Skip To Content
NSF Logo Search GraphicGuide To Programs GraphicImage Library GraphicSite Map GraphicHelp GraphicPrivacy Policy Graphic
OLPA Header Graphic

NSF Press Release


NSF PR 00-73 - October 12, 2000

Media contact:

 Cheryl Dybas

 (703) 292-8070

Program contact:

 Joann Roskoski

 (703) 292-8480

This material is available primarily for archival purposes. Telephone numbers or other contact information may be out of date; please see current contact information at media contacts.

NSF Awards $52.5 Million in Grants to Study Biocomplexity
The Interrelationship of Living Things with the Environment

The National Science Foundation (NSF) has awarded $52.5 million in research grants to scientists and engineers across the country to foster a better understanding of the interrelationships that arise when living things at all levels- from molecular structures to genes to ecosystems--interact with their environment.

"The interplay between life and its environment is complex," explains NSF Director Rita Colwell. "The connections are not necessarily straightforward or easily discerned. These ribbons of interconnections are what NSF's biocomplexity awards will study."

In order to help preserve biodiversity, habitats, and ecosystems, Colwell hopes to eliminate or reduce incomplete or inconsistent scientific information. "We need to study environmental parameters in a broadly based, systematic manner," she says.

This systems approach is the crux of biocomplexity studies, says Colwell. Scientists and engineers must work in teams across diverse fields that go well beyond biology to include physics, systems engineering, economics, geochemistry and others, on studies that extend from the submolecular to mass changes in climate with potential for worldwide impact. "Past investments in molecular biology, remote sensing, information science, and mathematics have yielded tremendous advances and powerful new technologies and tools that now make biocomplexity research possible," she says. "The biggest, most exciting scientific questions are now at the interfaces of traditional disciplines, such as biological chemistry, computational ecology, and environmental genetics."

NSF's Special Competition in Biocomplexity: 2000 is the second phase of a multi-year effort. It supports full research projects, as well as "incubation activities" that enable groups of researchers who have not historically collaborated on biocomplexity research to develop projects via workshops and other planning activities.

In the biocomplexity 2000 competition, 16 research projects and 57 incubation activities were funded, with support from all NSF research directorates and offices.

Research project topics range from a study of how physical, biological and human interactions shape the ecosystems of freshwater bays and lagoons (Mark Bain, Cornell University); to the biocomplexity of introduced avian diseases in Hawaii (David Duffy, University of Hawaii); to the co-evolution of biodiversity and the environment through geologic time (Charles Marshall, Harvard University); to the evolution and ecology of perturbed interactions (Claudia Neuhauser, University of Minnesota).

Incubation activities include risk assessment of nonindigenous species (David Lodge, University of Notre Dame); understanding the role of urbanization as a driving force of global atmospheric change (Robert Harriss, University Corporation for Atmospheric Research); linking large-scale hydrological and biological processes in restoring riparian forest ecosystems (Karen Holl, University of California at Santa Cruz); and understanding genome evolution and macroevolutionary diversification in green plants (Pamela Soltis, Washington State University).


For a complete list of research projects and incubation activities, see:



National Science Foundation
Office of Legislative and Public Affairs
4201 Wilson Boulevard
Arlington, Virginia 22230, USA
Tel: 703-292-8070
FIRS: 800-877-8339 | TDD: 703-292-5090

NSF Logo Graphic