Skip To Content
NSF Logo Search GraphicGuide To Programs GraphicImage Library GraphicSite Map GraphicHelp GraphicPrivacy Policy Graphic
OLPA Header Graphic

This document has been archived.

NSF Press Release


NSF PR 00-47 - June 20, 2000

Media contact:

 Amber Jones

 (703) 292-8070

Program contact:

 Donald Burland

 (703) 292-4949

This material is available primarily for archival purposes. Telephone numbers or other contact information may be out of date; please see current contact information at media contacts.

New Test For Presence of Nitric Oxide Could Improve Medical Knowledge

Researchers supported by the National Science Foundation (NSF) have developed a means to detect nitric oxide that could help improve scientists' understanding of this molecule's role in neurological signaling and other biological functions.

Stephen Lippard, Katherine J. Franz and Nisha Singh of the Massachusetts Institute of Technology synthesized a nitric oxide sensing system that consists of a molecule whose fluorescence switches on when nitric oxide is present. They reported their findings in the June 16 international edition of the German publication Angewande Chemie.

Nitric oxide plays a major role in the regulation of blood pressure, the prevention of blood clotting, the dilation of blood vessels and the destruction of pathogens. It is used extensively in medical treatment; for example, nitroglycerin ameliorates the pain of angina by supplying nitric oxide to the blood vessels that supply the heart. The popular drug Viagra controls penile erection by regulating nitric oxide.

To understand the mechanism of nitric oxide's action in the body, medical researchers needed a sensitive means of detecting the molecule in vivo. An effective sensor system had to be sensitive only to nitric oxide, even in the presence of other chemically active molecules such as oxygen, and able to measure the minute concentrations normally found in living cells.

The new sensor consists of a central cobalt atom surrounded by two organic "arms." In the absence of nitric oxide, the molecule fluoresces only very weakly. When nitric oxide is present, it chemically bonds to the cobalt atom, causing a molecular rearrangement that results in a substantial, measurable increase in fluorescence. This indicator does not respond to other molecules, such as oxygen.

"Many of the nitric oxide detectors used today are based on identification of its decomposition products, nitrite and nitrate," said Lippard. "In contrast, our fluorescence indicator reacts directly with nitric oxide. It has the potential to track the formation of nitric oxide in real time."

The scientists are now working on the development of more sensitive, water-soluble sensors with a stronger fluorescence response. "With this future generation of sensors it should be possible to measure nitric oxide in cell cultures. In the distant future, applications to understand nitric oxide-triggered neurobiological events in living organisms, and possibly even medical applications, could emerge," Lippard adds.


NSF is an independent federal agency which supports fundamental research and education across all fields of science and engineering, with an annual budget of about $4 billion. NSF funds reach all 50 states, through grants to about 1,600 universities and institutions nationwide. Each year, NSF receives about 30,000 competitive requests for funding, and makes about 10,000 new funding awards.

For instant information about NSF, sign up for the Custom News Service. From the toolbar on NSF's home page, (, sign up to receive electronic versions of NSF news, studies, publications and reports. Follow the simple sign-on procedures that guide you to your choices. Also see NSF news products at:,, and



National Science Foundation
Office of Legislative and Public Affairs
4201 Wilson Boulevard
Arlington, Virginia 22230, USA
Tel: 703-292-8070
FIRS: 800-877-8339 | TDD: 703-292-5090

NSF Logo Graphic