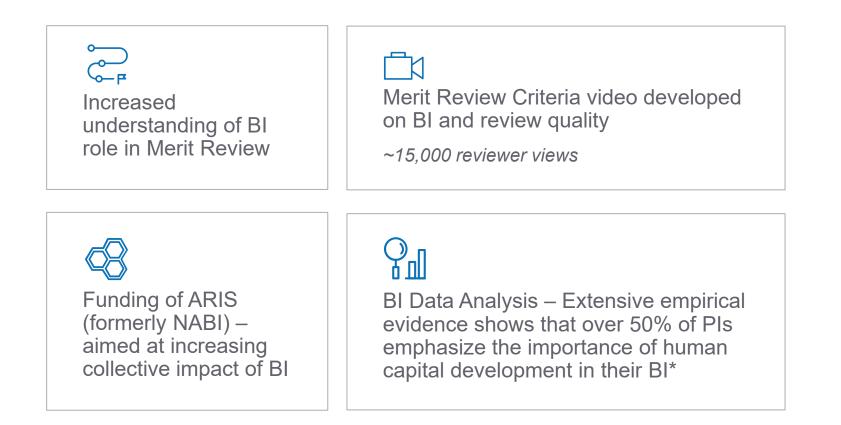
- Billion-dollar tech industries as found in NASEM studies
- Patent studies connecting NSF proposals to patent applications

Prospective

BI is a review criterion

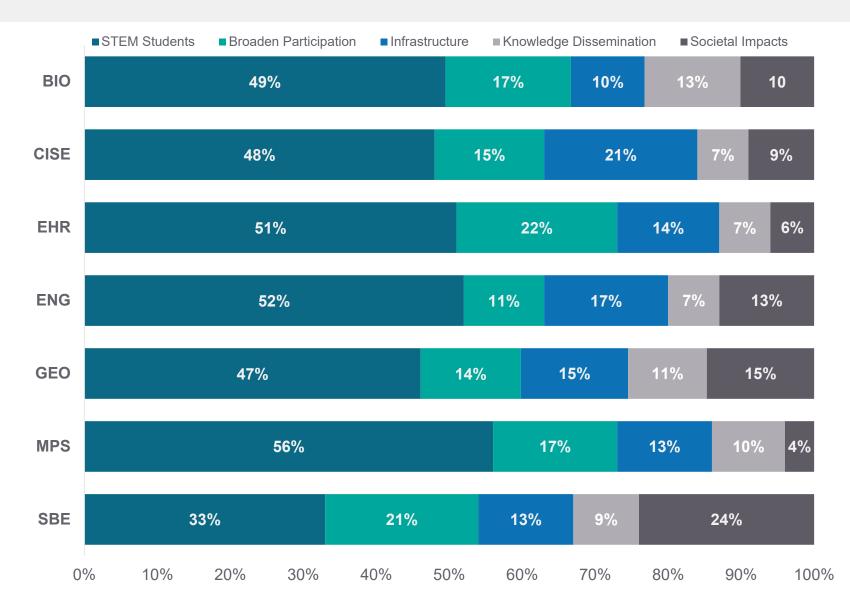
Mostly conceived of as activities in a project that have potential

Broad Scope (Like IM)

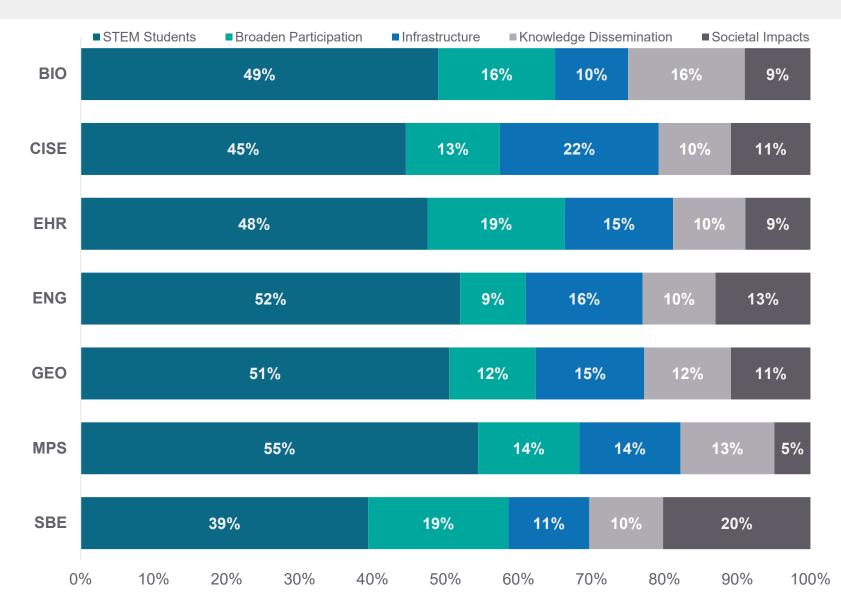

BI has 9 PAPPG suggestions

Varying Scope (Like IM)

Depends on the program and PI knowledge/expertise


NSF BI Re-Examination Outcomes (2015 – 2017)

* A gap observed: Every year, **~27,000 NSF-funded graduate students** and **~4,500 post-docs** are trained by PIs to lead the next generation of scientists and engineers.



Directorates: Project Summary FY18

Directorates: Reviews 2018

Potential Next Steps

- Attend to student mentoring and development across all NSF-funded projects
 - Recommendation in Graduate STEM Education for 21st Century (2019 NASEM study)
 - Congressional focus
 - Societal context
- Update and make the Merit Review Criteria video (slide 11) mandatory for all NSF reviewers
- Fund more institutional/scientific communities collective impact pilots
- Pilot changes in NSF to better support BI
 - E.g., put a BI professional on every CoV
- Reframe IM and BI for a more dynamic perspective
 - IM = Knowledge Creation
 - BI = Knowledge Mobilization

I nan eou

Siacono@nsf.gov

Merit Review Criteria Video

Assessing Broader Impacts:

In assessing Broader Impacts,

In Every NSF Solicitation...

Broader impacts may be accomplished through the research itself

Through activities directly related to specific research projects

Through **activities** that are **supported by**, and **complementary to, the project**

NSF values the advancement of scientific knowledge and activities

Societally relevant outcomes that contribute to achievement include:

- Full participation of women, persons with disabilities, and underrepresented minorities in STEM
- Improved public scientific literacy and public engagement with science and technology
- · Improved well-being of individuals in society
- Development of a diverse, globally competitive STEM workforce
- Increased partnerships between academia, industry, and others
- · Improved national security
- Increased economic competitiveness of the U.S.
- Enhanced infrastructure for research and education

