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Research Motivation

a Microelectronic devices such
as laptop computers generate
heat

a With increasing functionality,
microelectronic devices
require more heat dissipation

a Current integrated heat
dissipation methods are
reaching their limits

Q External cooling Is state-of-
the art but non-ideal

Laptop User

Laptop External Cooling Device




Motivation for Microfluidics (Microchannels)

3 Suited for chip or package level cooling
3 Small length scales for higher heat transfer rates

A Forced convection using liquid for higher heat
transfer rates

NEPCM

liquid flows through channels
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Energy Storage Technologies

Flow batteries Biofuel Biomass
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Source: R. Hammerschlag and C. P. Schaber, “Energy Storage Technologies,” in Energy Conversion, Edited by D.
Y. Goswami and F. Kreith, Chapter 15, CRC Press, pp. 15-1 to 15-22, 2008.




Solar. Thermal Power
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i Storage of
wey Thermal Energy

Q Storage of energy is required for managing any form of renewable sources
of energy

A Thermal Energy is abundant: solar radiation, geothermal, stratified layers in
oceans.

O Released during most energy conversion processes; widely labeled as
“waste heat”

Thermal Comfort/
Building Materials
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Sensible & Latent Heat Storage

a Sensible heat storage is realized by heating/cooling a
material without any phase alteration (heat capacity).

 Latent heat storage takes advantage of the latent
enthalpy (of fusion) of a material during solid-liquid
phase transformation.

 Advantages of the Phase Change Materials (PCM) are:

— Small temperature variation (nearly isothermal)

— Higher energy density

over 10°C




Thermal Energy Storage by Phase
Change Materials (PCM)
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Desired Properties of PCM

a High Heat of Fusion

igh Thermal Conductivity
igh Density

Igh Specific Heat

_ow Volume Change

Q Low Vapor Pressure

a Chemical Stability in response to exposures
a Cycling Stability (1 - 103)

Q Little Supercooling

a Compatibility with Container Material

a Low Cost

Q Recyclabllity




Thermal Conductivity Enhancers

PCM enhanced by
meso- to micro-

| / , ), scale fillers, e.g.,
k=0.2 W/m°C 5= \'/ metal fins/foams,
’ and carbon fibers
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Apparent Thermal Conductivity of PCM “Composites”




Advantages over Form-Stable Composites
Qa Lighter weight
a Can be encapsulated
a Higher latent heat (no voids in liquid phase)

a Due to “fluidity”, forced/natural convection can
enhance heat transfer further

O No “contact heat transfer” issues
a Straightforward recycling
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Experimental Station
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Sample Experimental Data

Eicosane |10 wt% CuO

Bare Bar
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Summary and Outlook

Method AT (°C) Power (W) Space
BipArray bt | § 2 high . N/A

MCs 4+3 medium-high varies

BAEPCM g3t |
Fan 2+ : medium high

2 low-medium N/A
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Going forward...

1 Test other nanoparticles such as carbon
nanotubes (k > 1000 W/m°C)

d Evaluate salt hydrate PCM

d Integrate microfluidics and NEPCM
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