Section VII:

Bibliography for the Review of Undergraduate Education in Science, Mathematics, Engineering, and Technology
Section VII:

Bibliography for the Review of Undergraduate Education in Science, Mathematics, Engineering, and Technology


______________, *The New College Course Map and Transcript Files: Changes in Course-Taking and Achievement, 1972-1993* (Draft Manuscript, Fall 1995)


American Mathematical Association of Two-Year Colleges, Standards for Curriculum and Pedagogical Reform in Two-Year College and Lower Division Mathematics (Cobleskill, New York: AMATYC, 1993).

______________________________________________, Standards for Introductory College Mathematics Before Calculus, Revised Final Draft (February, 1995).


Tora K. Bikson and S.A. Law, Global Preparedness and Human Resources, College and Corporate Perspectives, RAND (Santa Monica, CA: RAND, 1994).


__________, “What’s Wrong with Our Universities?: Are they flunking out? or are the graders asking the wrong questions?” *Harvard Magazine* (Cambridge, MA: May-June, 1990) pp. 44-59.


Center for Instructional Study, Syracuse University, *A National Study of Research Universities on the Balance Between Research and Undergraduate Teaching*, Supported by a grant from the Lilly Endowment (Syracuse, NY: Center for Instructional Development, Office of Evaluation and Research, Syracuse University, 1992)


A. W. Chickering and Z. F. Gamson (editors), “Applying the Seven Principles for Good Practice in Undergraduate Education (A Symposium), New Directions for Teaching and Learning (Fall, 1991) pp. 1-100. [Available at GWU and CU]

Barry Cipra, “Calculus Reform Sparks a Backlash,” Science (February 16, 1996), page 901.


Patricia Cuniff (Chair), Curtis Heiggelkke (co-Chair), and Barbara Leigh Smith (co-Chair), Putting the Pieces Together, A Guide Book for Leaders of Coalitions of Two- and Four-Year Colleges and Universities (Largo, MD: The Science & Technology Resource Center, Prince George’s Community College, 301 Largo Rd., October 14-15, 1993).


Zelda F. Gamson, “A brief History of the Seven Principles for Good Practice in Undergraduate Education,” *New Directions for Teaching and Learning* (Fall, 1991) pp. 5-12.


Susan H. Hixson and Curtis T. Sears, "Instrumentation and laboratory improvement grants in Chemistry,” (Projects supported by the NSF Division of Undergraduate Education), *Journal of Chemical Education*, Vol. 71 (October, 1994) pp. A244-5.


Howard Hughes Medical Institute, *Enriching the Undergraduate Laboratory Experience: 1992 Undergraduate Program Directors Meeting* (Bethesda, MD: HHMI, 1993).


• 389 •


____________________________________________, *New Pathways to a Degree: Seven Technology Stories* (Boulder, CO: Western Interstate Commission for Higher Education, 1994).


_________________________, *Reinventing Schools: The Technology is Now!: A Model for Education; A policy statement accessible through the NAS/NAE/IOM Internet Home Page (HTTP://WWW.NAS.edu, go to http://www.nap.edu/nap/online/techgap/welcome.html and choose A Model for Education; based on a May 1993 Convocation at the NAS)*.


National Research Council, *Everybody Counts: A Report to the Nation on the Future of Mathematics Education*. A joint policy statement of the Mathematical Sciences Education Board, the Board on


National Science Board, Task Committee on Undergraduate Science and Engineering Education, Homer A. Neal (Chairman), Undergraduate Science, Mathematics and Engineering Education; Role for the National Science Foundation and Recommendations for Action by Other Sectors to Strengthen Collegiate Education and Pursue Excellence in the Next Generation of U.S. Leadership in Science and Technology, (Washington DC: National Science Foundation, 1986, NSB86-100).


______________________, Report on the National Science Foundation Disciplinary Workshops on Undergraduate Education: Recommendations of the disciplinary task forces concerning issues in U.S. undergraduate education in the Sciences, Mathematics and Engineering (Washington, DC: Division of Undergraduate Science, Engineering, and Mathematics Education, National Science Foundation, 1989, NSF89-3).


Proceedings of the National Science Foundation Workshop on The Role of Faculty from the Scientific Disciplines in the Undergraduate Education of Future Science and Mathematics Teachers (Washington DC: Division of Undergraduate Education, 1993, NSF93-108).


Innovation and Change in the Chemistry Curriculum, Seyhan Ege and Orville Chapman (Co-Chairs) (Washington, DC: Division of Undergraduate Education, National Science Foundation, 1993, NSF94-49).


__________, “Renewing the Research University,” *University of California at Santa Cruz Review* (Winter 1996).


S.A. Rice, *Report of the Symposium on Undergraduate Education in Chemistry and Physics* (Chicago, IL: Chemistry Department, University of Chicago, April, 1986).


• 397 •


The National Science Foundation promotes and advances scientific progress in the United States by competitively awarding grants for research and education in the sciences, mathematics and engineering.

To get the latest information about the program deadlines, to download copies of NSF publications, and to access abstracts of awards, visit the NSF Web site at:

http://www.nsf.gov

Location: 4201 Wilson Blvd.
Arlington, VA 22230

For General Information (NSF Information Center): (703) 306-1234

TDD (for the hearing-impaired): (703) 306-0090

To Order Publications or Forms:

Send and e-mail to: pubs@nsf.gov

or telephone: (703) 306-1234

To Locate NSF Employees: (703) 306-1234