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Background
• Energy Storage Technologies Laboratory

• We are a world leader in the testing of advanced energy storage 
technologies for future automotive applications.

• We are the lead Department of Energy (DOE) lab for hybrid electricWe are the lead Department of Energy (DOE) lab for hybrid electric 
and plug-in hybrid electric vehicle energy storage testing.

• We support DOE’s effort to reduce national dependence on foreign oil 
through:

– Vehicle energy storage testing
– Vehicle system testing

• We are in independent source of energy storage performance data for:p gy g p
– U.S. DOE
– U.S. car companies
– Battery and ultracapacitor developers
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Characteristics Units Minimum HEV Battery Minimum PHEV Battery
Peak Discharge Pulse Power (2 sec /10 sec) kW NA/25 50/45

Minimum HEV and PHEV Targets

Peak Discharge Pulse Power (2 sec /10 sec) kW NA/25 50/45
Peak Regen Pulse Power (10 sec) kW 20 30
Max. Current (10 sec pulse) A NA 300
Available Energy for CD (Charge-Depleting) Mode, 10 
kW Rate kWh NA 3.4

Available Energy for CS (Charge-Sustaining) Mode, 10 kWh 0 3 0 5gy ( g g)
kW Rate kWh 0.3 0.5

Minimum Round-trip Energy Efficiency (CS 50 Wh 
profile) % 90 90

Cold cranking power at -30°C, 2 sec, 3 Pulses kW 5 7

CD Life / Discharge Throughput Cycles/
MWh NA 5,000 / 17CD Life / Discharge Throughput MWh NA 5,000 / 17

CS HEV Cycle Life Cycles 300,000 300,000
Calendar Life year 15 (30°C) 15 (35°C)
Maximum System Weight kg 40 60
Maximum System Volume Liter 32 40
Maximum Operating Voltage Vdc 400 400Maximum Operating Voltage Vdc 400 400
Minimum Operating Voltage Vdc >0.55 x Vmax >0.55 x Vmax 
Maximum Self-discharge Wh/day 50 50
Maximum System Recharge Rate at 30°C kW 1.4 (120V/15A) 

Unassisted Operating & Charging Temperature Range °C -30 to +52 -30 to +52
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Survival Temperature Range °C -46 to +66 -46 to +66

Maximum System Production Price @ 100k units/yr $ 500 1,700
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• Charge Sustaining Cycle Life Profile:
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INL Energy Storage Laboratories (cont )INL Energy Storage Laboratories (cont.)

• Charge Depleting Cycle Life Profile:
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INL Energy Storage Laboratories (cont )INL Energy Storage Laboratories (cont.)

• Hybrid Pulse Power Characterization (HPPC) Pulse:
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Example Results - Battery Power & Energy FadeExample Results - Battery Power & Energy Fade

Power level decreases with time
Energy window at constant power decreases with timeEnergy window at constant power decreases with time
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Accelerated Life Testing
• Technology Life Verification Testing (TLVT)

• Accelerated life testing consists of designing a test matrix that 
adequately covers the identified stress factors.

– Temperature, SOC, energy throughput, pulse power, etc.p gy g p p p

• The stress factor level should not be increased to a point where the 
battery failure rate is different than anticipated normal-use conditions.

• Life estimates can be achieved through a known battery model and 
Monte Carlo simulations.

– Monte Carlo simulations generate a large number of independentMonte Carlo simulations generate a large number of independent 
simulation trials with random perturbations to model parameters, 
measurement error, and manufacturing variability.

Simulated results are verified with actual battery testing and assessed
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• Simulated results are verified with actual battery testing and assessed 
for lack-of-fit statistics.



Example Results – Arrhenius FitExample Results – Arrhenius Fit

With an Arrhenius fit, battery life 
at the target reference point can be estimatedat the target reference point can be estimated.

Calendar Life Model for Saft HP-12 Li-Ion Cells.
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Example Results* - Battery Life Estimation

• The default model was applied to a set of cells that were calendar-life 
aged at various temperatures

Example Results  - Battery Life Estimation

aged at various temperatures.
• The 30°C data were not used to construct the model.
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* E.V. Thomas, I. Bloom, J.P. Christophersen, V.S. Battaglia, J. Power Sources, 184 (2008) 312–317



Example Results - Battery Life Estimation (cont )

• Life estimation was completed with 1000 Monte Carlo simulations 
using the default models

Example Results - Battery Life Estimation (cont.)

using the default models.
• These cells were projected to have a life capability between 7.6 and 

13.8 years.
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Summary
• We are supporting DOE’s effort to reduce national dependence on 

foreign oil through vehicle energy storage and system testingforeign oil through vehicle energy storage and system testing.
– We provide an independent source of performance data to help 

DOE, US car companies, and manufacturers make informed 
decisions about future vehicle technologies.g

• Performance targets and battery designs vary depending on the 
vehicle operation mode (HEV, PHEV, EV, etc.).

• Accelerated life aging should adequately cover the stress factor range 
while avoiding the onset of off-normal degradation mechanisms.

• Life estimates of energy storage devices with a statistical confidence 
window includes known models (empirical or physics-based) and 
Monte Carlo simulations.
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