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Real-time pump—probe imaging spectroscopy with femtosecond time resolution is demonstrated.
This method allows real-time mapping of frequency- and time-resolved transient absorption of

materials at once. We can clearly measure the image of the transient absorption spectra of
B-carotene with wide temporal and spectral ranges in a short accumulation time. Since the typical
accumulation time is about two orders of magnitude shorter than that by the conventional pump-—
probe technique, this method becomes a powerful spectroscopic tool to study ultrafast relaxation
and dynamics on organic/biochemical materials, which easily undergo photofatigue after many

repetitions of the pump—probe sequence2@4 American Institute of Physics

[DOI: 10.1063/1.1823039

Frequency-resolved ultrafast transient signals reveal imeell. This white-light continuum is used to probe the materi-
portant information about photochemical and photophysicahl’'s change in absorption as a function of time and frequency.
properties of materials. To obtain ultrafast transient signalsThe experimental geometry of the real-time pump—probe im-
pump-—probe transient absorption spectroscopy is generallyging spectroscopy is schematically illustrated in Fig. 1. The
used. However, the conventional pump—probe investigationsollimated pump and probe beams are separated by an angle
of some organic and most biological samples are difficultof § and focused with cylindrical lensg$.l.=150 mm for
because the chromophores are easily degraded by the irradiée pump and 100 mm for the probso their focal lines are
tion of photons. Although it is possible to study irreversible spatially overlapped at the sample. Here the pump beam is
ultrafast processes in liquids by flowing a sample fast enougkhcident normal to the sample. Since the probe beam reaches
that each pair of the pump and probe pulses interrogates different parts of the sample at different times, a time-delay
new portion of the sample, such an approach is not feasiblgetween pump and probe beams is spatially encoded across
for organic/biochemical samples, where large sample quanthe sample. Decay information is therefore contained in the
tities are not readily available, and the samples are easilgpatia| profile of the probe beam. The excitation lergytnd
photofatigued. To overcome this difficulty, single-shot the interbeam anglé are 5 mm and 20.6°, respectively. Af-
pump-—probe femtosecond techniques have been proposed @k passing through the sample, the probe beam is recolli-
measuring irreversible ultrafast proces§éslthough these mated with an appropriate magnificatiém=2) and then
techniques can readily collect multiple temporal data pointg.yjindrically focusedf.l.=150 mm) such that its focal line is

from a single probe pulse at a given frequency, they stillyecisely onto the entrance slit of a 0.3 m grating monochro-
require many repetitions in order to obtain full spectral IN-mator (300 grooves/mm coupled to a two-dimensional
formation, which is necessary to understand ultrafast relaxcCD imaging array detectof1340x 1300 pixel3. To re-

ation and dynamics on materials. This letter demonstrates Rove scattered light from the excitation and fundamental

.SChe'.’“e for taking pump_—probe dateal-time pump—probe laser pulses, we put appropriate bandpass filters in front of
imaging spectroscopywhich enables us to simultaneously

acquire multiple temporal and spectral data points with fem-
tosecond time resolution. o _ exciation .
Our method is essentially similar to previously reported beam profile | %

single-shot pump—probe techniqﬂ]‘ésbut uses a white-light ) <
continuum as the probe. The laser pulses are obtained from a pmlff bele.mlll sampe \7 55
Ti:sapphire regenerative amplifier system with a centered (w lteﬂ - fg ;ﬁ
wavelengthA =800 nm, a pulse duration of 100 fs, and a gg
repetition rate of 1 kHz. The fundamental laser pulse is di- pol. 0 2ol vl | 5 9
vided into two beams using a beam splitter; one is used as gi \d o ' 2 A
the excitation(pump) pulse following second-harmonic gen- eAe=4 singd S«
eration in a nonlinear BBO crystal, while the other is used to @:ﬁm beam |*:Wavelength
generate a white-light continuum by focusing it into a water p : dolay fime

FIG. 1. Schematic experimental geometry of real-time pump—probe imaging
¥Electronic mail: jun@ynu.ac.jp spectroscopy.
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the monochromator. Temporal information of the probe beam 0.8

is recorded along the direction parallel to the slit, whereas 0.6

the spectral information is analyzed by the monochromator Eﬂ 041 | 2

along the direction normal to the slit. Consequently, real-time § 02 %“

mapping of frequency- and time-resolved absorbance 8 0.0 £
. . " = =

changes are obtained. Under these experimental conditions, 2020 %

the temporal resolution per unit pixel is13 fs, and the 2 o g

whole mapping area per unit frame covers wide temporal and < -

spectral ranges;-5 ps and 430—-620 nm, respectively. '(0)'2

Based on the calculations presented in Ref. 4, we have
estimated the time resolution of our system as a function of
pulse duration, interbeam angle, and sample thickness. For
the pulse duratioth7=100 fs, the interbeam angl=20.6°,  FiG. 2. 2D map of frequency- and time-resolved absorbance change of
and the sample thicknesk=0.5—1 mm, the time resolution p-carotene measured by the real-time pump—probe imaging spectroscopy.
of our system is expected to be 200—300 fs. The estimated

time resolution is limited by both the sample thickness and,35_500 nm and the transient absorption fro, 1187,
pulse length: it reaches to 150 fs when the thickness be- ;.4 on- o higher states at 500—620 nm with rise and Laecay
comes 0.1-0.2 mm and even becomes 100 fs if the pulsgnes of~1 and~10 ps, respectiveliill

length is reduced to 70 fs. Precise alignment of the cylindri- A comparison between the above-mentioned imaging
cal and imaging lenses is crucial to achieve good time resgy,ta and those obtained from the conventional pump—probe
lution. The actual time resolution was evaluated using th,casurements fg8-carotene is shown in Figs. 3 and 4. The
third-order correlation function of the probe beam measured ,|iq jines are reproduced by slicing off the 2D image shown
by this real-time imaging method combined with the opticali Fig. 2 along the time and spectral axes, while those de-
Kerr shutter technique” A quartz plate with a 0.5-1 mm pqreq by dotted lines are taken by the conventional pump—
thickness is placed at sample position and the two poIarlzer}grobe technique with a time interval of 40 @®tal accumu-

in Fig. 1 are arranged in a crossed configuration. The timestion time=~ 10 h). Dynamics obtained from the real-time
re.solutio'n optained is 200—300 fs for the whole spectral r®imaging spectroscopy are in good agreement with those mea-
gion, which is the same value as the above-noted calculatioRyreqd by the conventional technique, indicating that our real-
and for our conventional pump—probe setup. Kerr signal i§ime imaging spectroscopy successfully measures ultrafast
used to correct the group velocity dispersion of the systéMyansient absorption of materials. Since the typical accumu-
On the other hand, the spatial intensity profile of thejation time of our method is about two orders of magnitude
Gaussian-shaped pump beam is recorded by a CCD detectgiorter than that of the conventional pump—probe technique,
and stored to normalize that of the probe beam. The correghe method is a powerful spectroscopic tool to measure ul-
tion and normalization are performed on a personal comyafast processes in organic/biochemical samples that are eas-

450 500 550 600
Wavelength (nm)

puter. _ ) . ) ily photofatigued after many repetitions of the pump—probe
As a first demonstration of this technique, we measuredgquence.
ultrafast internal conversion process of ta#ins B-carotene, Our imaging method can be implemented on a single-

which plays an important role in the energy transfer takingshot basis, and it would be most effective for single-event
place during photosynthesis. Relaxation kinetics ofralfs:  measurements. To achieve a real single-shot detection, how-
B-carotene has been also extensively investigated througé\,er, we may need some technical improvements: for in-
the conventional pump—probe transient absorption and timestance, not only a probe beam but also a reference one should

resolved fluorescence speptroscaﬁ)]/.A commercial pow-  pe two-dimensionally mapped by a CCD detector to obtain
der of alltrans B-carotene is used without further purifica-

tion, andB-carotene is dissolved in benzene to yield a final
concentration of 6.& 104 M. The solution is kept under N
saturated conditions and circulated by a peristaltic pump
through a flow cell with a 0.5 or 1 mm path length during
measurements. Magic angl®4.79 polarization between
pump and probe beams is used to remove any transient due
to relaxation of anisotropy. The excitation intensity
(~24 pJ/pulse and area of the pump pulse at the sample
(~5x0.2mn?) result in a photon density of~5
X 10" photons cri?. We carefully keep the excitation power
weak enough to guarantee that the absorbance changes of
B-carotene are in the linear regime. Typical accumulation
time for taking an image is 30—60 s per unit frame.

Figure 2 shows the two-dimension@D) image of tran- MY I
sient absorbance changes fiacarotene, indicated as con- 0 5 10 15 20
tours, measured by pump—probe imaging spectroscopy. This Delay Time (ps)
2D ima_ge s -Obtained by adding Several frames- with different IG. 3. Time evolution of absorbance change @tarotene at 465 and
delay times in order to cover the entire rela>§at|on Process 047 nm. solid and dotted lines correspond to the data measured by the
B-carotengeach frame covers5 ps. The 2D image clearly real-ime imaging method and the conventional pump—probe technique,
shows the instantaneous absorption bieachingégfstate at  respectively.

Absorbance Change
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l I l I tional pump—probe techniques. We expect that this method
will open the door for studying irreversible ultrafast pro-

0.2ps cesses in a wide range of samples that cannot be readily
investigated with conventional pump—probe techniques.
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