Dealing with Data in this Age

José L. Muñoz, PhD
NSF
Chief Technology Officer
Outline

❖ Data Motivation
❖ Data: Most recent tool to the scientific method
❖ Data at NSF
❖ IT Workforce
❖ Opportunities at NSF
❖ Summary
The world’s “information” is doubling every two years!

1.8 zettabytes to be created and replicated in 2011

200 Billion HD movies (120 min)
57.5B 32GB Apple iPads

5DVD stack

By 2020 the amount of digital "information will have grown to 35 zettabytes!!"

1 person 47M years to view 24/7

* Zettabyte = 10^21

Most of it Unstructured!
THE Issue

DATA ≠ INFORMATION ≠ KNOWLEDGE
Science and Society Transformed by Data

- Modern science
 - Data- and compute-intensive
 - Integrative, multi-scale
- Multi-disciplinary Collaborations for Complexity
 - Individuals, groups, teams, communities
- Sea of Data
 - Age of Observation
 - Distributed, central repositories, sensor-driven, diverse, etc

Software is also DATA
Scientific Method

- Theory
- Mod/Simulation
- Data
- Observation

Mathematics
Scientific Data Challenges

Volume

Climate, Environment
Genomics
XSEDE, HPC
DataNet
Many smaller datasets…

Useful Lifetime

Data Access

2012

2020

Bytes per day

Square Kilometer Array
LSST
LHC
Climate, Environment
Genomics

Exa Bytes
Peta Bytes
Tera Bytes
Giga Bytes

Distribution

Office of the Director
J L Muñoz CTO/OD
ACCI Task Force Reports: Data

- More than 25 workshops and Birds of a Feather sessions and more than 1300 people involved
 - Data&Viz., HPC, Campus Bridging, Software, Grand Challenges, Cyberlearning&WFD

- Recommendations presented to the NSF Advisory Committee on Cyberinfrastructure (ACCI) Dec 2010

- Final reports on-line at: http://www.nsf.gov/od/oci/taskforces/
Data Task Force Recommendations

Infrastructure:
- Recognize data infrastructure and services (including visualization) as essential long term research assets fundamental to today’s science

Economic sustainability:
- Develop realistic cost models to underpin institutional/national business plans for research repositories/data services

Culture Change:
- Emphasize expectations for data sharing; support the establishment of new citation models in which data and software tool providers and developers are recognized and credited with their contributions

Data Management Guidelines:
- Identify and share best-practices for the critical areas of data management

Ethics and IP:
- Train researchers in privacy-preserving data access

Data management plans: https://dmp.cdlib.org/
DataNet: A Multi-tiered and Multi-Disciplinary Landscape

Data-enabled Science

Data Curation

Data Storage

DataNet supported

- Genomics Communities
- Modeling and Simulation Communities
- Population, Climate, Environment Communities
Data-Enabled Science

- **Data Services Program** *(data)*
 - Provide reliable digital preservation, access, integration, and analysis capabilities for science and/or engineering data over a decades-long timeline

- **Data Analysis and Tools Program** *(information)*
 - Data mining, manipulation, modeling, visualization, decision-making systems

- **Data-intensive Science Program** *(knowledge)*
 - Intensive disciplinary efforts
 - Simulation, modeling
 - Multi-disciplinary S&E
Cross Cutting Challenges

- Balancing research into next generation’s infrastructure with operation & maintenance of current capacity.
 - Stimulate innovation and manage transitions

- Sustainable, long term programs
 - Technical design, development of sustainability models, and integration with the research cycle.

- Integration
 - Vertical – Linking low-level bit storage infrastructure to data collections, and finally to applications
 - Horizontal – Achieving connectivity and interoperability between activities that vary in scale, disciplinarity, and funding source.
OCI’s Strategic Technologies for CyberInfrastructure would entertain data focused programs: 1 Feb 2012 (Pennington/Thompson)

- Be on the look-out for a new (re-focused) DataNet solicitation (Pennington) (1qtr FY12)

- Other Directorates and Offices are expected to have data focused programs under CIF-21
78% increase in employment in CS & math ... only 17% otherwise (GAO)
- but STEM grads decreased from 32% to 27%

IT careers high in demand (BLS)
92% of IT grads work outside the IT industry
- health care, business, finance, manuf., ...
- not an IT guru but rather a “versatilist”

Imperative to stay on top of evolving IT!
Problem solving skills (computational thinking)
E-commerce and cyber-security!

http://www.jsonline.com/sponsoredarticles/education/131782468.html
Skills New IT Grads are Lacking

- An understanding of basic business functions
 - accounts receivables, marketing plans, ...

- Experience with enterprise systems integration
 - ability to integrate with other systems

- Knowledge of emerging enterprise technologies
 - technology is changing, need to keep up
 - Tech basic basics
 - Familiarity of legacy systems
 - Real-world perspective
 - what’s best for the company?

- Ability to work as a team
 - Facebook and Twitter not the answer
Learning and Workforce Development in OCI
Catalyzing and Nurturing the Next Generation of Scientists

- Concentration on education, workforce development and training that complements and enhances the programs of OCI: Data, VO, Networking, Software, and HPC
 - Training the next generation of CI scientists who will lead new technological developments
 - Training scientists across disciplines to exploit current technologies to transform disciplinary scientific discovery and be prepared to nimbly assimilate into practice technological advancements

CE21 Focus: Build a computational savvy 21st century workforce
CI TEAM Focus: Undergraduate and Graduate Education
CI TraCS Focus: Postdocs and Mid-Career
BIG data is here now and only getting BIGGER

Data enabled science: “data scientists” along with computational scientists will be in greater demand

Collecting/saving data is a small part of the problem... from data to knowledge

Positive outlook for IT in future... with caveats
 - data storage, cybersecurity, access, etc.

NSF’s CIF-21 has participation from all NSF Directorates and Offices
THANK YOU
Zettabyte

1000 Megabytes = 1GB

1000 Gigabytes = 1TB

1000 Terabytes = 1PB

1000 Petabytes = 1EB

1000 Exabytes = 1Zettabyte
Zetta-byte (sextillion)

- Sextillion (21)
 - Quadrillion (15)
 - Billion (9)
 - Million (6)
 - Trillion (12)
 - Quintillion (18)

1,000,000,000,000,000,000,000,000,000,000